
Implicit Time Integration for High-order

Compressible Flow Solvers

Yu Pan

Department of Aeronautics

Imperial College London

Submitted in part fulfilment of the requirements

for the degree of Doctor of Philosophy at Imperial College London

June 2, 2022

Declaration of originality

This is to certify that the work presented in this thesis has been carried out

at Imperial College London and has not been previously submitted to any other

university or technical institution for a degree or award. The thesis comprises only

my original work, except where due acknowledgement is made in the text.

Yu Pan (2022)

Copyright declaration

The copyright of this thesis rests with the author. Unless otherwise indicated,

its contents are licensed under a Creative Commons Attribution-Non Commercial

4.0 International Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium

or format. You may also create and distribute modified versions of the work. This

is on the condition that: you credit the author and do not use it, or any derivative

works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to

others by naming the licence and linking to the licence text. Where a work has been

adapted, you should indicate that the work has been changed and describe those

changes.

Please seek permission from the copyright holder for uses of this work that are

not included in this licence or permitted under UK Copyright Law.

1

Acknowledgements

I want to thank my supervisors, Profs. Spencer Sherwin and Joaquim Peiró, who

guide me to CFD field in a deeper sight. They not only care about the progress of

my research but also care about my living in London. I am also impressed by their

profound knowledge and strict attitude to scientific researches.

I have to give special thanks for my darling parents. They gave me selfless and

endless support when I felt confused in study. I have to thank my warm-hearted

friends, Chen Xu and Tai-hang Zhu, who gave me support in life. I also need to

give my gratitudes to other colleagues and professors during my learning, Dr. David

Moxey, Dr. Chris Cantwell, Prof. Koen Hillewaert, Prof. Mike Kirby, Dr. Hui Xu,

Dr. Yan Zhang, Dr. Giacomo Castiglioni and Dr. Gianmarco Mengaldo. They

have given me solid support on academic studies. Lastly and most importantly,

great thanks go to my senior, my friend Zhen-guo Yan, who worked as my third

supervisor and gave me endless academic help. This work would not have been

possible without their kind help.

It has been a wonderful experience studying at Imperial College London. I thank

my colleagues, friends, and everyone who have been part of the journey in my life.

2

Abstract

The application of high-order spectral/hp element discontinuous Galerkin (DG)

methods to unsteady compressible flow simulations has gained increasing popularity.

However, the time step is seriously restricted when high-order methods are applied

to an explicit solver. To eliminate this restriction, an implicit high-order compress-

ible flow solver is developed using DG methods for spatial discretization, diagonally

implicit Runge-Kutta methods for temporal discretization, and the Jacobian-free

Newton-Krylov method as its nonlinear solver. To accelerate convergence, a block

relaxed Jacobi preconditioner is partially matrix-free implementation with a hybrid

calculation of analytical and numerical Jacobian.

The problem of too many user-defined parameters within the implicit solver is

then studied. A systematic framework of adaptive strategies is designed to relax the

difficulty of parameter choices. The adaptive time-stepping strategy is based on the

observation that in a fixed mesh simulation, when the total error is dominated by the

spatial error, further decreasing of temporal error through decreasing the time step

cannot help increase accuracy but only slow down the solver. Based on a similar

error analysis, an adaptive Newton tolerance is proposed based on the idea that

the iterative error should be smaller than the temporal error to guarantee temporal

accuracy. An adaptive strategy to update the preconditioner based on the Krylov

solver’s convergence state is also discussed. Finally, an adaptive implicit solver is

developed that eliminates the need for repeated tests of tunning parameters, whose

accuracy and efficiency are verified in various steady/unsteady simulations.

An improved shock-capturing strategy is also proposed when the implicit solver

is applied to high-speed simulations. Through comparisons among the forms of

three popular artificial viscosities, we identify the importance of the density term

and add density-related terms on the original bulk-stress based artificial viscosity.

To stabilize the simulations involving strong shear layers, we design an extra shear-

stress based artificial viscosity. The new shock-capturing strategy helps dissipate

oscillations at shocks but has negligible dissipation in smooth regions.

3

List of Work

[1]This work is related to Chapters 2 and 3, which introduces how to develop

an efficient implicit compressible flow solver within Nektar++.

Zhen-Guo Yan, Yu Pan, Giacomo Castiglioni, Koen Hillewaert, Joaquim

Peiró, David Moxey, and Spencer Sherwin. Nektar++: Design and imple-

mentation of an implicit, spectral/hp element, compressible flow solver using

a Jacobian-free Newton-Krylov approach. Computers Mathematics with Ap-

plications, 81:351-372, January 2021.

[2] This work is related to Chapter 4, which provides a framework of adaptive

strategies to choose parameters within the implicit solver.

Yu Pan, Zhen-Guo Yan, Joaquim Peiró, and Spencer Sherwin. Development

of a balanced adaptive time-stepping strategy based on an implicit JFNK-

DG compressible flow solver. Communications on Applied Mathematics and

Computation, DOI : 10.1007/s42967-021-00138-1, 2021.

[3] Yu Pan, Zhen-Guo Yan, Joaquim Peiró, and Spencer Sherwin. Analysis

of accuracy and efficiency of implicit time integration schemes. In European

workshop on high order numerical methods for evolutionary PDEs: Theory

and applications (HONOM 2019), Madrid, Spain, April 2019.

[4] Zhen-Guo Yan, Yu Pan, Joaquim Peiró, and Spencer Sherwin. Accelerat-

ing spectral/hp element DG simulations using implicit time integration meth-

ods. In European workshop on high order numerical methods for evolutionary

PDEs: Theory and applications (HONOM 2019), Madrid, Spain, April 2019.9.

