791 research outputs found

    Convergence of a finite volume scheme for the compressible Navier--Stokes system

    Full text link
    We study convergence of a finite volume scheme for the compressible (barotropic) Navier--Stokes system. First we prove the energy stability and consistency of the scheme and show that the numerical solutions generate a dissipative measure-valued solution of the system. Then by the dissipative measure-valued-strong uniqueness principle, we conclude the convergence of the numerical solution to the strong solution as long as the latter exists. Numerical experiments for standard benchmark tests support our theoretical results.Comment: 21 pages, 2 figure

    Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows

    Full text link
    In this work, we consider the discretization of nonlinear hyperbolic systems in nonconservative form with the high-order discontinuous Galerkin spectral element method (DGSEM) based on collocation of quadrature and interpolation points (Kopriva and Gassner, J. Sci. Comput., 44 (2010), pp.136--155; Carpenter et al., SIAM J. Sci. Comput., 36 (2014), pp.~B835-B867). We present a general framework for the design of such schemes that satisfy a semi-discrete entropy inequality for a given convex entropy function at any approximation order. The framework is closely related to the one introduced for conservation laws by Chen and Shu (J. Comput. Phys., 345 (2017), pp.~427--461) and relies on the modification of the integral over discretization elements where we replace the physical fluxes by entropy conservative numerical fluxes from Castro et al. (SIAM J. Numer. Anal., 51 (2013), pp.~1371--1391), while entropy stable numerical fluxes are used at element interfaces. Time discretization is performed with strong-stability preserving Runge-Kutta schemes. We use this framework for the discretization of two systems in one space-dimension: a 2Ă—22\times2 system with a nonconservative product associated to a linearly-degenerate field for which the DGSEM fails to capture the physically relevant solution, and the isentropic Baer-Nunziato model. For the latter, we derive conditions on the numerical parameters of the discrete scheme to further keep positivity of the partial densities and a maximum principle on the void fractions. Numerical experiments support the conclusions of the present analysis and highlight stability and robustness of the present schemes

    A Space-time Smooth Artificial Viscosity Method For Nonlinear Conservation Laws

    Full text link
    We introduce a new methodology for adding localized, space-time smooth, artificial viscosity to nonlinear systems of conservation laws which propagate shock waves, rarefactions, and contact discontinuities, which we call the CC-method. We shall focus our attention on the compressible Euler equations in one space dimension. The novel feature of our approach involves the coupling of a linear scalar reaction-diffusion equation to our system of conservation laws, whose solution C(x,t)C(x,t) is the coefficient to an additional (and artificial) term added to the flux, which determines the location, localization, and strength of the artificial viscosity. Near shock discontinuities, C(x,t)C(x,t) is large and localized, and transitions smoothly in space-time to zero away from discontinuities. Our approach is a provably convergent, spacetime-regularized variant of the original idea of Richtmeyer and Von Neumann, and is provided at the level of the PDE, thus allowing a host of numerical discretization schemes to be employed. We demonstrate the effectiveness of the CC-method with three different numerical implementations and apply these to a collection of classical problems: the Sod shock-tube, the Osher-Shu shock-tube, the Woodward-Colella blast wave and the Leblanc shock-tube. First, we use a classical continuous finite-element implementation using second-order discretization in both space and time, FEM-C. Second, we use a simplified WENO scheme within our CC-method framework, WENO-C. Third, we use WENO with the Lax-Friedrichs flux together with the CC-equation, and call this WENO-LF-C. All three schemes yield higher-order discretization strategies, which provide sharp shock resolution with minimal overshoot and noise, and compare well with higher-order WENO schemes that employ approximate Riemann solvers, outperforming them for the difficult Leblanc shock tube experiment.Comment: 34 pages, 27 figure

    Implicit time integration for high-order compressible flow solvers

    Get PDF
    The application of high-order spectral/hp element discontinuous Galerkin (DG) methods to unsteady compressible flow simulations has gained increasing popularity. However, the time step is seriously restricted when high-order methods are applied to an explicit solver. To eliminate this restriction, an implicit high-order compressible flow solver is developed using DG methods for spatial discretization, diagonally implicit Runge-Kutta methods for temporal discretization, and the Jacobian-free Newton-Krylov method as its nonlinear solver. To accelerate convergence, a block relaxed Jacobi preconditioner is partially matrix-free implementation with a hybrid calculation of analytical and numerical Jacobian.The problem of too many user-defined parameters within the implicit solver is then studied. A systematic framework of adaptive strategies is designed to relax the difficulty of parameter choices. The adaptive time-stepping strategy is based on the observation that in a fixed mesh simulation, when the total error is dominated by the spatial error, further decreasing of temporal error through decreasing the time step cannot help increase accuracy but only slow down the solver. Based on a similar error analysis, an adaptive Newton tolerance is proposed based on the idea that the iterative error should be smaller than the temporal error to guarantee temporal accuracy. An adaptive strategy to update the preconditioner based on the Krylov solver’s convergence state is also discussed. Finally, an adaptive implicit solver is developed that eliminates the need for repeated tests of tunning parameters, whose accuracy and efficiency are verified in various steady/unsteady simulations. An improved shock-capturing strategy is also proposed when the implicit solver is applied to high-speed simulations. Through comparisons among the forms of three popular artificial viscosities, we identify the importance of the density term and add density-related terms on the original bulk-stress based artificial viscosity. To stabilize the simulations involving strong shear layers, we design an extra shearstress based artificial viscosity. The new shock-capturing strategy helps dissipate oscillations at shocks but has negligible dissipation in smooth regions.Open Acces
    • …
    corecore