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This paper is focused on stochastic stability and strictly dissipative control design for a class of Takagi-Sugeno (TS) fuzzy neutral
time delayed control systems with Markovian jumps. The main aim of this paper is to design a strictly dissipative controller such
that the closed-loop TS fuzzy control system is stochastically stable, and also the disturbance rejection attenuation is obtained
to a given level by means of the 𝐻

∞
performance index. Intensive analysis is carried out to obtain sufficient conditions for the

existence of desired dissipative controller which ensures both the stochastic stability and the strictly dissipative performance. The
main advantage of the proposed technique is that it is possible to obtain the dissipative controller with less control effort and also, as
special cases, robust𝐻

∞
control with the prescribed𝐻

∞
performance under given constraints and passivity control can be obtained

for the considered systems. Also, the existence condition of the fuzzy dissipative controller can be obtained in terms of linear matrix
inequalities. Finally, a practical example based on truck-trailer model is provided to demonstrate the effectiveness and feasibility
of the proposed design technique.

1. Introduction

The Takagi-Sugeno (TS) fuzzy model is an effective one
to analyze and synthesize nonlinear systems which are
ubiquitous in signal processing, communications, chemical
processes, robotics systems, and automotive systems [1–3]. In
recent years, fuzzy control systems have become an important
topic in systems theory due to their potential applications
in many fields of science and engineering [4, 5]. More
precisely, Takagi-Sugeno (TS) fuzzy model based control
plays an important role which offers a systematic and effective
platform for control of nonlinear plants [6, 7]. Also, with the
rapid development of LMI techniques and Lyapunov stability
theory, many important and interesting results have been
reported on control of TS fuzzy systems [8–10]. By solving
some convex optimization problems with LMI constraints,
some effective 𝐻

∞
filter designs are presented for discrete-

time Takagi-Sugeno fuzzy time-varying delay systems [11].
On the other hand, in many practical systems, the abrupt

phenomena cannot be ignored and lead to the changes of

system parameters [12–14]. On the other hand, it is well
known that the systems with Markovian jump parameters
can be used to model some practical systems where they may
experience abrupt changes in their structure and parameters
due to random failures, repairs of components, and sudden
environmental disturbances [15–17]. These abrupt variations
can be described by Markovian jump systems and hence
the study of time-delay systems with Markovian jumps has
received much attention [18–20]. Wang et al. [21] studied the
problem of robust 𝐻

∞
fuzzy control for a class of uncertain

nonlinear Markovian jump systems with time-varying delay
with use of a delay decomposition approach together with
linear matrix inequalities.

The existence of time delays brings negative effects such as
instability, oscillation, and poor performance to the dynamic
performance of TS fuzzy systems [22–24]. Time-varying
delay especially has an adverse impact not only on the system
performance but also on its stability, therefore neglecting
the effects of time-varying delay in system dynamics may
lead to poor performance and instability [25, 26]. A number
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of delay-dependent stabilization results for TS fuzzy sys-
tems have been studied and also effective results have been
reported to reduce the conservatism for further improving
the quality of delay-dependent stabilization criteria [27, 28].
Peng and Han [29] discussed the robust stabilization for a
class of TS fuzzy control systems with interval time-varying
delays. Li et al. [30] proposed a fuzzy state feedback controller
which guarantees that the nonlinear time-delay singular
Markovian jump systemwith partly unknown transition rates
not only is regular, impulse-free, and stochastically stable, but
also satisfies a prescribed𝐻

∞
performance for all delays.

Furthermore, the notion of dissipativity originated from
circuit analysis [31, 32] is a generalization of the passivity
which plays an important role in system and control theory
both from theoretical and practical points of view. In the past
two decades, there have been considerable interests in the
analysis and synthesis of dissipative control for dynamical
systems [33, 34]. Feng and Lam [35] investigated the problem
of reliable dissipative control for a continuous-time singular
Markovian system with actuator failure and also in which
a new set of sufficient conditions is established in terms of
linear matrix inequalities to ensure that a singularMarkovian
system is stochastically admissible and strictly dissipative.
More recently, the problems of dissipativity analysis and
synthesis for discrete-time Takagi-Sugeno fuzzy systems with
stochastic perturbation and time-varying delay are discussed
in [36]. Moreover, the study of neutral systems has received
considerable attention during the past few decades because
the system involves the derivative in the delayed state [37, 38].

On the other hand, the notion of dissipativity can be
regarded as a generalization of 𝐻

∞
performance as well

as positive realness performances and passivity. Due to the
importance of TS fuzzy neutral models, the development of
dissipativeness analysis and dissipative control for neutral
TS fuzzy systems became an essential and attractive topic.
However, to the best of our knowledge, the dissipative control
problem for a class of TS fuzzy model Markovian jump
neutral systems with time-varying delay has not been fully
investigated yet. Motivated by this consideration, in this
paper, we investigate the dissipative control problem while
satisfying a prescribed disturbance attenuation level for a
class of continuous time Markovian jump neutral systems
which is described by TS fuzzy model with time-varying
delay. Based on the obtained LMI conditions, the solvable
conditions for the existence of dissipative controller are
derived which guarantee that the closed-loop system is not
only stochastically stable but also strictly dissipative for all
admissible uncertainties. It is worth pointing out that the
dissipative control problem considered here includes the𝐻

∞

control problem, passivity based control problem, and mixed
𝐻
∞
and passivity problem as special cases. In order to obtain

the required result, an appropriate novel Lyapunov functional
containing four integral terms involving the upper bounds of
the delay is proposed. An attractive feature of the employed
Lyapunov-Krasovskii functional is that it can effectively
deal with the dissipativity of neutral TS-fuzzy systems with
Markovian jumping parameters. Further, the results reveal
that it is possible to obtain the dissipative controller with
less control effort. Finally, a numerical example is provided

to illustrate the effectiveness of the method proposed in this
paper.

Notations. The superscripts “𝑇” and “(−1)” stand for matrix
transposition and matrix inverse, respectively; 𝑅𝑛 and 𝑅

𝑛×𝑚

denote the 𝑛-dimensional Euclidean space and the set of all
𝑛 × 𝑚 real matrices, respectively; 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌),
where𝑋 and 𝑌 are symmetric matrices, means that𝑋−𝑌 is a
positive semidefinite (resp., positive definite); 𝐼 is the identity
matrix of appropriate dimension; L2[0,∞) is the space of
square integrable function over [0,∞); (Ω,F, (F

𝑡
)
𝑡>0,P) is

a complete probability space with filtration (F
𝑡
)
𝑡>0, whereΩ

is the sample space,F is the𝜎-algebra of subsets of the sample
space, and P is the probability measure on F. The notation
E[⋅] stands for the expectation operator; and “∗” is used to
represent a term that is induced by symmetry.

2. Problem Formulation and Preliminaries

Consider a class of continuous time-delay Markovian jump
systems in the probability space (Ω,F, {F

𝑡
}
𝑡≥0,P) that is

described by the TS fuzzy model. The 𝑖th rule of TS fuzzy
model is of the following form.

Plant Rule 𝑖. If 𝜇1(𝑡) is 𝐹𝑖1, 𝜇2(𝑡) is 𝐹
𝑖

2, and . . ., 𝜇𝑔(𝑡) is 𝐹
𝑖

𝑔
, then

�̇� (𝑡) = 𝐴
𝑖
(𝑟
𝑡
) 𝑥 (𝑡) +𝐴

𝑑𝑖
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐽
𝑖
(𝑟
𝑡
) �̇� (𝑡 − ℎ (𝑡)) + 𝐵

𝑖
(𝑟
𝑡
) 𝑢 (𝑡)

+ 𝐵1𝑖 (𝑟𝑡) 𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
(𝑟
𝑡
) 𝑥 (𝑡) +𝐷

𝑖
(𝑟
𝑡
) 𝑢 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

𝑟
𝑡
= 𝑟0, 𝑡 ∈ [−𝑑, 0] , 𝑖 = 1, 2, . . . ,S,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector; 𝑢(𝑡) ∈ 𝑅

𝑚 is the control
input; 𝜔(𝑡) ∈ L

𝑞

2[0,∞) denotes the external disturbances;
𝑧(𝑡) ∈ 𝑅

𝑝 is the control output; 𝜙(𝑡) is a continuous vector-
valued initial function defined on L𝑛2[−𝑑, 0]; and 𝑟0 is the
initial mode. Further, 𝜇1(𝑡), 𝜇2(𝑡), . . . , 𝜇𝑔(𝑡) are the premise
variables that depend on the states in many cases; 𝐹𝑖

𝑙
, 𝑖 =

1, 2, . . . ,S, 𝑙 = 1, 2, . . . , 𝑔, are the fuzzy sets;S is the number of
IF-THEN rules; {𝑟

𝑡
, 𝑡 ≥ 0} is a continuous-time discrete state

Markovian process with right continuous values in a finite
set M = {1, 2, . . . , 𝑁}; 𝐴

𝑖
(𝑟
𝑡
), 𝐴
𝑑𝑖
(𝑟
𝑡
), 𝐽
𝑖
(𝑟
𝑡
), 𝐵
𝑖
(𝑟
𝑡
), 𝐵1𝑖(𝑟𝑡),

𝐶
𝑖
(𝑟
𝑡
), and 𝐷

𝑖
(𝑟
𝑡
) are known mode-dependent real constant

matrices with appropriate dimensions for each 𝑟
𝑡
∈ M. Also,

the transition probability matrix Π = 𝜋
𝑟𝑘

(𝑟, 𝑘 ∈ M) is given
by

P {𝑟
𝑡+𝛿(𝑡)

= 𝑘 | 𝑟
𝑡
= 𝑟}

=

{

{

{

𝜋
𝑟𝑘
𝛿 (𝑡) + 𝑂 (𝛿 (𝑡)) if 𝑘 ̸= 𝑟,

1 + 𝜋
𝑘𝑘
𝛿 (𝑡) + 𝑂 (𝛿 (𝑡)) if 𝑘 = 𝑟,

(2)

where 𝛿(𝑡) > 0 and lim
𝛿(𝑡)→ 0(𝑂(𝛿(𝑡))/𝛿(𝑡)) = 0 and 𝜋

𝑟𝑘
≥ 0

is the transition rate from mode 𝑘 at time 𝑡 to mode 𝑟 at time
𝑡 + 𝛿(𝑡) if 𝑘 ̸= 𝑟 and 𝜋

𝑟𝑟
= −∑

𝑁

𝑘=1,𝑘 ̸=𝑟 𝜋𝑟𝑘.



