109 research outputs found

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Stability and dissipativity analysis of static neural networks with time delay

    Get PDF
    This paper is concerned with the problems of stability and dissipativity analysis for static neural networks (NNs) with time delay. Some improved delay-dependent stability criteria are established for static NNs with time-varying or time-invariant delay using the delay partitioning technique. Based on these criteria, several delay-dependent sufficient conditions are given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Some examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.published_or_final_versio

    Further results on exponential estimates of markovian jump systems with mode-dependent time-varying delays

    Get PDF
    This technical note studies the problem of exponential estimates for Markovian jump systems with mode-dependent interval time-varying delays. A novel LyapunovKrasovskii functional (LKF) is constructed with the idea of delay partitioning, and a less conservative exponential estimate criterion is obtained based on the new LKF. Illustrative examples are provided to show the effectiveness of the proposed results. © 2010 IEEE.published_or_final_versio

    Dissipativity analysis of stochastic fuzzy neural networks with randomly occurring uncertainties using delay dividing approach

    Get PDF
    This paper focuses on the problem of delay-dependent robust dissipativity analysis for a class of stochastic fuzzy neural networks with time-varying delay. The randomly occurring uncertainties under consideration are assumed to follow certain mutually uncorrelated Bernoulli-distributed white noise sequences. Based on the Itô's differential formula, Lyapunov stability theory, and linear matrix inequalities techniques, several novel sufficient conditions are derived using delay partitioning approach to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties. It is shown, by comparing with existing approaches, that the delay-partitioning projection approach can largely reduce the conservatism of the stability results. Numerical examples are constructed to show the effectiveness of the theoretical results

    Dissipative Analysis and Synthesis of Control for TS Fuzzy Markovian Jump Neutral Systems

    Get PDF
    This paper is focused on stochastic stability and strictly dissipative control design for a class of Takagi-Sugeno (TS) fuzzy neutral time delayed control systems with Markovian jumps. The main aim of this paper is to design a strictly dissipative controller such that the closed-loop TS fuzzy control system is stochastically stable, and also the disturbance rejection attenuation is obtained to a given level by means of the H∞ performance index. Intensive analysis is carried out to obtain sufficient conditions for the existence of desired dissipative controller which ensures both the stochastic stability and the strictly dissipative performance. The main advantage of the proposed technique is that it is possible to obtain the dissipative controller with less control effort and also, as special cases, robust H∞ control with the prescribed H∞ performance under given constraints and passivity control can be obtained for the considered systems. Also, the existence condition of the fuzzy dissipative controller can be obtained in terms of linear matrix inequalities. Finally, a practical example based on truck-trailer model is provided to demonstrate the effectiveness and feasibility of the proposed design technique

    A delay-dividing approach to robust stability of uncertain stochastic complex-valued Hopfield delayed neural networks

    Full text link
    In scientific disciplines and other engineering applications, most of the systems refer to uncertainties, because when modeling physical systems the uncertain parameters are unavoidable. In view of this, it is important to investigate dynamical systems with uncertain parameters. In the present study, a delay-dividing approach is devised to study the robust stability issue of uncertain neural networks. Specifically, the uncertain stochastic complex-valued Hopfield neural network (USCVHNN) with time delay is investigated. Here, the uncertainties of the system parameters are norm-bounded. Based on the Lyapunov mathematical approach and homeomorphism principle, the sufficient conditions for the global asymptotic stability of USCVHNN are derived. To perform this derivation, we divide a complex-valued neural network (CVNN) into two parts, namely real and imaginary, using the delay-dividing approach. All the criteria are expressed by exploiting the linear matrix inequalities (LMIs). Based on two examples, we obtain good theoretical results that ascertain the usefulness of the proposed delay-dividing approach for the USCVHNN model

    Improved results on an extended dissipative analysis of neural networks with additive time-varying delays using auxiliary function-based integral inequalities

    Get PDF
    The issue of extended dissipative analysis for neural networks (NNs) with additive time-varying delays (ATVDs) is examined in this research. Some less conservative sufficient conditions are obtained to ensure the NNs are asymptotically stable and extended dissipative by building the agumented Lyapunov-Krasovskii functional, which is achieved by utilizing some mathematical techniques with improved integral inequalities like auxiliary function-based integral inequalities (gives a tighter upper bound). The present study aims to solve the H∞,L2−L∞ H_{\infty}, L_2-L_{\infty} , passivity and (Q,S,R) (Q, S, R) -γ \gamma -dissipativity performance in a unified framework based on the extended dissipativity concept. Following this, the condition for the solvability of the designed NNs with ATVDs is presented in the form of linear matrix inequalities. Finally, the practicality and effectiveness of this approach were demonstrated through four numerical examples
    • …
    corecore