4

Contents

Declaration of originality 1

Copyright declaration 1

Acknowledgements 2

Abstract 3

List of Work 4

1 Introduction 15

1.1 Why an implicit high-order solver? 15

1.2 Spectral/hp element methods . 17

1.2.1 Development of DG methods 18

1.2.2 Applications of DG in compressible flow simulations 20

1.2.3 Shock-capturing methods . 21

1.3 Implicit time integration methods . 23

1.3.1 Implicit time integration schemes 24

1.3.2 Jacobian-free Newton-Krylov method 26

1.4 Challenges of developing an efficient implicit solver 28

1.4.1 An efficient preconditioner . 29

1.4.2 Complex parameter choices 31

1.4.3 An effective shock-capturing strategy 33

1.5 Objectives . 34

5

1.6 Outline . 36

2 Implicit spectral/hp element solver 37

2.1 Governing equations . 38

2.2 Discontinuous Galerkin formulations 39

2.3 Implicit time integration methods . 45

2.4 Newton-type nonlinear solver . 49

2.5 Analysis of error estimates . 53

2.6 Krylov linear solver . 55

2.7 Implementation in Nektar++ framework 59

2.8 Verification of the implementations 61

2.8.1 Advection: 2D isentropic vortex convection 61

2.8.2 Diffusion: 2D Couette flow . 63

2.8.3 Time integration: 2D flow past a circular cylinder 65

3 Preconditioners for linear solvers 68

3.1 Eigenspectral analysis of preconditioners 70

3.1.1 Block spliting preconditioner 72

3.1.2 Block ILU preconditioner . 74

3.1.3 p-multigrid preconditioner . 76

3.1.4 Spectral analysis of preconditioned matrices for a Lid-driven

cavity flow . 79

3.2 Efficient implementation of block relaxed Jacobi preconditioner 85

3.2.1 Block relaxed Jacobi preconditioner 85

3.2.2 Efficiency comparison between explicit and implicit solvers:

2D flow over a circular cylinder 88

4 Choices of parameters for a reliable implicit solver 92

4.1 Error-based adaptive time step . 93

4.1.1 Discussion of the new adaptive time-stepping strategy 96

4.1.2 2D isentropic vortex convection 99

6

4.1.3 2D steady-state flat plate boundary layer flow 104

4.1.4 Taylor-Green vortex . 109

4.1.5 Turbulent flow over a circular cylinder at Re = 3 900 111

4.1.6 Summary of parameters in the simulations 115

4.2 Error-based adaptive Newton tolerance 117

4.2.1 2D isentropic vortex convection 119

4.2.2 2D flow past a circular cylinder 121

4.3 Accuracy of Jacobian matrix approximation 122

4.3.1 2D steady-state flat plate boundary layer flow 123

4.3.2 Turbulent flow over a circular cylinder at Re = 3 900 126

4.4 Control of freezing number of preconditioner 127

4.4.1 Taylor Green vortex . 127

4.5 Discussion and conclusions . 131

5 An improved shock-capturing strategy for high-order DG com-

pressible flow simulations 134

5.1 High-order DG methods with artificial viscosity shock-capturing . . . 135

5.1.1 Discontinuity sensor . 136

5.1.2 Artificial viscous flux . 137

5.2 Development of a modified bulk-stress based artificial viscosity 139

5.2.1 Appraisal of different artificial viscosity forms 139

5.2.2 Modified bulk-stress based artificial viscosity 140

5.3 Extra shear-stress based artificial viscosity 141

5.4 Numerical tests . 143

5.4.1 Sod shock tube problem . 143

5.4.2 Shu-Osher problem . 146

5.4.3 2D Riemann problem . 148

5.4.4 2D shock vortex interaction 152

5.5 Discussion and conclusions . 159

7

6 Conclusions and future work 160

6.1 Conclusions . 160

6.2 Future work . 162

Appendix A: GMRES algorithm 188

Appendix B: Butcher array of ESDIRK 190

Appendix C: Lid-driven flow (Re = 100) 192

8

List of Tables

2.1 Butcher array for the DIRK schemes. 46

2.2 Butcher array for the embedded DIRK schemes. (The values of the

coefficients in Butcher array are listed in Appendix 6.2.) 48

2.3 Mesh convergence study. 65

3.1 2D flow over a circular cylinder (Re=1200): Efficiency comparison. . . 89

3.2 2D flow past a circular cylinder (Re=40): Comparison of flow features. 91

4.1 Turbulent flow over a circular cylinder: Comparisons of averaged time

steps and CPU times for different DIRK schemes with the CPU time

ratio defined as the ratio of CPU time between the current method

and the DIRK2 method. 114

4.2 Summary of tunable parameters in the adaptive strategy. 116

4.3 Summary of parameters in different test cases and comparison of effi-

ciency. The CPU time ratio is defined as the ratio of CPU time using

the adaptive strategy and that using the parameters listed above. . . 116

4.4 Isentropic vortex problem: Comparison of the adaptive Newton tol-

erance and the maximum Newton tolerance that maintains temporal

accuracy. 121

4.5 2D flow past a circular cylinder: Comparison of the adaptive Newton

tolerance and the maximum Newton tolerance that maintains tem-

poral accuracy. 121

9

4.6 Turbulent flow over a circular cylinder: GMRES iterations and CPU

time within one time step. 127

4.7 Taylor Green vortex: Total CPU time. 130

6.1 General form of the Butcher tableau of the embedded ESDIRK. Here

R is shorthand for R = S + 1. 190

6.2 Butcher array of embedded ESDIRK3 with S + 1 = 5. 191

6.3 Butcher array of embedded ESDIRK4 with S + 1 = 7. 191

6.4 Butcher array of embedded ESDIRK2 with S + 1 = 4. 191

6.5 Lid-driven flow(Re=100): Comparison of performance of precondi-

tioned Jacobian matrices (PM denotes p-multigrid). 194

10

List of Figures

2.1 A flow chart of the JFNK process. 58

2.2 The components of a flow solver within Nektar++. 60

2.3 2D convected isentropic vortex: Initial condition. 62

2.4 2D convected isentropic vortex: Observed orders of spatial accuracy. . 63

2.5 justification=centering . 64

2.6 2D flow past a circular cylinder: Mesh and initial field. 66

2.7 2D flow past a circular cylinder: Observed orders of temporal accuracy. 67

3.1 Sketch of the Jacobian matrix: 3 elements using P = 1 DG polyno-

mial (nDof=2 per element). 71

3.2 Lid-driven cavity flow: Steady-state field (Re=5). 79

3.3 Eigenvalue distributions of the unpreconditioned Jacobian matrix. . . 80

3.4 Eigenvalue distributions of the block Jacobi preconditioned matrix. . 81

3.5 Eigenvalue distributions of the Block Gauss-Seidel preconditioned

matrix. 82

3.6 Eigenvalue distributions of the p-multigrid preconditioned matrix. . . 83

3.7 Comparisons between eigenvalue distributions of BGS, BILU and p-

multigrid preconditioned matrices. 84

3.8 2D flow over a circular cylinder (Re=1200): ρ variation within one

period. 89

3.9 2D flow past a circular cylinder (Re=40): Initial field. 90

3.10 2D flow past a circular cylinder (Re=40): Residual history of implicit

and explicit simulations. 91

11

3.11 2D flow past a circular cylinder (Re=40): ρ distributions. 91

4.1 Isentropic vortex problem: Effect of time-stepping method on total

errors. 100

4.2 Isentropic vortex problem: Effect of time-stepping method on tem-

poral errors and spatial errors. 101

4.3 Isentropic vortex problem: CPU time. 102

4.4 Isentropic vortex problem: Residual evaluation numbers. 102

4.5 Isentropic vortex problem: GMRES iteration numbers. 103

4.6 Isentropic vortex problem: Performance of adaptive time-stepping for

different ESDIRK schemes. 104

4.7 Boundary-layer flow past a flat plate: Geometry and boundary con-

ditions. 105

4.8 Boundary-layer flow past a flat plate: mesh and velocity profile. . . . 106

4.9 Boundary-layer flow past a flat plate: Residual convergence history.

The number in the parenthesis indicates the growth rate of the CFL

number. 107

4.10 Boundary-layer flow past a flat plate: Residual with respect to the

number of steps. 108

4.11 Boundary-layer flow past a flat plate: Time step size with respect to

the number of steps. 108

4.12 Boundary-layer flow past a flat plate: CPU time with respect to the

number of steps. 109

4.13 Taylor-Green vortex: Evolution of the enstrophy. 110

4.14 Taylor-Green vortex: Error norms of the kinetic energy dissipation

rate. 111

4.15 Turbulent flow over a circular cylinder: Q criteria iso-surface (Q = 5)

and mesh from (Yan et al., 2020). 112

12

4.16 Turbulent flow over a circular cylinder: Comparison of time-averaged

velocity distribution. The velocity profiles at x = 1.54 and x = 2.02

are shifted down by increments of u = −1 and u = −2, respectively. . 113

4.17 Turbulent flow over a circular cylinder: Adaptive time steps (∆t) of

ESDIRK2, ESDIRK3 and ESDIRK4. 114

4.18 Turbulent flow over a circular cylinder: Values of the elemental time

steps. 115

4.19 Isentropic vortex problem: Effect of different Newton tolerances on

temporal accuracy. 120

4.20 2D steady-state flat plate boundary layer flow: Test based on a near

converged flow field. 123

4.21 justification=centering . 124

4.22 2D steady-state flat plate boundary layer flow: Residual history of

using different time steps. 125

4.23 2D steady-state flat plate boundary layer flow: GMRES residual using

approximated Jacobian and exact Jacobian. 126

4.24 Taylor Green vortex: Evolution of the enstrophy. 128

4.25 Taylor Green vortex: Time step evolution. 129

4.26 Taylor Green vortex: CPU per ∆ t. 130

5.1 Sod shock tube (ρ distribution). 140

5.2 Sketch of limiting function L. 143

5.3 Sod shock tube (ρ distribution). 145

5.4 Sod shock tube (details in ρ distribution). 145

5.5 Shu-Osher problem (ρ distribution). 147

5.6 Shu-Osher problem (details in ρ distribution). 147

5.7 2D Riemann problem: Reference density profiles at t = 0.8s (a)WENO-

JS, (b)WENO-M, (c)WENO-Z, (d)WENO-NS (Ha et al., 2013). . . 149

5.8 2D Riemann problem: ρ distribution. 150

5.9 2D Riemann problem ρ distribution: Tunable parameters’ influence. . 151

13

5.10 2D Riemann problem: Field distributions. 152

5.11 2D shock vortex interaction: Initial field. 154

5.12 2D shock vortex interaction: Density distribution. 155

5.13 2D shock vortex interaction: Z vorticity. 156

5.13 2D shock vortex interaction: Z vorticity. 157

5.14 2D shock vortex interaction: Artificial viscosity distribution. 158

5.14 2D shock vortex interaction: Artificial viscosity distribution. 159

6.1 Lid-driven cavity flow (Re = 100): Density distribution. 192

6.2 Lid-driven cavity flow (Re = 100): Velocity distribution. 193

6.3 Lid-driven cavity flow (Re = 100): Eigenvalue distributions of unpre-

conditioned Jacobian matrix. 193

6.4 Lid-driven cavity flow (Re = 100): Eigenvalue distributions compar-

isons of different preconditioned Jacobian matrix. 194

14

Chapter 1

Introduction

The project aims to develop a solver for simulating unsteady compressible flows

efficiently and accurately. To achieve this goal, Section 1.1 discusses why a solver

that combines spectral/hp methods and implicit time-integration methods is a good

candidate. Sections 1.2 and 1.3 review the underlying foundations of the implicit

solver: spatial discretization, temporal discretization, nonlinear solver, linear solver,

and preconditioner. Section 1.4 points out three challenges likely encountered in

the design of an efficient implicit solver: (a) lack of an efficient preconditioner, (b)

complex parameter choices within the solver, and (c) lack of an effective shock-

capturing strategy. The objective of this thesis’ work is to address these difficulties,

in the manner presented in Section 1.5. Lastly, the outline of the thesis is given in

Section 1.6.

1.1 Why an implicit high-order solver?

The development of computational fluid dynamics (CFD) has focused on steady

flow simulations for a long time. During the last several decades, the dramati-

cal increase in computational power has made it practical to simulate complicated

unsteady flows. To predict noises accurately in aircraft design (Lo et al., 2010; Za-

porozhets et al., 2019), to understand the complicated unsteadiness and acoustic

15

waves in turbo-machinery flows (Roy, 2005; Tyacke et al., 2019), to catch small-

scale physics within high Reynolds number boundary layer flows (Mengaldo, 2015),

high-order methods are more and more appealing to simulate these phenomena, be-

cause they exhibit low dispersion and dissipation errors (Wang et al., 2013; Marty

et al., 2015; De Laborderie et al., 2018). We focus on the studies of high-order spec-

tral/hp element discontinuous Galerkin (DG) methods. The bases and variables are

independently introduced in each element. The variables and their derivatives are

only exchanged at elemental interfaces, and there is no requirement to reconstruct

the variables using neighboring cells’ information, which makes DG relatively com-

pact. The compactness brings advantages such as easy extension to higher-order,

convenient application using unstructured meshes, large-scale problem paralleliza-

tion, hp-adaptivity, etc, (Karniadakis and Sherwin, 2013; Cassinelli et al., 2018).

However, additional problems arise from the application of high-order DG meth-

ods to an explicit solver. The time step size of explicit time integration schemes is

severely constrained by the CFL stability condition, especially in high order methods

(Persson and Peraire, 2006a; Cherednichenko et al., 2012). The time step is more

constrained with the increase of the order of spatial discretization P , which roughly

decreases with P 2 (Karniadakis and Sherwin, 2013). Therefore, implicit schemes are

preferable since they are not bound by stability constraints as explicit schemes.