Mathematical Problems in Engineering 3

Also, in this paper, we consider time-varying continuous
functions 𝜏(𝑡) and ℎ(𝑡) that satisfy for all 𝑡 ≥ 0

0 < 𝜏 (𝑡) ≤ 𝜏 < ∞, ̇𝜏 (𝑡) ≤ 𝜏1 < 1,

0 < ℎ (𝑡) ≤ ℎ < ∞, ℎ̇ (𝑡) ≤ ℎ1 < 1,
(3)

where 𝜏 = max{𝜏(𝑡)}, ℎ = max{ℎ(𝑡)}, and 𝑑 = max{𝜏, ℎ}. For
notational simplicity, take 𝑟

𝑡
= 𝑟, 𝑟 ∈ M; a matrix 𝐽

𝑖
(𝑟
𝑡
) will

be denoted by 𝐽
𝑖
(𝑟), and𝐴

𝑖
(𝑟
𝑡
) is denoted by𝐴

𝑖
(𝑟),𝐴

𝑑𝑖
(𝑟
𝑡
) by

𝐴
𝑑𝑖
(𝑟), and so on.
By using a singleton fuzzifier, a center average defuzzifier,

and product inference, the final state and output of fuzzy
neutral Markovian jump system (1) can be expressed as

�̇� (𝑡) =

S

∑

𝑖=1
ℎ
𝑖
(𝜇 (𝑡)) [𝐴

𝑖
(𝑟) 𝑥 (𝑡) +𝐴

𝑑𝑖
(𝑟) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐽
𝑖
(𝑟) �̇� (𝑡 − ℎ (𝑡)) + 𝐵

𝑖
(𝑟) 𝑢 (𝑡) + 𝐵1𝑖 (𝑟) 𝜔 (𝑡)] ,

𝑧 (𝑡) =

S

∑

𝑖=1
ℎ
𝑖
(𝜇 (𝑡)) [𝐶

𝑖
(𝑟) 𝑥 (𝑡) +𝐷

𝑖
(𝑟) 𝑢 (𝑡)] ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

𝑟 = 𝑟0, 𝑡 ∈ [−𝑑, 0] , 𝑖 = 1, 2, . . . ,S,

(4)

where ℎ
𝑖
(𝜇(𝑡)) = 𝑤

𝑖
(𝜇(𝑡))/∑

S
𝑖=1 𝑤𝑖(𝜇(𝑡)), 𝑤

𝑖
(𝜇(𝑡)) =

∏
𝑔

𝑙=1𝐹
𝑖

𝑙
(𝜇
𝑙
(𝑡)), in which 𝐹

𝑖

𝑙
(𝜇
𝑙
(𝑡)) is the grade of membership

of 𝜇
𝑙
(𝑡) corresponding to the fuzzy set 𝐹

𝑖

𝑙
, and 𝜇(𝑡) =

[𝜇1(𝑡), 𝜇2(𝑡), . . . , 𝜇𝑔(𝑡)]. It is assumed that 𝑤
𝑖
(𝜇(𝑡)) ≥ 0 and

∑
S
𝑖=1 𝑤𝑖(𝜇(𝑡)) > 0; then we can get that ∑S

𝑖=1 𝑤𝑖(𝜇(𝑡)) = 1;
0 ≤ 𝑤

𝑖
(𝜇(𝑡)) ≤ 1, 𝑖 = 1, 2, . . . ,S.

Also, by adapting the idea discussed in [39], for the fuzzy
neutral Markovian jump system (1), we construct the state
feedback controller in the following form.

Controller Part

Rule 𝑖. If 𝜇1(𝑡) is 𝐹𝑖1, 𝜇2(𝑡) is 𝐹
𝑖

2, and . . ., 𝜇
𝑔
(𝑡) is 𝐹𝑖

𝑔
, then

𝑢 (𝑡) = 𝐾
𝑖
(𝑟) 𝑥 (𝑡) , 𝑖 = 1, 2, . . . ,S, (5)

where 𝐾
𝑖
(𝑟) is the state feedback gain to be determined. By

incorporating the fuzzy rule, the state feedback control law
can be written as

𝑢 (𝑡) =

S

∑

𝑖=1

ℎ
𝑖
(𝜇 (𝑡))𝐾

𝑖
(𝑟) 𝑥 (𝑡) . (6)

Substituting (6) in (4), we can be obtain the closed-loop fuzzy
Markovian jump control system in the form

�̇� (𝑡) = 𝐴 (𝑟) 𝑥 (𝑡) +𝐴
𝑑
(𝑟) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐽 (𝑟) �̇� (𝑡 − ℎ (𝑡)) + 𝐵1 (𝑟) 𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶 (𝑟) 𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

𝑟 = 𝑟0, 𝑡 ∈ [−𝑑, 0] , 𝑖 = 1, 2, . . . ,S,

(7)

where

𝐴 (𝑟)

=

S

∑

𝑖=1
ℎ
𝑖
(𝜇 (𝑡))

S

∑

𝑗=1
ℎ
𝑗
(𝜇 (𝑡)) [𝐴

𝑖
(𝑟) + 𝐵

𝑖
(𝑟)𝐾
𝑗
(𝑟)] ,

𝐴
𝑑
(𝑟) =

S

∑

𝑖=1

S

∑

𝑗=1
ℎ
𝑖
(𝜇 (𝑡)) 𝐴

𝑑𝑖
(𝑟) ,

𝐽 (𝑟) =

S

∑

𝑖=1

S

∑

𝑗=1
ℎ
𝑖
(𝜇 (𝑡)) 𝐽

𝑖
(𝑟) ,

𝐵1 (𝑟) =
S

∑

𝑖=1

S

∑

𝑗=1
ℎ
𝑖
(𝜇 (𝑡)) 𝐵1𝑖 (𝑟) ,

𝐶 (𝑟)

=

S

∑

𝑖=1
ℎ
𝑖
(𝜇 (𝑡))

S

∑

𝑗=1
ℎ
𝑗
(𝜇 (𝑡)) [𝐶

𝑖
(𝑟) +𝐷

𝑖
(𝑟)𝐾
𝑗
(𝑟)] .

(8)

Definition 1. Consider 𝑉(𝑥
𝑡
, 𝑟
𝑡
, 𝑡) as the stochastic lyapunov

function of the resulting system (1); its weak infinitesimal
operator is defined as

m𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)

= lim
Δ𝑡→ 0

1
Δ𝑡

[E {𝑉 (𝑥
𝑡+Δ𝑡

, 𝑟
𝑡+Δ𝑡

, 𝑡 + Δ𝑡) −𝑉 (𝑥
𝑡
, 𝑟
𝑡
, 𝑡)}] .

(9)

Definition 2. The fuzzy Markovian jump time-delay neutral
system (7) is said to be stochastically stable if there exists a
scalar𝑀(𝑟0, 𝜙(⋅)) such that

lim
𝑇→∞

E{∫

𝑇

0
‖𝑥 (𝑡)‖

2
𝑑𝑡 | 𝑟0, 𝑥 (𝑠) = 𝜙 (𝑠)}

≤ 𝑀(𝑟0, 𝜙 (⋅)) .

(10)

Definition 3. Given a scalar 𝛿 > 0, real matrices 𝑄 = 𝑄
𝑇, 𝑅 =

𝑅
𝑇 and matrix 𝑆, the fuzzy Markovian jump neutral system

(7) is strictly (𝑄, 𝑆, 𝑅) dissipative, if for any 𝑇 ≥ 0, under zero
initial state, the following condition is satisfied:

E [⟨𝑧, 𝑄𝑧⟩
𝑇
+ 2 ⟨𝑧, 𝑆𝜔⟩

𝑇
+ ⟨𝜔, 𝑅𝜔⟩

𝑇
] ≥ 𝛿 ⟨𝜔, 𝜔⟩

𝑇
, (11)

where the notation ⟨𝑧, 𝑄𝑧⟩
𝑇
represents ∫𝑇0 𝑧

𝑇

(𝑡)𝑄𝑧(𝑡)𝑑𝑡 and
the other symbols (𝑄, 𝑆, 𝑅) are similarly defined. Also, we
assume that 𝑄 < 0 and 𝑄 = √−𝑄.

