3,629 research outputs found

    Pressure-based Impedance Control of A Pneumatic Actuator

    Get PDF
    In this thesis, three control methods are developed for the impedance control of a linear pneumatic actuator for contact tasks using discrete valves. Linear pneumatic actuators, particularly with discrete valves, utilize compressed air to produce linear motion. It is a low cost and clean system with straightforward implementation compared to other actuators. Impedance control is applied to the pneumatic actuator to regulate not only force and position, but also the relationship between them. Specifically, the impedance control yields a desired air pressure based on the actual and desired positions, velocity, and force of a pneumatic cylinder to drive the dynamics of the actuator system. Three controllers including Active Disturbance Rejection Control (ADRC), Sliding Mode Control (SMC), and Extended State Observer (ESO) based SMC are implemented to control the pressure output of the actuator system. The control goal is to drive the actual pressure output to the desired pressure from the impedance control module despite the presence of parameter variations and external disturbances. The performances of these controllers are compared based on their abilities of regulating position, force, and pressure in contact and non-contact situations, as well as the amount of control efforts that excite the valve to achieve these goals. Simulation results demonstrate that ADRC provides the best solution to accomplish the control goals in terms of accurate tracking of position, effectively regulating impedance in the presence of an object, and requiring the least amount of control effort necessary to excite valves

    Novel Actuation Methods for High Force Haptics

    Get PDF

    The impact of circulation control on rotary aircraft controls systems

    Get PDF
    Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained

    Modeling and Control of a New Robotic Deburring System

    Get PDF

    Robotic Exoskeletons for Upper Extremity Rehabilitation

    Get PDF

    Stiffness control of pneumatic actuators to simulate human tissues behavior on medical haptic simulators

    Get PDF
    In order to increase the realism of medical simulators, haptic interfaces could be used to simulate the patient's body behavior. It is especially interesting to reproduce the stiffness of different soft tissues with corresponding haptic behaviors. In this paper, two control laws, impedance control and back-stepping associated with a closed-loop stiffness tuning, are introduced and applied to a pneumatic actuator. Both controllers have been obtained by using the A-T transform which is suitable to model the behavior of a pneumatic system, in a strict-feedback form. Both control laws allow to tune the system stiffness. A comparison of their performances is presented, based on experimental results
    corecore