The implementation of an implicit time integration scheme combined with high-

order DG methods to a compressible flow solver also meets several practical chal-

lenges. The large storage requirement arising from the linearization of the com-

pressible Navier-Stokes equations restricts the usage in large-scale problems. Addi-

tionally, an implicit solver generally is much more complex than an explicit solver.

A number of user-defined parameters exist within the loops of an implicit solver,

which both influence its efficiency and accuracy. An efficient implicit solver should

overcome these problems.

16

1.2 Spectral/hp element methods

Finite element methods (FEM) are popular both in structural and fluid mechanics.

In FEM, the computational domain is partitioned into a set of sub-elements, within

each element the local solutions are represented by specific shape functions. The

procedure for solving FEM problems is to find the unknown coefficients of the shape

functions that can minimize the error norm between the local approximation and

the original problem.

A high-order FEM utilizes higher-order polynomial bases as shape functions.

The elemental size is denoted h and the order of the polynomial is denoted P .

Spectral/hp element methods can be summarized as follows:

a. h-type finite element method: h-type FEM is to keep polynomial order

P fixed and decrease h to get higher accuracy. Classical FEM using linear

equations can be classified as a first-order h-type FEM when solving a smooth

problem. h-type refinement can be used around complicated geometry to

better describe the geometry shape.

b. p-type finite element method: In contrast, p-type FEM keeps h fixed and

uses higher P th order polynomial bases to do refinement and get accurate

solutions.

c. Spectral element method: Spectral discretization is featured that multi-

dimensional discretization can be formulated as a tensor product of one-dimensional

discretization. The spectral method originally uses a single representation of

function throughout the domain (Canuto, 2006). Typically, this method uses

orthogonal bases as shape functions such as Fourier, Chebyshev, or Legendre

series. Patera (1984) proposed the definition of the spectral elemental method

that combines the spectral method and FEM. The spectral element method

can be seen as a higher-order FEM.

d. Spectral/hp element method: Spectral/hp element method can be seen as

17

the combination of all the methods mentioned above (Karniadakis and Sher-

win, 2013). The flexible choice of bases enables spectral/hp element method

competitive in various fields.

1.2.1 Development of DG methods

Among the various spectral/hp element methods, one widely-adopted family of

methods, discontinuous Galerkin (DG) methods, converts a continuous problem into

a discrete formulation. Specifically, DG methods are based on the weak formulation

and represented by piecewise polynomials, where the polynomials are discontinuous

at the element interfaces. The flow solutions and derivatives are only exchanged at

the element interfaces, which makes DG schemes very compact. The compactness of

DG brings advantages in extension to higher-order, large-scale problem paralleliza-

tion, hp-adaptivity, etc.

The DG method was first proposed in (Reed and Hill, 1973) for solving the

neutron transport equation. Then the first numerical analysis of the DG method was

carried out in (Lesaint and Raviart, 1974). Ever since DG methods have achieved

a booming development. However, the DG methods in hyperbolic, elliptic, and

parabolic problems were developed almost independently.

In the 1990s, Cockburn and his coworkers proposed a series of DG methods

combined with explicit Runge-Kutta temporal discretization methods (RKDG) and

applied them to nonlinear conservation laws (Cockburn et al., 1989, 1990; Cock-

burn and Shu, 1989, 1991). RKDG was further developed for solving hyperbolic

problems, such as (DeCougny et al., 1994; Bassi and Rebay, 1997b; Cockburn and

Shu, 2001). Among these schemes, the Bassi-Rebay (BR) scheme proposed in (Bassi

and Rebay, 1997a) was a milestone that solves compressible Navier-Stokes equation

by treating the solution itself and its gradient as independent variables. However,

BR scheme’s simple choice for treating the double-valued solutions and gradients at

element interfaces are identical was found to be problematic in solving the Poisson

problem (Brezzi et al., 1999), in which the existence of the approximate solution can

18

not be guaranteed. A modified version of BR scheme with additional stabilization

terms was proposed in (Bassi et al., 1997), which is referred to as BR2 scheme. Sim-

ilarly, Cockburn and Shu introduced a generalization of local discontinuous Galerkin

(LDG) methods adding different versions of stability terms to the fluxes (Cockburn,

1998; Cockburn and Shu, 1998a; Cockburn and Dawson, 1999). The ‘local’ property

is because the numerical solution flux does not depend on the gradient flux through

global lifting. Therefore, second-order derivatives can be separated into two decou-

pled first-order derivatives. LDG can be extended to solving higher-order equations

in a similar way. However, global lifting leads to a larger stencil in multi-dimensional

problems. A variation of LDG, named compact DG (CDG) proposed in (Peraire and

Persson, 2008) overcomes this issue and keeps the compactness through local lifting.

Besides, Van Leer et al. (2007) proposed a recovery-based DG (RDG) method for

diffusion equations that recovers smooth continuous solutions from discontinuous

discrete solutions in the weak sense. Recently, a wide group of hybridisable DG

(HDG) has also been developed (Nguyen et al., 2009; Qiu and Shi, 2016; Sevilla and

Huerta, 2018) in which the globally coupled degrees of freedom are only approxi-

mated by the solutions defined on the boundaries of the elements, thus reducing the

number of degrees of freedom.

Another group of independently developed DG methods to solve second-order

elliptic and parabolic problems is the interior penalty (IP) methods. Inspired by

the observation that Dirichlet boundaries can be weakly imposed instead of being

built into finite element space (Arnold et al., 2002), the requirement of continuity

of approximate solutions is satisfied through the addition of boundary and interior

penalty terms. In addition to the favorable properties of DG methods, IP meth-

ods have a smaller stencil and are relatively easier to implement within an implicit

solver. Various versions of IP are developed, such as symmetric interior penalty

Galerkin (SIPG) method (Hartmann and Houston, 2006b), non-symmetric interior

penalty Galerkin (NIPG) method (Rivière et al., 1999, 2001) and incomplete interior

penalty Galerkin (IIPG) method (Sun, 2003). SIPG adds symmetry properties to

19

satisfy adjoint consistency (Arnold et al., 2002), which is critical to guarantee the

optimal order of convergence using different orders of DG approximations. Stan-

dard IP formulations are not adjoint consistent even for symmetric problems, which

leads to optimal convergence if the polynomial degree is odd and only suboptimal

convergence if the polynomial degree is even (Rivire, 2008).

The fundamental review of DG by (Arnold et al., 2002) summarized most of the

DG schemes mentioned above and proposed a uniform analysis.

1.2.2 Applications of DG in compressible flow simulations

The application of DG methods to the solution of compressible flows has gained

increasing popularity since the 1990s. The application of BR or BR2 schemes in

solving the compressible Navier-Stokes equations were proposed in (Bassi and Rebay,

1997a; Bassi et al., 1997). The diffusion part of Navier-Stokes equations was solved in

a similar way in (Lomtev et al., 1998), but the solution and its gradient were solved in

a coupled way within a large system. The extensions of IP methods to compressible

Navier-Stokes were proposed in papers such as (Hartmann and Houston, 2006a,b).

The increasing popularity of DG schemes used in compressible problems is due

to their inherent advantages. As defined in the previous section, DG methods ap-

proximate solutions using piecewise polynomials, which are similar to finite element

methods (FEM). When solving the convection term, DG methods construct the

numerical fluxes, which are similar to finite volume methods (FVM). Therefore,

DG methods can be seen as a combination of FEM and FVM. Compared with DG

methods, FVM encounter increasing difficulty to reconstruct a higher-order scheme,

especially when using unstructured meshes. The accuracy order of the approxima-

tions using DG methods can be easily increased. Standard conforming FEM are

suitable for solving elliptic, parabolic problems, and incompressible flows, where the

solutions are regular. The resolutions of discontinuous solutions in compressible

flows become complicated (Feistauer et al., 2003). In contrast, DG methods allow

achieving high-order accuracy in a natural way with the aid of stabilization methods,

20

such as the shock-capturing method proposed in (Persson and Peraire, 2006b).

These advantages promote the usage of the DG methods in a wide range of

practical compressible problems. The accuracy and efficiency of DG methods are

investigated in (Bassi and Rebay, 2000; Bassi et al., 2005). The applications of DG

to turbo-machinery simulations are popular due to DG methods’ high accuracy. The

ability of DG methods to simulate small-scale physics within high Reynolds number

boundary layer flows is also discussed in (Landmann et al., 2008; Bolemann et al.,

2015). Other applications of DG methods to compressible flow simulations can be

found in (Kroll et al., 2010; Hirsch et al., 2021).

1.2.3 Shock-capturing methods

When high-order numerical methods are applied to simulate high-speed flows with

shock waves and contact discontinuities, Gibbs phenomena manifested by oscilla-

tions at discontinuities are observed. These phenomena produce inaccurate even

unstable numerical solutions that can ruin the computational process. Most numer-

ical schemes to deal with shocks are based on numerical dissipation. Such techniques

are called shock-capturing methods. The alternative is to use shock fitting methods,

where the shock shapes, positions, and velocity are explicitly determined (Johnsen

et al., 2010; Rawat and Zhong, 2011; Bonfiglioli and Paciorri, 2014).

A strategy used commonly in shock-capturing methods is limiting, where the

shape of the solution is modified to retain properties such as positivity and freedom

from spurious oscillations to retain various orders of accuracy. The computational

cost will increase with the increase of the order of approximating polynomial (Cock-

burn and Shu, 1998b; Krivodonova, 2007; Klöckner et al., 2011). Therefore, these

methods are more widely used in low-order simulations.