Remark 4. Based onDefinition 3, it can be seen that the above
strict dissipativeness includes the following special cases:

(i) If 𝑄 = −𝐼, 𝑆 = 0, and 𝑅 = 𝛾
2
𝐼, the strict

(𝑄, 𝑆, 𝑅) dissipativity reduces to the𝐻
∞
performance

constraint.
(ii) If 𝑄 = 0, 𝑆 = 𝐼, and 𝑅 = 0, the strict (𝑄, 𝑆, 𝑅)

dissipativity reduces to a passivity performance.
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(iii) If 𝑄 = −𝜃𝐼, 𝑆 = (1 − 𝜃)𝐼 and 𝑅 = 𝜃𝛾
2
𝐼 or 𝑄 = −𝛾

−1
𝜃𝐼,

𝑆 = (1 − 𝜃)𝐼 and 𝑅 = 𝛾𝜃𝐼 where 𝜃 ∈ [0, 1] is a
given scalar weight representing a trade off between
𝐻
∞

and passivity performance, then strictly (𝑄, 𝑆, 𝑅)
dissipativity reduces to the mixed 𝐻

∞
and passivity

performance.

Lemma 5 (see [40]). For any constant matrix 𝑍 > 0, any
scalars 𝑎 and 𝑏 with 𝑎 < 𝑏, and a vector function 𝑥(𝑡) :

[𝑎, 𝑏] → R𝑛 such that the integrals concerned are well defined,
then the following holds:

[∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝑍[∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠]

≤ (𝑏 − 𝑎) ∫

𝑏

𝑎

𝑥
𝑇

(𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠.

(12)

3. Dissipativity Analysis

In this section, the dissipative control problem is studied for a
class of TS fuzzy neutral systemswithMarkovian jumps. First,
we discuss the stochastic stability and dissipative conditions
in the mean square sense and subsequently the result is
extended to obtain the desired dissipative controller. More
precisely, by assuming that the control gain 𝐾

𝑗
is known, we

will develop the condition in the following theorem in which
the closed-loop system (7) is stochastically stable and strictly
(𝑄, 𝑆, 𝑅) dissipative.

Theorem 6. For the given scalars 𝛿 > 0, 𝜏1 > 0, ℎ1 > 0, the
matrices 𝑄 = 𝑄

𝑇, 𝑆, 𝑅 = 𝑅
𝑇 and the given control gain matrix

𝐾
𝑗
, the closed-loop system (7) is stochastically stable and strictly

(𝑄, 𝑆, 𝑅) dissipative, if there exist matrices 𝑃(𝑟) > 0,𝑄1(𝑟) > 0,
𝑄
𝑖
> 0, 𝑖 = 2, 3, 𝑆

𝑖
(𝑟) > 0, 𝑅

𝑖
(𝑟) > 0,𝑍

𝑖
(𝑟) > 0, 𝑖 = 1, 3, 𝑆

𝑗
> 0,

𝑅
𝑗
> 0, 𝑍

𝑗
> 0, 𝑗 = 2, 4, and any appropriate dimension

matrices 𝑀
𝑖
, 𝑖 = 1, 2, such that the following conditions hold

for each 𝑟 ∈ M:

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑄1 (𝑘) −𝑄2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑆1 (𝑘) − 𝑆2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑆3 (𝑘) − 𝑆4 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑅1 (𝑘) − 𝑅2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑅3 (𝑘) − 𝑅4 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑍1 (𝑘) −𝑍2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑍3 (𝑘) −𝑍4 < 0,

(13)

Π
𝑖𝑖
< 0, 𝑖 = 1, 2, . . . ,S, (14)

Π
𝑖𝑗
+Π
𝑗𝑖
< 0, 𝑖 < 𝑗, 𝑖 = 𝑗 = 1, 2, . . . ,S, (15)

where Π
𝑖𝑗
= [Π
𝑖𝑗
]
𝑚×𝑛

,𝑚, 𝑛 = 1, 2, . . . , 9, with

Π
𝑖𝑗1,1

= 𝑄1 (𝑟) + 𝜏𝑄2 +
𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑃 (𝑘) + 𝜏𝑆1 (𝑟) +

𝜏
2

2
𝑆2

+ ℎ𝑆3 (𝑟) +
ℎ
2

2
𝑆4 −

1
𝜏
𝑅1 (𝑟) −

1
ℎ

𝑅3 (𝑟)

− sym (𝑍1 (𝑟)) − sym (𝑍3 (𝑟))

+ sym (𝑀1𝐴 (𝑟)) −𝐶
𝑇

(𝑟) 𝑄𝐶 (𝑟) ,

Π
𝑖𝑗1,2

= 𝑀1𝐴𝑑 (𝑟) ,

Π
𝑖𝑗1,3

=
1
𝜏
𝑅1 (𝑟) ,

Π
𝑖𝑗1,4

=
1
ℎ

𝑅3 (𝑟) ,

Π
𝑖𝑗1,5

= 𝑃 (𝑟) −𝑀1 +𝐴
𝑇

(𝑟)𝑀
𝑇

2 ,

Π
𝑖𝑗1,6

= 𝑀1𝐽 (𝑟) ,

Π
𝑖𝑗1,7

=
1
𝜏
(𝑍1 (𝑟) +𝑍

𝑇

1 (𝑟)) ,

Π
𝑖𝑗1,8

=
1
ℎ

(𝑍3 (𝑟) +𝑍
𝑇

3 (𝑟)) ,

Π
𝑖𝑗1,9

= 𝑀1𝐵1 (𝑟) −𝐶
𝑇

(𝑟) 𝑆,

Π
𝑖𝑗2,2

= − (1− 𝜏1) 𝑄1 (𝑟) ,

Π
𝑖𝑗2,5

= 𝐴
𝑇

𝑑
(𝑟)𝑀

𝑇

2 ,

Π
𝑖𝑗3,3

= −
1
𝜏
𝑅1 (𝑟) ,

Π
𝑖𝑗4,4

= −
1
ℎ

𝑅3 (𝑟) ,

Π
𝑖𝑗5,5

= 𝑄3 + 𝜏𝑅1 (𝑟) +
𝜏
2

2
𝑅2 + ℎ𝑅3 (𝑟) +

ℎ
2

2
𝑅4

+
𝜏
2

2
𝑍1 (𝑟) +

𝜏
3

6
𝑍2 +

ℎ
2

2
𝑍3 (𝑟) +

ℎ
3

6
𝑍4

− sym (𝑀2) ,
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Π
𝑖𝑗5,6

= 𝑀2𝐽 (𝑟) ,

Π
𝑖𝑗5,9

= 𝑀2𝐵1 (𝑟) ,

Π
𝑖𝑗6,6

= − (1− ℎ1)𝑄3,

Π
𝑖𝑗7,7

= −
1
𝜏
𝑆1 (𝑟) −

1
𝜏
2 sym (𝑍1 (𝑟)) ,

Π
𝑖𝑗8,8

= −
1
ℎ

𝑆3 (𝑟) −
1

ℎ
2 sym (𝑍3 (𝑟)) ,

Π
𝑖𝑗9,9

= − (𝑅− 𝛿𝐼)

(16)

and the remaining parameters are zero.

Proof. In order to obtain the required result, we construct the
Lyapunov-Krasovskii functional (LKF) candidate for system
(7) in the following form:

𝑉
𝑖
(𝑥 (𝑡) , 𝑟, 𝑡) =

8
∑

𝑖=1
𝑉
𝑖
(𝑥 (𝑡) , 𝑟, 𝑡) , (17)

where

𝑉1 (𝑥 (𝑡) , 𝑟, 𝑡) = 𝑥
𝑇

(𝑡) 𝑃 (𝑟) 𝑥 (𝑡) ,

𝑉2 (𝑥 (𝑡) , 𝑟, 𝑡)

= ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑄1 (𝑟) 𝑥 (𝑠) 𝑑𝑠

+∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑄2𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑄3�̇� (𝑠) 𝑑𝑠,

𝑉3 (𝑥 (𝑡) , 𝑟, 𝑡)

= ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑆1 (𝑟) 𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+∫

0

−𝜏

∫

0

𝜃

∫

𝑡

𝑡+]
𝑥
𝑇

(𝑠) 𝑆2𝑥 (𝑠) 𝑑𝑠 𝑑] 𝑑𝜃,

𝑉4 (𝑥 (𝑡) , 𝑟, 𝑡)

= ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑆3 (𝑟) 𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+]
𝑥
𝑇

(𝑠) 𝑆4𝑥 (𝑠) 𝑑𝑠 𝑑] 𝑑𝜃,

𝑉5 (𝑥 (𝑡) , 𝑟, 𝑡)

= ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑅1 (𝑟) �̇� (𝑠) 𝑑𝑠 𝑑𝜃

+∫

0

−𝜏

∫

0

𝜃

∫

𝑡

𝑡+]
�̇�
𝑇

(𝑠) 𝑅2�̇� (𝑠) 𝑑𝑠 𝑑] 𝑑𝜃,

𝑉6 (𝑥 (𝑡) , 𝑟, 𝑡)

= ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑅3 (𝑟) �̇� (𝑠) 𝑑𝑠 𝑑𝜃

+∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+]
�̇�
𝑇

(𝑠) 𝑅4�̇� (𝑠) 𝑑𝑠 𝑑] 𝑑𝜃,

𝑉7 (𝑥 (𝑡) , 𝑟, 𝑡)

= ∫

0

−𝜏

∫

0

𝜃

∫

𝑡

𝑡+]
�̇�
𝑇

(𝑠) 𝑍1 (𝑟) �̇� (𝑠) 𝑑𝑠 𝑑] 𝑑𝜃

+∫

0

−𝜏

∫

0

𝜃

∫

0

𝛽

∫

𝑡

𝑡+]
�̇�
𝑇

(𝑠) 𝑍2�̇� (𝑠) 𝑑𝑠 𝑑] 𝑑𝛽𝑑𝜃,

𝑉8 (𝑥 (𝑡) , 𝑟, 𝑡)

= ∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+]
�̇�
𝑇

(𝑠) 𝑍3 (𝑟) �̇� (𝑠) 𝑑𝑠 𝑑] 𝑑𝜃

+∫

0

−ℎ

∫

0

𝜃

∫

0

𝛽

∫

𝑡

𝑡+]
�̇�
𝑇

(𝑠) 𝑍4�̇� (𝑠) 𝑑𝑠 𝑑] 𝑑𝛽𝑑𝜃.

(18)

By Definition 1 and along the trajectories of time-delay
Markovian jump system (7), the weak infinitesimal operator
of the stochastic process {𝑥(𝑡), 𝑟

𝑡
}|
𝑡≥0 is given by

m𝑉1 (𝑥 (𝑡) , 𝑟, 𝑡) = 2𝑥𝑇 (𝑡) 𝑃 (𝑟) �̇� (𝑡) + 𝑥
𝑇

(𝑡)

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑃 (𝑘)

⋅ 𝑥 (𝑡) ,

m𝑉2 (𝑥 (𝑡) , 𝑟, 𝑡) = 𝑥
𝑇

(𝑡) [𝑄1 (𝑟) + 𝜏𝑄2] 𝑥 (𝑡) − (1− 𝜏1)

⋅ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄1 (𝑟) 𝑥 (𝑡 − 𝜏 (𝑡)) + �̇�
𝑇

(𝑡) 𝑄3�̇� (𝑡)

− (1− ℎ1) �̇�
𝑇

(𝑡 − ℎ (𝑡)) 𝑄3�̇� (𝑡 − ℎ (𝑡))

+∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) [

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑄1 (𝑘) −𝑄2]𝑥 (𝑠) 𝑑𝑠,

m𝑉3 (𝑥 (𝑡) , 𝑟, 𝑡) = 𝑥
𝑇

(𝑡) [𝜏𝑆1 (𝑟) +
𝜏
2

2
𝑆2]𝑥 (𝑡)

−∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑆1 (𝑟) 𝑥 (𝑠) 𝑑𝑠 +∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠)

⋅ [

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑆1 (𝑘) − 𝑆2]𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

m𝑉4 (𝑥 (𝑡) , 𝑟, 𝑡) = 𝑥
𝑇

(𝑡) [ℎ𝑆3 (𝑟) +
ℎ
2

2
𝑆4]𝑥 (𝑡)

−∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑆3 (𝑟) 𝑥 (𝑠) 𝑑𝑠 +∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠)

⋅ [

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑆3 (𝑘) − 𝑆4]𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,
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m𝑉5 (𝑥 (𝑡) , 𝑟, 𝑡) = �̇�
𝑇

(𝑡) [𝜏𝑅1 (𝑟) +
𝜏
2

2
𝑅2] �̇� (𝑡)

−∫

𝑡

𝑡−𝜏

�̇�
𝑇

(𝑠) 𝑅1 (𝑟) �̇� (𝑠) 𝑑𝑠 +∫

0

−𝜏

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠)

⋅ [

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑅1 (𝑘) − 𝑅2] �̇� (𝑠) 𝑑𝑠 𝑑𝜃,

m𝑉6 (𝑥 (𝑡) , 𝑟, 𝑡) = �̇�
𝑇

(𝑡) [ℎ𝑅3 (𝑟) +
ℎ
2

2
𝑅4] �̇� (𝑡)

−∫

𝑡

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑅3 (𝑟) �̇� (𝑠) 𝑑𝑠 +∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠)

⋅ [

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑅3 (𝑘) − 𝑅4] �̇� (𝑠) 𝑑𝑠 𝑑𝜃,

m𝑉7 (𝑥 (𝑡) , 𝑟, 𝑡) = �̇�
𝑇

(𝑡) [
𝜏
2

2
𝑍1 (𝑟) +

𝜏
3

6
𝑍2] �̇� (𝑡)

−∫

0

−𝜏

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑍1 (𝑟) �̇� (𝑠) 𝑑𝑠 𝑑𝜃

+∫

0

−𝜏

∫

0

𝜃

∫

𝑡

𝑡+𝛽

�̇�
𝑇

(𝑠) [

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑍1 (𝑟) − 𝑍2] �̇� (𝑠) 𝑑𝑠 𝑑𝛽 𝑑𝜃,

m𝑉8 (𝑥 (𝑡) , 𝑟, 𝑡) = �̇�
𝑇

(𝑡) [
ℎ
2

2
𝑍3 (𝑟) +

ℎ
3

6
𝑍4] �̇� (𝑡)

−∫

0

−ℎ

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑍3 (𝑟) �̇� (𝑠) 𝑑𝑠 𝑑𝜃

+∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝛽

�̇�
𝑇

(𝑠) [

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑍3 (𝑟) − 𝑍4] �̇� (𝑠) 𝑑𝑠 𝑑𝛽 𝑑𝜃.

(19)

Applying Jensen’s inequality to the integral terms in the above
equations, we get

−∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑆1 (𝑟) 𝑥 (𝑠) 𝑑𝑠 ≤ −
1
𝜏
[∫

𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝑆1 (𝑟)

⋅ [∫

𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠] ,

−∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑆3 (𝑟) 𝑥 (𝑠) 𝑑𝑠 ≤ −
1
ℎ

[∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

𝑇

𝑆3 (𝑟)

⋅ [∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] ,

−∫

𝑡

𝑡−𝜏

�̇�
𝑇

(𝑠) 𝑅1 (𝑟) �̇� (𝑠) 𝑑𝑠 ≤ −
1
𝜏
[𝑥
𝑇

(𝑡) 𝑅1 (𝑟) 𝑥 (𝑡)

− 2𝑥𝑇 (𝑡 − 𝜏) 𝑅1 (𝑟) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏) 𝑅1 (𝑟) 𝑥 (𝑡 − 𝜏)] ,

−∫

𝑡

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑅3 (𝑟) �̇� (𝑠) 𝑑𝑠 ≤ −
1
ℎ

[𝑥
𝑇

(𝑡) 𝑅3 (𝑟) 𝑥 (𝑡)

− 2𝑥𝑇 (𝑡 − ℎ) 𝑅3 (𝑟) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − ℎ) 𝑅3 (𝑟) 𝑥 (𝑡 − ℎ)] ,

−∫

0

𝜏

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑍1 (𝑟) �̇� (𝑠) 𝑑𝑠 𝑑𝜃 ≤ 𝛼
𝑇

1 (𝑡)

⋅

[
[
[

[

−𝑍1 (𝑟) − 𝑍
𝑇

1 (𝑟)
1
𝜏
(𝑍1 (𝑟) + 𝑍

𝑇

1 (𝑟))

∗ −
1
𝜏
2 (𝑍1 (𝑟) + 𝑍

𝑇

1 (𝑟))

]
]
]

]

𝛼1 (𝑡) ,

− ∫

0

ℎ

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑍3 (𝑟) �̇� (𝑠) 𝑑𝑠 𝑑𝜃 ≤ 𝛼
𝑇

2 (𝑡)

⋅

[
[
[

[

−𝑍3 (𝑟) − 𝑍
𝑇

3 (𝑟)
1
ℎ

(𝑍3 (𝑟) + 𝑍
𝑇

3 (𝑟))

∗ −
1

ℎ
2 (𝑍3 (𝑟) + 𝑍

𝑇

3 (𝑟))

]
]
]

]

𝛼2 (𝑡) ,

(20)

where

𝛼
𝑇

1 (𝑡) = [𝑥
𝑇

(𝑡) ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑑𝑠] ,

𝛼
𝑇

2 (𝑡) = [𝑥
𝑇

(𝑡) ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] .

(21)

On the other hand, for anymatrices𝑀1 and𝑀2, the following
equalities hold:

2𝛾𝑇 (𝑡) [

[

𝑀1

𝑀2

]

]

[𝐴 (𝑟) 𝑥 (𝑡) +𝐴
𝑑
(𝑟) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐽 (𝑟) �̇� (𝑡 − ℎ (𝑡)) − �̇� (𝑡)] = 0,

(22)

where 𝛾𝑇(𝑡) = [ 𝑥𝑇(𝑡) ̇𝑥𝑇(𝑡) ].