On the other hand, artificial viscosity methods are widely adopted in high-order

DG methods. A locally-varying viscosity is added, which should ideally retain high-

order accuracy in the presence of smooth solutions (Discacciati et al., 2020). These

methods use sensors to identify discontinuities by detecting the entropy production

21

or estimating the decay rate of modal coefficients. Artificial diffusion is then added

where it should dissipate. Artificial viscosity methods can date back to the vanishing

viscosity solution of discontinuous flows (LeVeque, 1992), but can be generalized

to the discontinuity regularization of various equations. Ever since the pioneering

work of (VonNeumann and Richtmyer, 1950), significant progress has been made in

their development and application. A renowned example is the artificial viscosity

method developed by Jameson, Schmidt, and Turkel (Jameson and Mavriplis, 1986;

Jameson, 2017) for low-order finite difference and finite volume methods.

The work in (Hartmann and Houston, 2002) and (Aliabadi et al., 2004) proposed

artificial viscosity methods for the DG method, that only for first-order polynomial

solutions. Persson and Peraire (2006b) exploited the use of artificial viscosity for

higher-order DG schemes, considering the amount of artificial viscosity approxi-

mated by a P th order polynomial to resolve a shock profile is only O(h/P) rather

than the scale of element size h. Further, Fernandez et al. (2018) suggested smooth-

ing the artificial viscosity field to ensure C0 continuity is critical for robustness.

The artificial viscosity methods mainly include two components: a sensor and a

consistent PDE-based dissipation term. The former is designed to detect if disconti-

nuity exists in certain regions. Meanwhile, the artificial viscous flux determines the

form and amount of artificial viscosity to each equation of the governing system.

Sensors detect when and where to add the artificial viscosity, thus very important

for an efficient shock-capturing scheme. The construction of sensors can be based on

physical and mathematical discontinuities. Shock sensors can take advantage of the

compression properties of a shock wave such as the dilatation-based sensors (Barter

and Darmofal, 2010; Nguyen and Peraire, 2011; Moro et al., 2016). Thermal sensors

that detect the irregularities arising from thermal gradients (Cook, 2013; Fernandez

et al., 2018). Alternatively, a number of methods rely on detecting the oscillations of

the numerical solution itself. As mentioned in (Klöckner et al., 2011), the coefficients

should decay sufficiently quickly for a smooth function. Based on this mathematical

property of smooth flows, the highest modal decay (MDH) model (Persson and

22

Peraire, 2006b) detects the decay rate of coefficients in polynomial modal space.

An entropy inequality can also be an indicator of shocks. The entropy satisfies a

conservation equation only when solutions are smooth and satisfies an inequality in

shocks. A discussion of these entropy viscosity methods can be found in (Guermond

et al., 2011; Tonicello et al., 2020).

Various forms of artificial viscous fluxes can be constructed based on shear-stress

tensors, bulk-stress tensors, or Laplacian operators. The shear-stress based artificial

viscosity is simple to implement because the artificial viscous flux is consistent with

the Navier-Stokes system and additional artificial viscosity coefficient can be directly

added to the physical viscosity. The bulk-stress based artificial viscosity was firstly

used to accelerate the convergence of flow solvers in steady incompressible flow

simulations (Ramshaw and Mousseau, 1990). This term has no effect on the steady

solution based on the fact that it is proportional to the divergence of velocity ∇ · u

that vanishes at steady state. This idea was then extended to the compressible

Euler (Mazaheri and Roe, 2003) and Navier-Stokes equations (Alzaeili and Mazaheri,

2006), where the bulk-stress based artificial viscosity is formulated in ∇·(ρu) so that

it vanishes at steady state. The Laplacian type artificial viscosity performs well in

stabilizing flows with shocks in practice, as illustrated by (Nguyen and Peraire, 2011;

Hartmann, 2013). However, Persson and Peraire (2006b) pointed out this approach

is not very effective in discriminating between shocks and contact discontinuities in

which the density might be discontinuous but the pressure and normal velocities are

continuous. Based on the comparisons of different forms of artificial viscous fluxes,

we develop a new shock-capturing strategy by selecting their best features in Section

5.

1.3 Implicit time integration methods

An implicit compressible Navier-Stokes solver not only includes the time integration

discretization, but also consists of several sub-iterations such as a nonlinear equation

23

system, a linear equation system, and a preconditioning process. We will discuss

the temporal discretization in Section 1.3.1 and the Jacobian-free Newton-Krylov

(JFNK) method as well as the preconditioning in Section 1.3.2.

1.3.1 Implicit time integration schemes

The use of the method of lines (Berezin and Zhidkov, 1962) allows the application

and analysis of spatial discretization and temporal discretization independently.

Regarding time integration, both explicit and implicit schemes have been widely

adopted. The solvers using explicit schemes are convenient to implement and take

up relatively less storage. The most appealing explicit time integration discretiza-

tion is the family of explicit Runge-Kutta (RK) schemes (Gustafsson, 1991; Owren

and Zennaro, 1992; Kennedy et al., 2000). Higher-order RK schemes are easy to

construct under some specific rules, and their stability region can also be enlarged.

However, all the explicit schemes suffer from a Courant-Friedrichs-Lewy (CFL) sta-

bility condition (Bücker et al., 2009). Thus the time step size is restricted, especially

in high-Reynolds number simulations or when highly-stretched meshes are used. In

the contrast, implicit time integration schemes can relax or even overcome this sta-

bility restriction (Alexander, 1977; Kennedy and Carpenter, 2016). The benefits

of implicit schemes in steady flow simulations are more obvious where time has no

physical meaning. The accuracy of the time integration does not influence the ac-

curacy of the steady-state solution (van Buuren René, 1999). The applications of

implicit schemes in steady flows can achieve a considerable speed up.

Among implicit schemes, multi-step (Nigro et al., 2014; Wang and Rahmani,

2021) and multi-stage (Blom et al., 2016; Kennedy and Carpenter, 2016) schemes

are popular choices with wide application.

Among multi-step schemes, the first-order backward differentiation formulation

(BDF1) is appealing in engineering problems when the accuracy requirement is not

strict while the second-order scheme (BDF2) is also widely-adopted in the industry

due to its efficiency and relatively higher accuracy. However, the BDF schemes

24

of higher than second-order have limited stability properties, for instance, BDF3

is problematic in the presence of convection (Bijl et al., 2002) and BDF4 seldom

remains stable in large-scale problems (Melson et al., 1993). The most attractive

property of BDF schemes is that only one nonlinear equation system needs to be

resolved per time step.

Among multi-stage schemes, the most popular is the family of implicit Runge-

Kutta (IRK) schemes (Butcher, 2016; Jörgensen et al., 2018; Kennedy and Carpen-

ter, 2019). The diagonally implicit Runge-Kutta (DIRK) family of methods is widely

used in practical applications due to its relatively easy implementation. As the co-

efficients of Runge-Kutta schemes are usually aligned in a Butcher array (Butcher,

2016), DIRK schemes are characterized by a lower triangular Butcher array with at

least one nonzero diagonal entry. This permits solving each stage’s nonlinear system

individually rather than simultaneously for all the stages. We focus on the use of

singly diagonally implicit Runge-Kutta (SDIRK) schemes (Butcher, 1964; Butcher

and Diamantakis, 1998; Ferracina and Spijker, 2008). The diagonal coefficients are

identical, which permits the reuse of the similar linearization in the preconditioner

(Benzi, 2002) over all sub-stages. Explicit singly diagonally implicit Runge-Kutta

(ESDIRK) schemes (Jörgensen et al., 2018) are also widely-used since the first stage

is free and saves computational cost. In practical experience, ESDIRK schemes not

only retain the stability properties of IRK schemes but at significantly lower com-

putational costs. There has been comprehensive research on the modified versions

of DIRK schemes, such as the stiffly accurate DIRK schemes that can avoid or-

der reduction in stiff problems (Prothero and Robinson, 1974), low storage versions

which do not store the flux derivatives of all the stages (Higueras and Roldán, 2018),

embedded versions used in time step adaptivity (Gustafsson, 1992, 1994; Söderlind,

2002), etc. We pay special attention to the embedded versions of ESDIRK proposed

in (Kvrn, 2004). Firstly, the error term of some time integration schemes depends

on the stiffness of the problem and results in the reduction of convergence order in

stiff problems (Burrage and Petzold, 1990). ESDIRK schemes are often constructed

25

in a stiffly accurate formula to avoid order reduction. Secondly, embedded schemes

estimate the temporal errors at a low cost by comparing the solutions approximated

using two different orders of schemes. The time step is then adjusted through

an error controller. Unlike most embedded ESDIRK schemes where the solution

approximated by the embedded scheme is one order lower than the solution approx-

imated by the advanced scheme, the schemes in (Kvrn, 2004) utilize a higher-order

embedded scheme, and thus can be used to estimate the temporal errors accurately.

Based on this family of schemes, we propose a new adaptive time-stepping strategy,

which will be introduced in Sections 2.3 and 4.1.

1.3.2 Jacobian-free Newton-Krylov method

After the implicit temporal discretization (BDF/IRK) of the compressible Navier-

Stokes system, the solution of the resulting nonlinear equation introduces a nonlinear

iteration. There are two widely used methods: nonlinear multigrid methods (Brandt,

1977; Wesseling, 1995; Trottenberg et al., 2000), and Netwon-Krylov methods (Chan

and Jackson, 1984; Brown and Saad, 1990; Kelley, 1995). When the ideas of multi-

grid, ‘use coarse grid approximation to accelerate convergence in the fine grid’, are

directly applied to the nonlinear system, these methods are also called full approxi-

mation scheme (FAS) (Brandt, 1977). Firstly, the errors on the fine grid need to be

pre-smoothed. Then the governing equation is projected to the coarse grid. After

the governing equation is solved on the coarse grid, the coarse grid corrections are

projected back to the solutions on the fine grid. Compared to the global linearization

required by Newton-type nonlinear solvers, the process of FAS involves the projec-

tion operator, the smoothing operator, and the solving process on the coarse grid.