Combining (19) with (22), using the inequalities in (13),
we can obtain

m𝑉 (𝑥 (𝑡) , 𝑟, 𝑡) ≤ 𝜁
𝑇

(𝑡) Φ
𝑖𝑗
𝜁 (𝑡) , (23)

where
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𝜁
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑥
𝑇

(𝑡 − 𝜏) 𝑥
𝑇

(𝑡 − ℎ) �̇�
𝑇

(𝑡) �̇�
𝑇

(𝑡 − ℎ (𝑡)) ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑑𝑠 ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠] ,

Φ
𝑖𝑗
= [Φ
𝑖𝑗
]
𝑚×𝑛

, 𝑚, 𝑛 = 1, 2, . . . , 8
(24)

with

Φ
𝑖𝑗1,1

= 𝑄1 (𝑟) + 𝜏𝑄2 +
𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑃 (𝑘) + 𝜏𝑆1 (𝑟) +

𝜏
2

2
𝑆2

+ ℎ𝑆3 (𝑟) +
ℎ
2

2
𝑆4 −

1
𝜏
𝑅1 (𝑟) −

1
ℎ

𝑅3 (𝑟)

− sym (𝑍1 (𝑟) −𝑍3 (𝑟) +𝑀1𝐴 (𝑟)) ,

Φ
𝑖𝑗1,2

= 𝑀1𝐴𝑑 (𝑟) ,

Φ
𝑖𝑗1,3

=
1
𝜏
𝑅1 (𝑟) ,

Φ
𝑖𝑗1,4

=
1
ℎ

𝑅3 (𝑟) ,

Φ
𝑖𝑗1,5

= 𝑃 (𝑟) −𝑀1 +𝐴
𝑇

(𝑟)𝑀
𝑇

2 ,

Φ
𝑖𝑗1,6

= 𝑀1𝐽 (𝑟) ,

Φ
𝑖𝑗1,7

=
1
𝜏
(𝑍1 (𝑟) +𝑍

𝑇

1 (𝑟)) ,

Φ
𝑖𝑗1,8

=
1
ℎ

(𝑍3 (𝑟) +𝑍
𝑇

3 (𝑟)) ,

Φ
𝑖𝑗2,2

= − (1− 𝜏1) 𝑄1 (𝑟) ,

Φ
𝑖𝑗2,5

= 𝐴
𝑇

𝑑
(𝑟)𝑀

𝑇

2 ,

Φ
𝑖𝑗3,3

= −
1
𝜏
𝑅1 (𝑟) ,

Φ
𝑖𝑗4,4

= −
1
ℎ

𝑅3 (𝑟) ,

Φ
𝑖𝑗5,5

= 𝑄3 + 𝜏𝑅1 (𝑟) +
𝜏
2

2
𝑅2 + ℎ𝑅3 (𝑟) +

ℎ
2

2
𝑅4

+
𝜏
2

2
𝑍1 (𝑟) +

𝜏
3

6
𝑍2 +

ℎ
2

2
𝑍3 (𝑟) +

ℎ
3

6
𝑍4

−𝑀2,

Φ
𝑖𝑗5,6

= 𝑀2𝐽 (𝑟) ,

Φ
𝑖𝑗6,6

= − (1− ℎ1)𝑄3,

Φ
𝑖𝑗7,7

= −
1
𝜏
𝑆1 (𝑟) −

1
𝜏
2 sym (𝑍1 (𝑟)) ,

Φ
𝑖𝑗8,8

= −
1
ℎ

𝑆3 (𝑟) −
1

ℎ
2 sym (𝑍3 (𝑟)) .

(25)

Therefore, if LMIs (13)–(15) are satisfied, (23) implies that

m𝑉 (𝑥
𝑡
, 𝑟, 𝑡) ≤ − 𝜆 ‖𝑥 (𝑡)‖

2
, (26)

where 𝜆 = 𝜆min(−Φ𝑖𝑗).
Now by using Dynkin’s formula, we get, for any 𝑡 ≥ 𝑑,

Em𝑉 (𝑥
𝑡
, 𝑟, 𝑡) −Em𝑉 (𝑥

𝑑
, 𝑟
𝑑
, 𝑑) ≤ − 𝜆E∫

𝑡

𝑑

‖𝑥 (𝑠)‖
2
𝑑𝑠, (27)

which yields E∫
𝑡

𝑑

‖𝑥(𝑠)‖
2
𝑑𝑠 ≤ 𝜆

−1E𝑉(𝑥
𝑑
, 𝑟
𝑑
, 𝑑).

Following the similar steps as in [16], it is clear that there
exists a scalar 𝛼 such that

E∫

𝑑

0
‖𝑥 (𝑠)‖

2
𝑑𝑠 = 𝛼{ sup

𝑠∈[−𝑑,0]
{
𝜙 (𝑠)



2
}} . (28)

Therefore, by the definitions of 𝑉(𝑥(𝑡), 𝑟, 𝑡) and 𝑥(𝑡), there
always exists a scalar 𝛼 such that

lim
𝑇→∞

E∫

𝑇

0
‖𝑥 (𝑠)‖

2
𝑑𝑠 = 𝛼E{ sup

𝑠∈[−𝑑,0]
{
𝜙 (𝑠)



2
}}

≤ 𝑀(𝑟0, 𝜙 (⋅)) .

(29)

Considering the above condition andDefinition 2, system (7)
with 𝜔(𝑡) ≡ 0 is stochastically stable. In the following, we
consider the Lyapunov function (17) and the following index
for system (7):

𝐽
𝑇
= E [− ⟨𝑧, 𝑄𝑧⟩

𝑇
− 2 ⟨𝑧, 𝑆𝜔⟩

𝑇
− ⟨𝜔, 𝑅𝜔⟩

𝑇
+ 𝛿 ⟨𝜔,

𝜔⟩
𝑇
] = E [∫

𝑇

0
[−𝑧 (𝑡)

𝑇

𝑄𝑧 (𝑡) − 2𝑧𝑇 (𝑡) 𝑆𝑤 (𝑡)

−𝜔
𝑇

(𝑡) 𝑅𝜔 (𝑡) + 𝛿𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡] .

(30)

Under zero initial condition, it is easy to see that, for any
nonzero 𝜔(𝑡) ∈ L

𝑞

2[0,∞) and 𝑇 > 0, we have

𝐽
𝑇
≤ E [m𝑉 (𝑥

𝑡
, 𝑟, 𝑡) +∫

𝑇

0
(−𝑧 (𝑡)

𝑇

𝑄𝑧 (𝑡)

− 2𝑧𝑇 (𝑡) 𝑆𝑤 (𝑡) −𝜔
𝑇

(𝑡) 𝑅𝜔 (𝑡) + 𝛿𝜔
𝑇

(𝑡) 𝜔 (𝑡)) 𝑑𝑡] .

(31)

Further, if conditions (13)–(15) hold for each 𝑟 ∈ M, then we
have

m𝑉 (𝑥
𝑡
, 𝑟, 𝑡) − 𝑧 (𝑡)

𝑇

𝑄𝑧 (𝑡) − 2𝑧𝑇 (𝑡) 𝑆𝑤 (𝑡)

−𝜔
𝑇

(𝑡) 𝑅𝜔 (𝑡) + 𝛿𝜔
𝑇

(𝑡) 𝜔 (𝑡) ≤ 𝜉
𝑇

(𝑡) Π
𝑖𝑗
𝜉 (𝑡)

< 0,

(32)
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which implies from (31) that 𝐽
𝑇
< 0.Thus, from the definition

of 𝐽
𝑇
in (30), we have

E [∫

𝑇

0
(𝑧 (𝑡)
𝑇

𝑄𝑧 (𝑡) + 2𝑧𝑇 (𝑡) 𝑆𝑤 (𝑡) +𝜔
𝑇

(𝑡) 𝜔 (𝑡)) 𝑑𝑡]

> 𝛿∫

𝑇

0
𝜔 (𝑡)
𝑇

𝜔 (𝑡) 𝑑𝑡.

(33)

Therefore, for any nonzero 𝜔(𝑡) ∈ L
𝑞

2[0,∞), the inequality
(11) holds for all 𝑇 > 0. Therefore, by Definition 3, system (7)
is strictly (𝑄, 𝑆, 𝑅) dissipative.

4. Fuzzy Controller Design

In this section, we aim to design TS fuzzy controller for the
continuous Markovian jump system (4) such that the system
is stochastically stable and then strictly (𝑄, 𝑆, 𝑅) dissipative.

Theorem 7. Consider system (4). For the given scalars 𝛿 > 0,
𝜏1 > 0, ℎ1 > 0, and 𝛽 > 0 and matrices 𝑄 = 𝑄

𝑇, 𝑅 = 𝑅
𝑇, and

𝑆, there exists a feedback controller in the form of (6) such that
the resulting closed-loop system of (4) is stochastically stabilized
and strictly (𝑄, 𝑆, 𝑅) dissipative if there exist matrices �̃�(𝑟) > 0,
𝑄1(𝑟) > 0, 𝑄

𝑖
> 0, 𝑖 = 2, 3, 𝑆

𝑖
(𝑟) > 0, �̃�

𝑖
(𝑟) > 0, 𝑍

𝑖
(𝑟) > 0,

𝑖 = 1, 3, 𝑆
𝑗
> 0, �̃�

𝑗
> 0, 𝑍

𝑗
> 0, 𝑗 = 2, 4, such that the following

LMIs hold for each 𝑟 ∈ M:

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑄1 (𝑘) −𝑄2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑆1 (𝑘) − 𝑆2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑆3 (𝑘) − 𝑆4 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
�̃�1 (𝑘) − �̃�2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
�̃�3 (𝑘) − �̃�4 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑍1 (𝑘) −𝑍2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑍3 (𝑘) −𝑍4 < 0,