The drawbacks of FAS are the need for forming a set of hierarchical meshes, which

is not available by most CFD solvers. Furthermore, the optimal convergence of FAS

cannot always be guaranteed (Wesseling, 1995; Mavriplis, 1998). In Newton-Krylov

methods, there are at least two loops: the primal loop is the Newton-type nonlinear

iteration, and the inner loop is using a Krylov linear solver to calculate the Newton

26

corrections. Generally, the outer Newton iteration is always inexact (Kelley, 2003)

and quadratic convergence cannot be guaranteed. The asymptotic quadratic conver-

gence is achievable and is still faster than other nonlinear solvers such as dichotomy,

chord method, etc. The link between the nonlinear Newton solver and the Krylov

linear solver is the globally linearized matrix, namely the Jacobian matrix, takes

up much storage. Fortunately, the Jacobian matrix is only needed in matrix-vector

products during solving the linear equation in Krylov space. Jacobian-free tech-

nique stores the products using a finite difference approximation, which avoids the

saving of the whole Jacobian matrix. The whole nonlinear solving process using the

Newton-type solver, the Krylov solver and the Jacobian-free method is called the

Jacobian-free Newton-Krylov (JFNK) method. A more detailed introduction to the

JFNK method can be found in the review (Knoll and Keyes, 2004).

As long as the Jacobian matrix is nonsingular, the calculation of Newton cor-

rections is a standard linear equation process. If the matrix is order n, the com-

putational cost is O(n3) and the storage requirement is O(n2) for a direct method

such as the Gaussian elimination. It is prohibitive for a large-scale sparse system

arising from a practical CFD problem. Alternatively, when using Krylov solvers, the

solution to the linear system lies in a Krylov space whose dimension is the degree of

the minimal polynomial of the Jacobian matrix (Campbell et al., 1996; Ipsen and

Meyer, 1998). Therefore, if the minimal polynomial has low degrees then the space

in which the Krylov method searches for a solution that could be small. A relatively

accurate solution can be achieved at a low computational cost and storage. Another

benefit of using Krylov solvers is that they require only matrix-vector products and

there is no need to store a total matrix.

Krylov solvers include for instance conjugate gradient (CG) (Glowinski et al.,

1985) and generalized minimal residual methods (GMRES) (Saad, 2003; Titley-

Peloquin et al., 2014), etc. CG is only used in the symmetric and positive-definite

system while GMRES can be applied to more general systems. Thus GMRES is

adopted as the linear solver for the implicit compressible Navier-Stokes solver be-

27

cause the Jacobian matrix of the system is not symmetric or positive definite.

Krylov linear solvers can provide acceptable solutions within a few number of

iterations much smaller than the order of the matrix. As mentioned in many refer-

ences (Burrage and Erhel, 1998; Ipsen and Meyer, 1998), the number of iterations

depends on the eigenvalues or pseudo-eigenvalues of the matrix (Ke et al., 2005;

Trefethen and Embree, 2005). For symmetric systems using CG methods, it can

be proved, for example, see (Benzi, 2002; Hogben, 2006), that the convergence rate

is linked to the eigenvalue distributions. Unfortunately, for nonsymmetric systems

solved by GMRES, there is not a general theory to assess its convergence (Nachti-

gal et al., 1992). However, if the matrix is not far from normal, the eigenvalue

distributions are convinced to be a good indicator of convergence. Preconditioning

plays an important role in accelerating the convergence of Krylov solvers. Generally

speaking, a preconditioner attempts to improve the spectral properties of the Jaco-

bian matrix by clustering the eigenvalues (Benzi, 2002). There are comprehensive

studies on preconditioners, such as efficiency comparisons (Diosady and Darmofal,

2007; Gholami et al., 2016), parallel performance (Toselli and Widlund, 2005; Yang,

2006), and storage saving (Luo et al., 2006; Diosady and Darmofal, 2007). Section

3.1 discusses a series of eigenvalue analyses of current widely-used preconditioners.

Section 3.2 introduces the block relaxed Jacobi (BRJ) preconditioner implemented

in Nektar++, and discusses how to balance the storage requirement and efficiency

in large-scale problems.

1.4 Challenges of developing an efficient implicit

solver

The development of an implicit solver combined with high-order spectral element

methods for unsteady compressible flow simulations is still limited in the open-

source community. Hartmann and Houston (2006a) developed an implicit high-

order DG solver for the compressible Navier-Stokes equations within the deal.II

28

framework. However, their solver was only tested on steady-state problems and

only supports quadrilateral and hexahedral meshes. Within Nek5000 (Chudanov

et al., 2014), an implicit solver also makes use of Jacobian-free Newton Krylov

method, but only supports weakly compressible simulations through modifications

of the incompressible Navier-Stokes equations. An implicit solver for incompressible

Navier-Stokes equations has recently developed in MOOSE (Peterson et al., 2018).

In summary, only a few implicit high-order solvers with limited capabilities are

available in the open-source community.

Except for the complexity of an implicit high-order compressible flow solver, we

point out the following challenges that likely encounter its promotion. These are:

(a) lack of an efficient preconditioner, (b) complex parameter choices, and (c) lack of

an effective shock-capturing strategy. The third point also exists within an explicit

solver. We emphasize the importance of the third point for high-order solvers, both

implicit and explicit.

1.4.1 An efficient preconditioner

The preconditioner plays the most significant role in the implementation of an ef-

ficient implicit solver for challenging problems (Trefethen and Bau III, 1997; Knoll

and Keyes, 2004). An ideally efficient preconditioner should be equipped with two

properties: (a) it is cheap to construct and implement, which takes up low storage

and spends little computational cost, and (b) it performs well in accelerating the

linear solver.

Since the Jacobian matrix is not explicitly stored in the JFNK method, the solver

needs additional storage and computational time to fully or partially reconstruct the

whole/part of the Jacobian matrix for preconditioning. It is challenging to balance

the storage requirement and computational cost to construct a practical precondi-

tioner. For instance, using the expression in (Yan et al., 2020) to approximate the

storage of the Jacobian matrix in a 3D simulation, one Gbyte of memory only allows

a 3D simulation using P = 4 DG polynomial and 45 hexahedral elements. Incom-

29

plete LU (ILU) preconditioners have been shown to be efficient in many problems

(Chapman et al., 2000; Persson and Peraire, 2008; Diosady and Darmofal, 2009).

Most implementations of ILU both store the Jacobian matrix and the factorization

matrix. But this is not affordable for large-scale problems. Even implementing ILU

using optimized algorithms, such as the in-place storage mentioned in (Diosady and

Darmofal, 2007), the storage of ILU preconditioning still takes up more than the

size of a Jacobian matrix. Another family of widely-used iterative preconditioners

such as block Jacobi and block SOR preconditioners (Diosady and Darmofal, 2009;

Edalatpour et al., 2015) only needs part of the Jacobian matrix. Bastian et al.

(2019) compared the matrix-based, partially matrix-based and matrix-free imple-

mentations, where the matrix-free preconditioner is obtained by iteratively inverting

the diagonal blocks of the Jacobian matrix. In Nektar++, the designed iterative

preconditioner utilizes a hybrid method that stores the diagonal blocks of the Ja-

cobian and calculates the off-diagonal blocks on the fly, which will be introduced in

Section 3.2.

The second aspect to assess is that, there is not an optimal preconditioner for

general problems (Benzi, 2002). Preconditioners specifically designed based on the

physics of problems can speed up solvers in specific problems. For example, diffu-

sion synthetic acceleration (DSA), which is widely used in the transport community

can be viewed as physics-based preconditioning (Larsen, 1982; Ashby et al., 1995).

These methods need a deep understanding of the physics of the target problems, are

not always available and are typically very sensitive. In contrast, general-purpose

preconditioners based on algebra are more widely-used in practical applications. As

the convergence rate of a Krylov solver is highly-related to the eigenvalue distribu-

tions of the system (Ipsen and Meyer, 1998), spectral analysis is an effective tool to

assess the performance of an algebraic preconditioner. For symmetric systems using

a CG solver, it can be proved that the convergence rate is linked to the eigenvalue

distributions (Benzi, 2002), such as the cluster of eigenvalues. For a nonsymmet-

ric system using GMRES, if the preconditioned matrix is not far from normal, the

30

cluster of eigenvalues could still be a good indicator of an efficient preconditioning

strategy. However, as demonstrated later in Section 3.1, there seem no obvious

links between the eigenvalue distributions and the convergence rate of Krylov solver

for different types of preconditioners such as ILU and the iterative preconditioners.

There is another factor that influences the assessment of an effective preconditioner.

As the flux derivatives of different conservative variables are coupled, the scales of

the eigenvalues of the preconditioned matrix are quite different, thus influencing

the desired performance. It is challenging to design an efficient preconditioner for

general problems (Benzi, 2002; I l’in, 2021).

1.4.2 Complex parameter choices

Implicit solvers have the potential to increase the efficiency of high Reynolds num-

ber simulations by relaxing the challenging time step restriction, and have been

successfully adopted in a variety of steady state and unsteady simulations (Bassi

et al., 2016; Vandenhoeck and Lani, 2019; Noventa et al., 2016, 2020; Yan et al.,

2020). However, implicit solvers are generally more complex to design and imple-

ment and introduce many parameters, some of which have significant influence on

the performance of the solver. Take an implicit solver combined use of the Runge-

Kutta (RK) temporal discretization scheme and the Jacobian-free Newton-Krylov

(JFNK) method as an example, there are parameters such as the time step size,

the Newton iteration convergence tolerance, the linear iteration convergence toler-

ance, and possibly other parameters introduced during preconditioning (Knoll and

Keyes, 2004; Kennedy and Carpenter, 2016; Yan et al., 2020). These parameters

are usually problem-dependent and have large influence on the accuracy, efficiency

and robustness in specific simulations. Their selection could become a complex

multi-objective optimization problem. Therefore, a reliable approach for determin-

ing these parameters is essential especially for computational fluid dynamics (CFD)

software for automatic large-scale simulations in a design pipeline with a wide range

of application areas.

31

In steady state simulations, there have been many studies on this topic, most

of which mainly focus on accelerating the convergence to steady state. In (Vander-

straeten, 2001), an expert system for choosing an efficient CFL was developed, in

which the convergence history is separated into three different stages and different

adaptive strategies are used in each stage. In (Lian et al., 2009), a solution-limiting

method is developed to determine the CFL. Bucker et al. (2009) compared some of

the existing adaptive methods and concluded that there is no clear winner. Kalkote

et al. (2019) developed an error-based adaptive CFL method to accelerate the late

stage of convergence but still needs to manually divide the convergence history

into different stages. Compared with studies on efficiency, much fewer studies have

focused on robustness. Lian et al. (2009) addressed this problem with a solution-

limiting method and claimed that the robustness is largely improved. Other at-

tempts on this topic are mainly straightforward techniques such as rolling back and

recomputing with a smaller time step if the solution is not satisfactory (Yildirim

et al., 2019). These studies have highlighted the importance of these parameter

choices in different aspects of the solver and research areas. Although significant

progress has been made, it is concluded in (Bucker et al., 2009) that ‘optimal CFL

evolution is still an open problem’.

For unsteady simulations, there are additional parameters and the concern of

temporal accuracy. The idea of using adaptive time-stepping in unsteady simu-

lations can date back to time adaptation studies of ODEs (ordinary differential

equations) (Sóderlind, 2002; Sóderlind and Wang, 2006; Arévalo et al., 2021). Var-

ious methods for choosing the step size (or step size controllers) and other topics

such as the requirement of the temporal error estimator and the stability proper-

ties in stiff problems are discussed in the (Sóderlind, 2002; Sóderlind and Wang,

2006). Birken adopted similar ideas used in ODE systems and developed a time

step adaptation method for the simulation of compressible Navier-Stokes equations

using an embedded scheme to estimate the local temporal error. This method was

adopted in the comparison of Rosenbrock methods and explicit first stage singly

32

diagonally implicit Runge-Kutta (ESDIRK) time integration methods (Blom et al.,

2016). Noventa et al. (2016) developed a similar time step adaptation strategy

in unsteady incompressible turbulent flow simulations, which was further tested in

compressible simulations focusing on the comparison of different step size controllers

(Noventa et al., 2020). The adaptive method based on local temporal error was fur-

ther developed for goal-oriented time step adaptation and compared with a method

based on global error estimate (Meisrimel and Birken, 2020). However most of them,

such as the studies in (Birken et al., 2013; Blom et al., 2016; Noventa et al., 2016,

2020), consider the temporal discretization methods separately as an ODE solver

using the method of lines but did not take into account specific physical properties

of the problem on the specific spatial discretization adopted. These methods rely

on a user-defined temporal error tolerance, the choice of which is highly problem

dependent and needs a deep understanding of the simulation settings. However, a

naive choice of temporal error tolerance may lead to a large increase in CPU time

without obviously improving the results as has been demonstrated in (Noventa et al.,

2016).

1.4.3 An effective shock-capturing strategy

An effective shock-capturing strategy should properly add numerically dissipation

around strong discontinuities but should have a negligible influence away from these.

Shock-capturing strategies such as artificial viscosity firstly detect the discontinu-

ities through sensors and then explicitly add locally varying viscosity to damp the

oscillations typical of Gibbs phenomena in the representation of discontinuities by

smooth functions. Due to the low dispersion and dissipation errors of DG schemes,

the applications have increased attention to under-resolved computations such as

large-eddy simulations (LES). However, the small-magnitude features in turbulent

flows could be mistakenly identified as irregularities and diffused by artificial viscos-

ity. Therefore the simulation of turbulent shock flows is still a challenging problem

(Mani et al., 2009; Slotnick et al., 2014; Ferrand et al., 2020).

33

Nonlinear instabilities not only arise from sharp shocks, but also from contact

discontinuities, shear layers, great thermal gradients, etc. Most methods focus on the

stabilization at shocks but ignore other sharp features. Some methods use a physics-

based sensor to detect the physical phenomenon of shocks such as the compression

across a shock (Fernandez et al., 1994; Moro et al., 2016; Yu et al., 2018). Other

methods directly rely on the detection of the irregularities of numerical solutions,

which target all the sharp features (Cook and Cabot, 2005; Larsson et al., 2007;

Johnsen et al., 2010). Generally speaking, these methods can provide non-oscillatory

shock profiles for steady flows, but fail in unsteady turbulent flows (Fernandez et al.,

2018).

Other challenges of effective shock-capturing are the cost of constructing a well-

performing sensor. Some approaches rely on high-order derivatives for achieving

accurate results (Cook and Cabot, 2005; Olson and Lele, 2013). These methods

are computationally costly, sensitive to the accurate calculation of derivatives, and

can be only applied to simple geometries. Additionally, in common practice, shock-

capturing strategies applied in high-order DG add piecewise constant viscosity ele-

mentally (Persson and Peraire, 2006b). However, this strategy cannot work in some

situations such as shock layers within a single element. Methods such as those men-

tioned by (Barter and Darmofal, 2007, 2010) reconstruct high-order viscosity using

several elements’ information. Again, the computational cost is high, especially in

large-scale problems using unstructured meshes.

1.5 Objectives

The objective of this thesis is to develop an efficient implicit high-order spectral/hp

element compressible flow solver within the Nektar++ framework. The implicit

solver mainly takes advantage of the spectral/hp element DG spatial discretization,

diagonally implicit Runge-Kutta (DIRK) temporal discretization, and the Jacobian-

free Newton-Krylov (JFNK) method. Even though the implicit solver achieves an

34

obvious speed-up, it still encounters several challenges to be extended to large-

scale practical applications. We target at optimizing the solver in three challenging

aspects: (a) designing an efficient preconditioner, (b) optimizing the parameter

choices, and (c) constructing an effective shock-capturing strategy.

A preconditioner plays an important role in accelerating the convergence of the

solver. In large-scale practical problems, we need to balance the storage require-

ment and computational cost to implement the preconditioner. Based on the under-

standing of spectral properties of different popular preconditioners through spectral

analysis, we adopt a partially matrix-free iterative preconditioner. The storage is

reduced and the efficiency is improved through the hybrid calculation of analytical

Jacobian and numerical Jacobian.

After the implementation of the preconditioner, the implicit compressible flow

solver now includes four loops: (a) time integration iteration, (b) Newton-type non-

linear system iteration, (c) Krylov linear system iteration, and (d) the iteration of

the iterative preconditioner. A number of user-defined parameters within these loops

are coupled and all influence the efficiency or accuracy of the solver, including the

time-step size, the convergence tolerance of the nonlinear solver, the convergence

tolerance of the linear solver and the update frequency of preconditioner, etc. It

is not surprising that a naive parameter choice slows down the solver several times

inferior to the optimal one. Based on a theoretical analysis of error and detection

of stiffness, a systematic framework is then designed to automatically choose these

parameters

Lastly, the applications of the implicit solver to high-speed flow simulations also

need to be equipped with a well-performing shock-capturing strategy. It is critical

for a robust and efficient compressible solver that dissipates oscillations at shocks

and has negligible dissipation in smooth regions. We modify the bulk-stress based

artificial viscosity by adding extra density-related terms. We further design an extra

shear-stress based artificial viscosity to help stabilize simulations where strong shear

layers exist. The new form of artificial viscosity performs well in problems involving

35

shocks in so far as the simulations can achieve more accurate shock profiles and

catch more small-scale and small-magnitude structures in resolved regions.

1.6 Outline

The governing equations, the spatial and temporal discretization, and the Jacobian-

free Newton-Krylov method are introduced in Section 2. Section 3 analyzes the

spectral properties of several widely-used preconditioners and discusses the practi-

cal implementation of an iterative preconditioner in Nektar++ in consideration of

its storage requirements and computational cost. We propose a systematic set of

strategies aimed to automatically adjust the parameters within the implicit solver

in Section 4. Section 5 presents the application of the implicit solver to high-speed

flow simulations. A new shock-capturing strategy that absorbs the best features of

shear-stress based, bulk-stress based, and Laplacian artificial viscosities is proposed.

36

Chapter 2

Implicit spectral/hp element

solver

This chapter presents the governing equations, numerical methods adopted for the

implicit compressible flow solver, as well as the process of how we implement and

verify the codes of the solver. Section 2.1 introduces the mathematical models

governing inviscid and viscous compressible flows, namely the compressible Euler

and Navier-Stokes equations. Then, Section 2.2 and Section 2.3 introduce the spatial

and temporal discretization methods of the governing equation respectively. The

discretized nonlinear equation system is then resolved by a Newton-type nonlinear

solver and a Krylov linear solver, which is introduced in Section 2.4 and Section 2.6.

After the introduction of the above numerical methods applied to the compressible

flow solver, Section 2.7 gives a brief demonstration of the construction of the solver.

Lastly, Section 2.8 utilizes several benchmark tests to verify the codes of the solver.

37

2.1 Governing equations

The system of governing equations for compressible flow is given by the continuity,

momentum and energy equations, which are written in conservative form

∂U

∂t
= L(U) = − (∇ · F(U) +∇ ·G(U,∇U)) , (2.1)

where L is the nonlinear spatial operator, U = [ρ, ρu1, . . . , ρud, E]T is the vector of

conservative variables, and the subscript d denotes the number of dimensions of the

problem.