Θ
𝑖𝑖
< 0, 𝑖 = 1, 2, . . . ,S,

Θ
𝑖𝑗
+Θ
𝑗𝑖
< 0, 𝑖 < 𝑗, 𝑖 = 𝑗 = 1, 2, . . . ,S,

(34)

where Θ
𝑖𝑗
= [Θ
𝑖𝑗
]
𝑚×𝑛

,𝑚, 𝑛 = 1, 2, . . . , 10, with

Θ
𝑖𝑗1,1

= 𝑄1 (𝑟) + 𝜏𝑄2 +
𝑁

∑

𝑘=1
𝜋
𝑟𝑘
�̃� (𝑘) + 𝜏𝑆1 (𝑟) −

𝜏
2

2
𝑆2

+ ℎ𝑆3 (𝑟) −
ℎ
2

2
𝑆4 −

1
𝜏
�̃�1 (𝑟) −

1
ℎ

�̃�3 (𝑟)

− sym (𝑍1 (𝑟)) − sym (𝑍3 (𝑟))

+ sym (𝐴
𝑖
(𝑟)𝑋
𝑇

+𝐵
𝑖
(𝑟) 𝑌
𝑗
(𝑟)) ,

Θ
𝑖𝑗1,2

= 𝐴
𝑑𝑖
(𝑟)𝑋
𝑇

,

Θ
𝑖𝑗1,3

=
1
𝜏
�̃�1 (𝑟) ,

Θ
𝑖𝑗1,4

=
1
ℎ

�̃�3 (𝑟) ,

Θ
𝑖𝑗1,5

= �̃� (𝑟) −𝑋
𝑇

+𝛽 (𝑋𝐴
𝑇

𝑖
(𝑟) +𝑌

𝑇

𝑗
(𝑟) 𝐵
𝑇

𝑖
(𝑟)) ,

Θ
𝑖𝑗1,6

= 𝐽
𝑖
(𝑟)𝑋
𝑇

,

Θ
𝑖𝑗1,7

=
1
𝜏
(𝑍1 (𝑟) +𝑍

𝑇

1 (𝑟)) ,

Θ
𝑖𝑗1,8

=
1
ℎ

(𝑍3 (𝑟) +𝑍
𝑇

3 (𝑟)) ,

Θ
𝑖𝑗1,9

= 𝐵1 (𝑟) − 𝛽 (𝑋𝐶
𝑇

𝑖
(𝑟) +𝑌

𝑇

𝑗
(𝑟)𝐷
𝑇

𝑖
(𝑟)) 𝑆,

Θ
𝑖𝑗1,10

= (𝑋𝐶
𝑇

𝑖
(𝑟) +𝑌

𝑇

𝑗
(𝑟)𝐷
𝑇

𝑖
(𝑟))√𝑄,

Θ
𝑖𝑗2,2

= − (1− 𝜏1) 𝑄1 (𝑟) ,

Θ
𝑖𝑗2,5

= 𝛽𝑋𝐴
𝑇

𝑑𝑖
,

Θ
𝑖𝑗3,3

= −
1
𝜏
�̃�1 (𝑟) ,

Θ
𝑖𝑗4,4

= −
1
ℎ

�̃�3 (𝑟) ,

Θ
𝑖𝑗5,5

= 𝑄3 + 𝜏�̃�1 (𝑟) −
𝜏
2

2
�̃�2 + ℎ�̃�3 (𝑟) −

ℎ
2

2
�̃�4

+
𝜏
2

2
𝑍1 (𝑟) +

𝜏
3

6
𝑍2 +

ℎ
2

2
𝑍3 (𝑟) +

ℎ
3

6
𝑍4

−𝛽 sym (𝑋
𝑇

) ,

Θ
𝑖𝑗5,6

= 𝛽𝐽
𝑖
(𝑟)𝑋
𝑇

,

Θ
𝑖𝑗5,9

= 𝛽𝐵1𝑖,

Θ
𝑖𝑗6,6

= − (1− ℎ1)𝑄3,

Θ
𝑖𝑗7,7

= −
1
𝜏
𝑆1 (𝑟) −

1
𝜏
2 sym (𝑍1 (𝑟) +𝑍

𝑇

1 (𝑟)) ,
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Θ
𝑖𝑗8,8

= −
1
ℎ

𝑆3 (𝑟) −
1

ℎ
2 (𝑍3 (𝑟) +𝑍

𝑇

3 (𝑟)) ,

Θ
𝑖𝑗9,9

= − (𝑅− 𝛿𝐼) ,

Θ
𝑖𝑗10,10

= − 𝐼

(35)

and the remaining parameters are zero. Moreover, the desired
state feedback controller gain can be obtained as 𝐾

𝑗
=

𝑌
𝑗
(𝑟)𝑋
−1𝑇 .

Proof. In order to obtain the feedback controller gain matri-
ces, take 𝑊 = {𝑋,𝑋, . . . , 𝑋} ∈ R8×8. Before and after multi-
plying (13)–(15) by diag{𝑊, 𝐼} and its transpose, respectively,
where 𝑋 = 𝑀

−1
1 , and letting �̃�(𝑟) = 𝑋𝑃(𝑟)𝑋

𝑇, 𝑄1𝑟 =

𝑋𝑄1(𝑟)𝑋
𝑇, 𝑄
𝑖

= 𝑋𝑄
𝑖
𝑋
𝑇, 𝑖 = 2, 3, 𝑆

𝑖
(𝑟) = 𝑋𝑆

𝑖
(𝑟)𝑋
𝑇,

�̃�
𝑖
(𝑟) = 𝑋𝑅

𝑖
(𝑟)𝑋
𝑇, 𝑍
𝑖
(𝑟) = 𝑋𝑍

𝑖
(𝑟)𝑋
𝑇, 𝑖 = 1, 3, 𝑆

𝑗
=

𝑋𝑆
𝑗
𝑋
𝑇, �̃�
𝑗
= 𝑋𝑅

𝑗
𝑋
𝑇, 𝑍
𝑗
= 𝑋𝑍

𝑗
𝑋
𝑇, 𝑗 = 2, 4, the matrix

𝑀2 = 𝛽𝑀1, where 𝛽 is the designing parameter and 𝑌
𝑗
(𝑟) =

𝐾
𝑗
(𝑟)𝑋
𝑇, we can obtain the LMIs (34). Hence, system (4)

is stochastically stabilized and strictly (𝑄, 𝑆, 𝑅) dissipative
through the proposed stabilized feedback controller. The
proof is completed.

In the following corollary, we will consider the dissipative
controller design for fuzzy neutral Markov jump system with
constant delays. The time delays 𝜏(𝑡) and ℎ(𝑡) are constant,
which can be described as 𝜏(𝑡) = 𝜏1 > 0, ℎ(𝑡) = ℎ1 > 0.
Then the fuzzy Markov jump system (4) can be written as the
following fuzzy model.

Plant Rule 𝑖. If 𝜇1(𝑡) is 𝐹𝑖1, 𝜇2(𝑡) is 𝐹
𝑖

2, and . . ., 𝜇𝑔(𝑡) is 𝐹
𝑖

𝑔
, then

�̇� (𝑡) = 𝐴
𝑖
(𝑟) 𝑥 (𝑡) +𝐴

𝑑𝑖
(𝑟) 𝑥 (𝑡 − 𝜏1)

+ 𝐽
𝑖
(𝑟) �̇� (𝑡 − ℎ1) + 𝐵

𝑖
(𝑟) 𝑢 (𝑡)

+ 𝐵1𝑖 (𝑟) 𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
(𝑟) 𝑥 (𝑡) +𝐷

𝑖
(𝑟) 𝑢 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

𝑟 = 𝑟0, 𝑡 ∈ [−𝑑, 0] , 𝑖 = 1, 2, . . . ,S.

(36)

Corollary 8. For the given scalars 𝛿 > 0, 𝜏1 > 0, ℎ1 > 0,
𝛽 > 0 and matrices 𝑄 = 𝑄

𝑇, 𝑅 = 𝑅
𝑇

, 𝑆, system (36) is
stochastically stabilized through the controller (6) and strictly
(𝑄, 𝑆, 𝑅) dissipative, if there exist matrices �̃�(𝑟) > 0,𝑄1(𝑟) > 0,
𝑄
𝑖
> 0, 𝑖 = 2, 3, 𝑆

𝑖
(𝑟) > 0, �̃�

𝑖
(𝑟) > 0,𝑍

𝑖
(𝑟) > 0, 𝑖 = 1, 3, 𝑆

𝑗
> 0,

�̃�
𝑗
> 0, 𝑍

𝑗
> 0, 𝑗 = 2, 4, such that the following LMIs hold for

each 𝑟 ∈ M:
𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑄1 (𝑘) −𝑄2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑆1 (𝑘) − 𝑆2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑆3 (𝑘) − 𝑆4 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
�̃�1 (𝑘) − �̃�2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
�̃�3 (𝑘) − �̃�4 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑍1 (𝑘) −𝑍2 < 0,

𝑁

∑

𝑘=1
𝜋
𝑟𝑘
𝑍3 (𝑘) −𝑍4 < 0,

𝜃
𝑖𝑖
< 0, 𝑖 = 1, 2, . . . ,S,

𝜃
𝑖𝑗
+ 𝜃
𝑗𝑖
< 0, 𝑖 < 𝑗, 𝑖 = 𝑗 = 1, 2, . . . ,S,

(37)

where 𝜃
𝑖𝑗
= [𝜃
𝑖𝑗
]
𝑚×𝑛

,𝑚, 𝑛 = 1, 2, . . . , 10, with

𝜃
𝑖𝑗1,1

= 𝑄1 (𝑟) + 𝜏1𝑄2 +
𝑁

∑

𝑘=1
𝜋
𝑟𝑘
�̃� (𝑘) + 𝜏1𝑆1 (𝑟) −

𝜏
2
1
2
𝑆2

+ ℎ1𝑆3 (𝑟) −
ℎ
2
1
2
𝑆4 −

1
𝜏1
�̃�1 (𝑟) −

1
ℎ1

�̃�3 (𝑟)