The inviscid flux, F = F(U), and the viscous flux, G = G(U,∇U) in the ith

direction are given by

Fi =



ρui

ρu1ui + δ1,ip
...

ρudui + δd,ip

ui(E + p)


, Gi =



0

−τi1
...

−τid

qi −
d∑
j=1

ujτij


, (2.2)

where p is the pressure, ρ is the density, E = p
γ−1

+ ρukuk
2

is the total energy, and γ

is the ratio of specific heats. The viscous tensor is

τij(µ, θ,U) = µ(
∂ui
∂xj

+
∂uj
∂xi

) + (θ − 2

3
µ)
∂uk
∂xk

δij, (2.3)

and the heat flux is

qi = −κ ∂T
∂xi

. (2.4)

The bulk viscosity θ is typically set to be zero, and the dynamic viscosity µ is a

function of the temperature T through the Sutherland’s law

µ = µ0

(
T

T0

) 3
2 T0 + 110

T + 110
. (2.5)

38

The thermal conductivity κ satisfies the following equation of state

κ = (µ+ θ)
γR

Pr(γ − 1)
, (2.6)

where Pr is the Prandtl number representing the ratio of momentum diffusivity to

thermal diffusivity and R is the gas constant satisfying R = Cp − Cv. Cp is the

specific heat constant for constant pressure while Cv is the specific heat constant for

constant volume.

The system of governing equation Eq. (2.1) is supplemented by the constitutive

equation for an ideal gas

p = ρRT. (2.7)

In the following we will assume a fluid with the properties of air at sea level,

namely, µ0 = 1.7894 × 10−5kg.m.s−1, T0 = 288.15K, Cp = 1.01kJ.kg−1, Cv =

0.718kJ.kg−1, Pr = 0.72 and γ = 1.4.

2.2 Discontinuous Galerkin formulations

In the discontinuous Galerkin methods, the domain Ω is partitioned into Ne non-

overlapping elements Ωe, such that Ω =
⋃Ne
e=1 Ωe. In 2D, these elements could

be a mixture of quadrilaterals and triangles, and in 3D, of hexahedra, triangular

prisms, square-based pyramids and tetrahedra. For convenience, the local element

coordinates defined as x ∈ Ωe are mapped onto standard elements ξ ∈ Ωst, so that

x = χe(ξ), where the ξ are d-dimensional coordinates representing positions in the

standard elements. For example, a quadrilateral is defined as Ωst = {(ξ1, ξ2)| − 1 ≤

ξ1, ξ2 ≤ 1}. Other supported region shapes can be found in (Cantwell et al., 2015).

The mapping χe need not necessarily exhibit a constant Jacobian. For deformed

elements, Nektar++ represents the curvatures of these elements by taking a sub-

parametric or iso-parametric mapping for χe (Karniadakis and Sherwin, 2013). With

the mapping χe, the discrete approximation Uδ to the solution U on a physical

39

element can be represented as

U ' Uδ =

Ndof (e)∑
q=1

φq
(
[χe]

−1(x)
)

uq(t), (2.8)

where Ndof (e) is the total degrees of freedom (Dofs) in Ωe, and uq is the coefficient

of the trial function φq. The Uδ on the quadrature points can be calculated by

Uδ,i =

Ndof (e)∑
q=1

φq(ξi)uq(t) =

Ndof (e)∑
q=1

Bi,quq(t), (2.9)

where ξi are the coordinates of the ith quadrature point and B is the backward

transform matrix. Eq. (2.9) is simplified as

Uδ = Bu. (2.10)

Assuming PP (Ωe) denotes the space of polynomials spanned by Ndof (e) basis

functions, with the maximum polynomial order P in Ωe, the space required in dis-

continuous Galerkin methods is defined as

DP = {v ∈ L2(Ω) : v|Ωe ∈ PP (Ωe),∀Ωe}, (2.11)

which allows the functions to be discontinuous across elemental boundaries.

Following the standard Galerkin approach, the test functions are the same as

trial functions. Assuming φp is a test function lying in PP (Ωe), the weak form of

Eq. (2.1) is thus given by

∫
Ωe

∂U

∂t
φpdΩ =

∫
Ωe

L(U)φpdΩ. (2.12)

40

After integration by parts, reads

∫
Ωe

∂U

∂t
φpdΩ =

(∫
Ωe

F · ∇φpdΩ−
∫

Γe

FnφpdΓ

)
+

(∫
Ωe

G · ∇φpdΩ−
∫

Γe

GnφpdΓ

)
=RI(F) + RV (G),

(2.13)

where the set of elemental faces for Ωe is denoted as Γe, Fn = F ·n, Gn = G ·n are

inviscid and viscous fluxes normal to the trace, n is the elemental outward normal,

and RI(F), RV (G) denote the RHS of the inviscid and viscous fluxes.

Advection term The weak form without viscous terms in Eq. (2.13) gives

∫
Ωe

∂U

∂t
φpdΩ =

∫
Ωe

F · ∇φpdΩ−
∫

Γe

FnφpdΓ = RI(F). (2.14)

Substituting Eq. (2.9) into Eq. (2.14), the fluxes are evaluated at the same

quadrature points. A quadrature rule with NQ quadrature points ξ is adopted

for the volume integration while a quadrature rule with NΓ
Q quadrature points ξΓ is

adopted for the trace integration. This transfers the weak form into a semi-discrete

form

NQ∑
i=1

Ndof (e)∑
q=1

φp(ξi)wiJiφq(ξi)
duq
dt

=

NQ∑
i=1

wiJi∇φp(ξi) · F(Uδ,i)−
NΓ
Q∑

i=1

wΓ
i J

Γ
i φp(ξ

Γ
i)Fn,

(2.15)

where wi and Ji are the quadrature weight and grid metric Jacobian at the ith volume

quadrature point, wΓ
i and JΓ

i are the quadrature weight and grid metric Jacobian

at the ith trace quadrature point.

The system is complete as long as the trace flux Fn is defined. Using a Riemann

solver to deal with the discontinuous advection flux, the numerical trace flux can be

expressed as

Fn(U) = F̃n(U+,U−), (2.16)

41

where U+ and U− denote the variable values exterior and interior to the local

element trace. F̃n is a numerical advection flux that is calculated through the

solution of a local Riemann problem in the normal direction to the trace. A review

of exact and approximate Riemann solvers can be found in the textbook by Toro

(2009). Most widely-used Riemann solvers, including the exact Riemann solver and

approximated Riemann solvers such as Roe solver, HLLC solver, etc, are available

in Nektar++.

Diffusion term The discretization of the diffusion term becomes more complex

because the evaluation of numerical trace flux Gn = G̃n(U+,U−,∇U+,∇U−), also

depends on the gradients, ∇U+ and ∇U−, at both sides of interface. It is a simple

and natural choice to impose both values of the double-valued solutions and gradi-

ents on interior faces are identical, which was proposed in (Bassi and Rebay, 1997a),

namely Bassi-Rebay (BR) scheme. However, the application of the BR scheme to

the Poisson problem was found to be problematic (Brezzi et al., 1999), because the

existence of the approximate solution can not be guaranteed. The modified version

of BR scheme adding additional stabilization terms was proposed in (Bassi et al.,

1997), which is referred to as BR2 scheme. Similar to the manner of BR2, the

family of local discontinuous Galerkin (LDG) methods adds different versions of

stability terms to the fluxes (Cockburn, 1998; Cockburn and Shu, 1998a; Cockburn

and Dawson, 1999). Its ‘local’ property is because U-flux does not depend on ∇U-

flux. Therefore the second-order equation of calculating the diffusion term can be

separated into two first-order equations. Thus the solving of the gradient and the

solution, ∇U and U, can be decoupled and resolved sequentially. Another family of

interior penalty (IP) methods arises popularity nearly at the same time as BR, LDG

methods, but is independently developed. IP methods firstly calculate ∇U through

the differentiation with respect to U within local elements. The Dirichlet bound-

ary condition embodied in the DG methods and the requirement of continuity for

approximate solutions are with the aid of straightforward adding boundary penalty

and interior penalty terms. Compared with BR and LDG methods, the family of

42

IP methods generally has a smaller stencil, which leads to lower memory consump-

tion and fewer parallel communication. Especially for the implicit solver that we

preferred to use in high Reynolds number compressible flow simulation, the benefits

of reduction in the computational cost and storage consumption during precondi-

tioning the linear solver within the implicit solver are more obvious. Therefore, IP

methods are adopted in the implicit compressible flow solver of Nektar++.