− sym (𝑍1 (𝑟)) − sym (𝑍3 (𝑟))

+ sym (𝐴
𝑖
(𝑟)𝑋
𝑇

+𝐵
𝑖
(𝑟) 𝑌
𝑗
(𝑟)) ,

𝜃
𝑖𝑗1,2

= 𝐴
𝑑𝑖
(𝑟)𝑋
𝑇

,

𝜃
𝑖𝑗1,3

=
1
𝜏1
�̃�1 (𝑟) ,

𝜃
𝑖𝑗1,4 =

1
ℎ1

�̃�3 (𝑟) ,

𝜃
𝑖𝑗1,5

= �̃� (𝑟) −𝑋
𝑇

+𝛽 (𝑋𝐴
𝑇

𝑖
(𝑟) +𝑌

𝑇

𝑗
(𝑟) 𝐵
𝑇

𝑖
(𝑟)) ,

𝜃
𝑖𝑗1,6

= 𝐽
𝑖
(𝑟)𝑋
𝑇

,

𝜃
𝑖𝑗1,7

=
1
𝜏1

(𝑍1 (𝑟) +𝑍
𝑇

1 (𝑟)) ,

𝜃
𝑖𝑗1,8

=
1
ℎ1

(𝑍3 (𝑟) +𝑍
𝑇

3 (𝑟)) ,

𝜃
𝑖𝑗1,9

= 𝐵1𝑖 (𝑟) − 𝛽 (𝑋𝐶
𝑇

𝑖
(𝑟) +𝑌

𝑇

𝑗
(𝑟)𝐷
𝑇

𝑖
(𝑟)) 𝑆,

𝜃
𝑖𝑗1,10

= (𝑋𝐶
𝑇

𝑖
(𝑟) +𝑌

𝑇

𝑗
(𝑟)𝐷
𝑇

𝑖
(𝑟))√𝑄,

𝜃
𝑖𝑗2,2

= −𝑄1 (𝑟) ,
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𝜃
𝑖𝑗2,5

= 𝛽𝑋𝐴
𝑇

𝑑𝑖
(𝑟) ,

𝜃
𝑖𝑗3,3

= −
1
𝜏1
�̃�1 (𝑟) ,

𝜃
𝑖𝑗4,4

= −
1
ℎ1

�̃�3 (𝑟) ,

𝜃
𝑖𝑗5,5

= 𝑄3 + 𝜏1�̃�1 (𝑟) −
𝜏
2
1
2
�̃�2 + ℎ1�̃�3 (𝑟) −

ℎ
2
1
2
�̃�4

+
𝜏
2
1
2
𝑍1 (𝑟) +

𝜏
3
1
6
𝑍2 +

ℎ
2
1
2
𝑍3 (𝑟) +

ℎ
3
1
6
𝑍4

−𝛽 sym (𝑋
𝑇

) ,

𝜃
𝑖𝑗5,6

= 𝛽𝐽
𝑖
(𝑟)𝑋
𝑇

,

𝜃
𝑖𝑗5,9

= 𝛽𝐵1𝑖 (𝑟) ,

𝜃
𝑖𝑗6,6

= −𝑄3,

𝜃
𝑖𝑗7,7

= −
1
𝜏1
𝑆1 (𝑟) −

1
𝜏
2
1
sym (𝑍1 (𝑟) +𝑍

𝑇

1 (𝑟)) ,

𝜃
𝑖𝑗8,8

= −
1
ℎ1

𝑆3 (𝑟) −
1
ℎ
2
1
sym (𝑍3 (𝑟) +𝑍

𝑇

3 (𝑟)) ,

𝜃
𝑖𝑗9,9

= − (𝑅− 𝛿𝐼) ,

𝜃
𝑖𝑗10,10

= − 𝐼

(38)

and the remaining parameters are zero. In this case, the desired
state feedback controller gain can be given as 𝐾

𝑗
= 𝑌
𝑗
(𝑟)𝑋
−1𝑇 .

Proof. Consider the same LKF as in the Theorem 6,
𝑉
𝑖
(𝑥(𝑡)𝑟, 𝑡) = ∑

8
𝑖=1 𝑉𝑖(𝑥(𝑡), 𝑟, 𝑡), in which 𝑉2(𝑥(𝑡), 𝑟, 𝑡)

is replaced with 𝑉2(𝑥(𝑡), 𝑟, 𝑡) = ∫
𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠)𝑄1(𝑟)𝑥(𝑠)𝑑𝑠 +

∫
0
−𝜏

∫
𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠)𝑄2𝑥(𝑠)𝑑𝑠 𝑑𝜃 + ∫
𝑡

𝑡−ℎ

�̇�
𝑇

(𝑠)𝑄3�̇�(𝑠)𝑑𝑠 and the
remaining terms of LKF are the same as in Theorem 6.
By following the similar steps as in Theorem 7 with some
modifications, we can obtain the desired result. The proof is
completed.

5. Numerical Example

Example 9. In this section, we present a numerical example
with simulation to illustrate effectiveness and applicability
of the proposed dissipative control law. Consider the truck-
trailer model which is borrowed from [39] described by the
following dynamical system with two modes:

�̇�1 (𝑡) = − 𝑎 (𝑟)
V𝑡
𝐿𝑡0

𝑥1 (𝑡) − (1− 𝑎 (𝑟))
V𝑡
𝐿𝑡0

𝑥1 (𝑡 − 𝜏 (𝑡))

− (1− 𝑏 (𝑟)) �̇�1 (𝑡 − ℎ (𝑡)) +
V𝑡
𝑙𝑡0

𝑢 (𝑡) +
V𝑡
𝐿𝑡0

𝜔 (𝑡) ,

�̇�2 (𝑡) = 𝑎 (𝑟)
V𝑡
𝐿𝑡0

𝑥1 (𝑡) + (1− 𝑎 (𝑟))
V𝑡
𝐿𝑡0

𝑥1 (𝑡 − 𝜏 (𝑡))

− (1− 𝑏 (𝑟)) �̇�2 (𝑡 − ℎ (𝑡)) ,

�̇�3 (𝑡) =
V𝑡
𝑡0

sin [𝑥2 (𝑡) + 𝑎 (𝑟)
V𝑡
2𝐿

𝑥1 (𝑡)

+ (1− 𝑎 (𝑟))
V𝑡
𝐿𝑡0

𝑥1 (𝑡 − 𝜏 (𝑡))] − (1− 𝑏 (𝑟)) �̇�3 (𝑡

− ℎ (𝑡)) ,

𝑧 (𝑡) = − 𝑎 (𝑟)
V𝑡
𝐿𝑡0

𝑥1 (𝑡) +
V𝑡
𝑙𝑡0

𝑢 (𝑡) ,

(39)

where 𝑥1(𝑡) is the angle difference between truck and trailer;
𝑥2(𝑡) is the angle of trailer; 𝑥3(𝑡) is the vertical position of rear
of trailer; 𝑢(𝑡) is the steering angle; 𝜔(𝑡) is the disturbance;
and 𝑧(𝑡) is the output angle variable. In order to verify the
results, we borrow themodel parameters from [39] such as 𝑙 =
2.8, 𝐿 = 5.5, V = −1.0, 𝑡 = 2.0, and 𝑡0 = 0.5. Also 𝑎(𝑟) and 𝑏(𝑟)
are jumping parameters with values 𝑎(1) = 0.7, 𝑎(2) = 0.5,
𝑏(1) = 0.5, and 𝑏(2) = 0.3. Further, the transition probability
matrix that relates two operation modes is taken as

Π = [

−2.0 2.0
0.6 −0.6

] . (40)

Let 𝜇(𝑡) = 𝑥2(𝑡) + 𝑎(𝑟)(V𝑡/2𝐿)𝑥1(𝑡) + (1 − 𝑎(𝑟))(V𝑡/𝐿𝑡0)𝑥1(𝑡 −
𝜏(𝑡)). Under the condition −179.42700 < 𝜇(𝑡) < 179.42700,
the nonlinear term sin(𝜇(𝑡)) can be exactly represented as
sin(𝜇(𝑡)) = ℎ1(𝜇(𝑡))𝜇(𝑡) + ℎ2(𝜇(𝑡))𝜔𝜇(𝑡) with 𝜔 = 10−2/𝜋,
where ℎ1(𝜇(𝑡)), ℎ2(𝜇(𝑡)) ∈ [0, 1] such that ℎ1(𝜇(𝑡)) +

ℎ2(𝜇(𝑡)) = 1. By solving the equations, the membership
functions ℎ1(𝜇(𝑡)) and ℎ2(𝜇(𝑡)) are obtained as [41]

ℎ1 (𝜇 (𝑡)) =
{{

{{

{

sin (𝜇 (𝑡)) − 𝜔𝜇 (𝑡)

𝜇 (𝑡) ⋅ (1 − 𝜔)
, 𝜇 (𝑡) ̸= 0,

1, 𝜇 (𝑡) = 0,

ℎ2 (𝜇 (𝑡)) =
{{

{{

{

𝜇 (𝑡) − sin (𝜇 (𝑡))
𝜇 (𝑡) ⋅ (1 − 𝜔)

, 𝜇 (𝑡) ̸= 0,

0 𝜇 (𝑡) = 0.

(41)

Further, we use the following fuzzy T-S models to approxi-
mate the neutral Markovian jump system.

Subsystem 1. If 𝜇(𝑡) is about 0(rad), then

�̇� (𝑡) = 𝐴1 (𝑟) 𝑥 (𝑡) +𝐴
𝑑1 (𝑟) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐽1 (𝑟) �̇� (𝑡 − ℎ (𝑡)) + 𝐵1 (𝑟) 𝑢 (𝑡)

+ 𝐵11 (𝑟) 𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶1 (𝑟) 𝑥 (𝑡) +𝐷1 (𝑟) 𝑢 (𝑡) .

(42)
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Subsystem 2. If 𝜇(𝑡) is about 𝜋(rad) and −𝜋(rad), then

�̇� (𝑡) = 𝐴2 (𝑟) 𝑥 (𝑡) +𝐴
𝑑2 (𝑟) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐽2 (𝑟) �̇� (𝑡 − ℎ (𝑡)) + 𝐵2 (𝑟) 𝑢 (𝑡)

+ 𝐵12 (𝑟) 𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶2 (𝑟) 𝑥 (𝑡) +𝐷2 (𝑟) 𝑢 (𝑡) ,

(43)

where 𝑥(𝑡) = [ 𝑥
𝑇

1 (𝑡) 𝑥
𝑇

2 (𝑡) 𝑥
𝑇

3 (𝑡) ]
𝑇 and

𝐴1 (𝑟) =

[
[
[
[
[
[
[
[
[

[

−𝑎 (𝑟)
V𝑡
𝐿𝑡0

0 0

𝑎 (𝑟)
V𝑡
𝐿𝑡0

0 0

𝑎 (𝑟)
V2𝑡2

2𝐿𝑡0
V𝑡
𝑡0

0

]
]
]
]
]
]
]
]
]

]

,

𝐴
𝑑1 (𝑟) =

[
[
[
[
[
[
[
[
[

[

− (1 − 𝑎 (𝑟))
V𝑡
𝐿𝑡0

0 0

(1 − 𝑎 (𝑟))
V𝑡
𝐿𝑡0

0 0

(1 − 𝑎 (𝑟))
V2𝑡2

2𝐿𝑡0
0 0

]
]
]
]
]
]
]
]
]

]

,

𝐴2 (𝑟) =

[
[
[
[
[
[
[
[
[

[

−𝑎 (𝑟)
V𝑡
𝐿𝑡0

0 0

𝑎 (𝑟)
V𝑡
𝐿𝑡0

0 0

𝑎 (𝑟)
𝜔V2𝑡2

2𝐿𝑡0
𝑑V𝑡
𝑡0

0

]
]
]
]
]
]
]
]
]

]

,

𝐴
𝑑2 (𝑟) =

[
[
[
[
[
[
[
[
[

[

− (1 − 𝑎 (𝑟))
V𝑡
𝐿𝑡0

0 0

(1 − 𝑎 (𝑟))
V𝑡
𝐿𝑡0

0 0

(1 − 𝑎 (𝑟))
𝜔V2𝑡2

2𝐿𝑡0
0 0

]
]
]
]
]
]
]
]
]

]

,

𝐵1 (𝑟) = 𝐵2 (𝑟) = [
V𝑡
𝑙𝑡0

0 0]
𝑇

,

𝐽1 (𝑟) = 𝐽2 (𝑟)

=
[
[

[

(1 − 𝑏 (𝑟)) 0 0
0 (1 − 𝑏 (𝑟)) 0
0 0 (1 − 𝑏 (𝑟))

]
]

]

,

𝐶1 (𝑟) = 𝐶2 (𝑟) = [−0.7273 0 0] ,

𝐷1 (𝑟) = 𝐷2 (𝑟) = − 1.4286,

𝐵11 (𝑟) = 𝐵12 (𝑟) = [−0.7273 0 0]𝑇 .

(44)

Table 1: Calculated minimum 𝛾 for various values of 𝛽.

𝛽 0.8 1.0 1.2 1.4 1.6
𝐻
∞
case 𝛾min 1.6980 1.7986 1.8864 1.9637 2.0329

Passivity case 𝛾min 0.7785 0.8726 0.9544 1.0264 1.0902
Mixed𝐻

∞
and

passivity case
when 𝜃 = 0.5

𝛾min 1.0880 1.1678 1.2384 1.3009 1.3571

For the given values 𝜏 = 0.2, ℎ = 0.1, 𝜏1 = 0.1, and ℎ1 = 0.2,
by solving the LMIs in Theorem 7, using MATLAB LMI tool
box, we can get feasible solution which is not given here due
to the page constraint. The calculated minimum allowable 𝛾
for different values of the designing parameter 𝛽 is given in
Table 1.Our purpose is to design the state feedback dissipative
controller gain in (6) such that system (39) is stochastically
stable and strictly dissipative. Also, with the use ofTheorem 7
and based onRemark 4, the obtained𝐻

∞
controller, passivity

controller, mixed𝐻
∞
, and passivity controller gain matrices

can be calculated as follows. For instance, if we choose the
matrices 𝑄 = −0.25, 𝑅 = 5, 𝑆 = 0.9, and 𝛽 = 1.6, by solving
the LMIs in Theorem 7 with the help of the MATLAB LMI
tool box, we can get feasible solution which is not given here
due to the page constraint. Moreover, the corresponding gain
matrices for the dissipative case are obtained as

𝐾1 (1) = [0.8000 −0.3326 0.0087] ,

𝐾1 (2) = [3.3432 −1.1309 0.0142] ,

𝐾2 (1) = [0.9171 −0.3318 0.0085] ,

𝐾2 (2) = [3.3566 −1.0987 0.0134] .

(45)

Further, when 𝛽 = 1.6, the corresponding gain matrices for
𝐻
∞

based control case are obtained as

𝐾1 (1) = [1.6068 −0.2837 0.0059] ,

𝐾1 (2) = [3.7634 −0.6696 0.0108] ,

𝐾2 (1) = [1.9174 −0.2351 0.0075] ,

𝐾2 (2) = [3.7535 −0.6257 0.0103]

(46)

with a minimum 𝐻
∞

performance index given by 𝛾min =

2.0329. Similarly, when 𝛽 = 1.6, that is, for the passivity
based control case, the corresponding gain matrices can be
calculated as

𝐾1 (1) = [5.5399 −11.8326 0.1936] ,

𝐾1 (2) = [12.0810 −26.7460 0.3402] ,

𝐾2 (1) = [6.1193 −11.6389 0.1683] ,

𝐾2 (2) = [11.7724 −24.8721 0.31687]

(47)

with a minimum performance index given by 𝛾min = 1.0902.
Finally, when 𝛽 = 1.6, that is, for the mixed𝐻

∞
and passivity
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Figure 1: State trajectories of the system.

performance based control case, the gain matrices can be
obtained as

𝐾1 (1) = [5.7999 −10.6849 0.1525] ,

𝐾1 (2) = [11.5721 −22.3547 0.2677] ,

𝐾2 (1) = [6.1304 −10.2237 0.1389] ,

𝐾2 (2) = [11.2773 −20.9786 0.2531]

(48)

with a minimum performance index given by 𝛾min = 1.3571.
Further, to show the effectiveness of the proposed con-

troller, simulation results are presented in Figures 1 and
2. For the simulation purpose, the disturbance input is
assumed as 𝜔(𝑡) = 0.5 sin(𝑡) and the initial condition is
taken as 𝑥(0) = [ 0.8 0.8 0.8 ]𝑇. Simulation results for state
responses of the fuzzy system for 𝐻

∞
, passivity, mixed 𝐻

∞

and passivity, and dissipativity performances are provided in
Figure 1. Moreover, Figure 2 represents the trajectories of the
dissipative control law and output responses of the systems.

It should be mentioned that the obtained results can
also be applied to design 𝐻

∞
, passivity, and mixed 𝐻

∞

and passivity control for TS fuzzy model Markovian jump
neutral systems with time delays. From the obtained results,
it is concluded that these different control processes can be
achieved for the truck-trailer model with the same design
process, so it can potentially save time and cost in the
controller design.

Remark 10. It should be noted that the dissipative control
formulation is general and flexible. By choosing different
values of 𝑄, 𝑆, and 𝑅, the dissipative control can include
various types of control as special cases. Also, the simulation
result reveals that it is possible to obtain the controller
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Figure 2: Dissipative performance of the system.

with minimum control effort from the proposed dissipative
controller law to achieve the desired performance.

6. Conclusion

This paper focuses on the robust dissipative control problem
for a class of TS fuzzy neutral Markovian jump systems.
In particular, as special cases, the design methods of 𝐻

∞

and passive controller can also be obtained. This explains
the fact that the dissipative control ia a unified framework
for 𝐻

∞
and passivity control. It is shown that a desired

state feedback dissipative control can be constructed when
the given LMIs are feasible. By employing the Lyapunov
approach, some sufficient conditions are derived in terms of
linear matrix inequalities which ensures that the closed-loop
system is strictly dissipative and stochastically stable. Finally,
a numerical example based on truck-trailer model with
simulation result is provided to illustrate the effectiveness
and validity of the obtained design technique.The dissipative
analysis and synthesis of control to uncertain interval type
2 fuzzy systems with Markovian jumps via delta operator
approach will be the topic of our future research.
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