Since the inviscid terms have been treated in Eq. (2.14), we will focus on the

discretization of the viscous term. Firstly, the equivalent form of IP diffusion flux is

defined as

Gs(U,∇U) = Ks · ∇U, (2.17)

where Gs is the flux in the sth direction. The expressions of the matrices K can be

found in (Doleǰśı and Feistauer, 2015). Using the above relationship Eq. (2.17), the

following expression summarizes the IP method in primal form

RV (G) =

∫
Ωe

G · ∇φpdΩ−
∫

Γe

ns · {Ks∇U} [φp]dΓ

−θ
∫

Γe

ns ·
{
KT
s∇φp

}
[U]dΓ−

∫
Γe

δ[U][φp]dΓ,

(2.18)

where the jump across the trace is [w] = wini + wjnj and the average of the values

from the two sides of the element interface is {w} =
wi+wj

2
(w is auxiliary variable,

i and j are the indexes of neighbouring elements of a trace). The third term at the

right-hand side is the symmetric term. When θ = 1 and symmetric term is included,

this scheme is called symmetric interior penalty Galerkin (SIPG) method, which is

adopted in the solver. It is advantageous to have some type of symmetry to satisfy

adjoint consistency condition (Arnold et al., 2002). This property is critical to guar-

antee the optimal order of convergence using different orders of DG approximations,

which is not shared by some other schemes such as nonsymmetric interior penalty

Galerkin (NIPG, θ = −1) method (Rivière et al., 1999, 2001) and incomplete inte-

rior penalty Galerkin (IIPG, θ = 0) method (Sun, 2003). The fourth term is the

penalty term to help stabilize, where the parameter δ controls the extent of penal-

43

ization. A choice δ = (P+1)2

h
is selected for quadrilateral and hexahedral meshes. h

is the characteristic length of elements, which is an average of the element lengths

on both sides of the trace. The element lengths are obtained from grid derivatives in

the trace normal direction. Other choices of penalty terms can be found in (Rivire,

2008; Hillewaert, 2013). The IP formulation incorporates two parameters, θ and δ,

in the last two terms of the RHS of Eq. (2.18) that aims at controlling the amount

of dissipation at the trace generated by the viscous and inviscid contributions to the

jumps at the trace.

After the discretization of the advection and the diffusion terms and substitut-

ing the variables expressed by polynomial functions in Eq. (2.8), the weak form

Eq. (2.13) can be written as a semi-discrete form of the form

∂u

∂t
= L(u, t) = M−1(RI + RV), (2.19)

where M is the mass matrix of element Ωe.

The corresponding semi-discrete form for Uδ can be achieved through Eq. (2.10)

and

Lδ(U(u)) = BL(u), (2.20)

reads
∂Uδ

∂t
= Lδ(Uδ). (2.21)

The spatial truncation error measured in L2 norm verifies SIPG without super-

penalization can guarantee the solution achieve an optimal order of accuracy, which

is mentioned in (Arnold et al., 2002) and shown in the results in Section 2.8. For

a simulation using a fixed mesh of size h and P th order DG polynomial, the spatial

truncation error can be defined as the difference between theoretically exact solution

U and the spatial discretized solution Uδ. Because the error is directly linked with

flux residual L, the truncation error arising from the spatial discretization can be

44

also defined as the difference between Eq. (2.1) and Eq. (2.21)

Es = Lδ(Uδ)− L(U) = CsDs(U)hP+1 +O(hP+2), (2.22)

where CsDs(U)hP+1 is the leading term of truncation error, Ds(U) is the spatial

derivative only depending on U, and Cs is a coefficient independent of U but only

related to spatial discretization scheme. Currently, we restrict our study to deal with

smooth flows, thus avoiding potential inexact estimates of errors in shock-capturing

problems.

2.3 Implicit time integration methods

For unsteady problems, the time step of explicit time integration schemes is re-

stricted by the Courant-Friedrichs-Lewy (CFL) condition. This restriction is more

serious in highly-stretched mesh, high-Reynolds number simulations. Generally, the

use of implicit schemes can relax this restriction and is expected to achieve better

efficiency. In this section, two popular series of implicit time integration schemes

are adopted to discretize the governing equation Eq. (2.1).

Backward differentiation formulas A family of implicit multi-step methods

(Bijl et al., 2002), named backward differentiation formulas (BDF) is expressed as

N+1∑
i=1

aiU
n+2−i = ∆tL(Un+1), (2.23)

whereN is the order of time integration schemes, n is the index of time step iteration,

and a are the consistent coefficients. Taking the second-order BDF as an example,

N = 2, a1 = 3/2, a2 = −2, and a3 = 1/2.

Within implicit time integration schemes, BDF methods are widely used because

only one nonlinear system needs to be resolved per time step. The first-order and the

second-order BDF are widely used in industry because engineering problems usually

45

do not require a high-level accuracy. However, the schemes higher than second-

order have limited stability properties, such as BDF3 lacks A-stability 1 that may

be problematic in the presence of convection (Bijl et al., 2002) and BDF4 seldom

remains stability in large-scale problems (Melson et al., 1993).

Diagonally implicit Runge-Kutta In contrast to multi-step schemes, no bound

on the order for A-stable schemes has been proved for implicit Runge-Kutta (RK)

methods (Birken, 2013). Therefore, higher-order RK schemes can be constructed,

thus achieving higher temporal accuracy. For s-stage Runge-Kutta schemes, the

coefficients used during processing such as b = [b1 . . . bs]
T , c = [c1 . . . cs]

T , A =

[ai,j]i,j ∈ Rs,s can be written in a compact form in Butcher array. The diago-

nally implicit Runge-Kutta (DIRK) means the coefficients in the Butcher array

(Table. 2.1) are zero in the upper triangle. The advantage of DIRK schemes is the

stage solutions can be evaluated sequentially rather than be solved as one coupled

large implicit system. Singly DIRK (SDIRK) schemes are adopted because the di-

agonals ai,i are identical. This is advantageous because it permits the reuse of the

similar linearization in preconditioning over all s sub-stages. Someone may doubt

the efficiency of DIRK schemes because at each stage there is one nonlinear system

that needs to be resolved. In practice, DIRK schemes can reach a lower error level

more efficiently compared with their BDF counterparts (Bijl et al., 2002). This is

because the diagonal coefficients ai,i are typically smaller than one. The smaller real

time step ai,i∆t at each stage reduces the stiffness.

c A
bT

=

c1 a1,1 0 0 0
c2 a2,1 a2,2 0 0
...

...
. . . ai,i 0

cs as,1 . . . as,s−1 as,s
b1 bs

Table 2.1: Butcher array for the DIRK schemes.

1To be A-stable, the stability function must have no poles in the left half-plane. Also, the
magnitude of the stability function must be bounded by 1. A-stability is a very important property
for a robust time integration scheme. More information can refer to (Butcher, 2016).

46

The time integration by the DIRK schemes consists of the following steps:

1. The initial guess is the previous time step’s solution

U(0) = Un. (2.24)

2. At each stage, the solutions are updated by

S(i) = Un + ∆t
i−1∑
j=1

ai,jL(U(j)), (2.25)

U(i) = S(i) + ∆tai,iL(U(i)), (2.26)

where the superscript (i) represents the ith stage, i = 1, 2, . . . , s.

3. The solution at the new time step tn+1 is obtained by

Un+1 = Un + ∆t
s∑
i=1

biL(U(i)). (2.27)

4. If tn+1 < T , go to Step 1; else stop.

Another advantage of using high-order Rung-Kutta schemes is that it is easier

to do time step adaptivity. This special group of time integration schemes (Bu

et al., 2016; Jörgensen et al., 2018) calculates an extra embedded stage of solution

to provide a different order of approximation Û. The differences between the ap-

proximations of U and Û can be an estimate of temporal error at the current step,

which can be used for time step adaptivity.

The Butcher array of the embedded version of the DIRK schemes is given by

Table. 2.2

47

c A
bT

b̂T
=

c1 a1,1

c2 a2,1 a2,2
...

...
. . . ai,i

cs as,1 . . . as,s−1 as,s 0
cs+1 as+1,1 as+1,s as+1,s+1

b1 bs 0

b̂1 b̂s+1

Table 2.2: Butcher array for the embedded DIRK schemes.
(The values of the coefficients in Butcher array are listed in Appendix 6.2.)

The different order’s approximation Û using (s+ 1) stages is

Ûn+1 = Un + ∆t
s+1∑
i=1

b̂iL(U(i)). (2.28)

The family of embedded DIRK schemes proposed in (Kvrn, 2004) is adopted

for the adaptive time-stepping strategy in Section 4.1. It is an embedded version

of singly diagonally implicit Runge-Kutta methods with an explicit first stage (ES-

DIRK) scheme (Jörgensen et al., 2018). The explicit first stage, namely a1,1 = 0 in

Table. 2.2, is mentioned in (Jörgensen et al., 2018) that can avoid order reduction

in stiff problems and guarantee at least a second-order accuracy. The embedded

solution Ûn+1 is one order higher than Un+1, the leading term of the temporal error

of Un+1 can be accurately estimated as

Et = Un+1 − Ûn+1

= ∆t
s+1∑
i=1

(bi − b̂i)L(U(i))

≈ ∆t(CtDt(U)∆tN +O(∆tN+1))

= CtDt(U)∆tN+1 +O(∆tN+2),

(2.29)

whereN is the order of accuracy of DIRK scheme, CtDt(U)∆tN+1 is the leading term

of truncation temporal error, Dt(U) is a temporal derivative term only depending

on U and Ct is a coefficient independent of U but only related to time integration

48

discretization scheme. To notice, here the derivation of temporal error does not

consider the spatial discretization. The analytical operator L in Eq. (2.1) is used

rather than the discretized spatial operator Lδ in Eq. (2.21), thus the spatial error

is not included. The estimated Et also excludes the accumulated temporal errors

from previous time steps, which is considered as local temporal error.

2.4 Newton-type nonlinear solver

At each stage of DIRK methods, given Eq. (2.26), the nonlinear equation system

can be written as

N(U(i)) = U(i) − S(i) −∆tai,iL(U(i)) = 0. (2.30)

At each step of BDF, the nonlinear system Eq. (2.23) can be written in a similar

form but here we will not focus on it.

Considering the spatial discretization, the discrete formulation of the nonlinear

system replaces U and L by Uδ and Lδ

N(U
(i)
δ) = U

(i)
δ − S(i) −∆tai,iLδ(U

(i)
δ) = 0. (2.31)

Because the length of the coefficient vector u is usually smaller than Uδ, to reduce

the size of the nonlinear system, we choose to solve the system in the coefficient space

N(u(i)) = u(i) − s(i) −∆tai,iL(u(i)) = 0, (2.32)

and update Uδ through

U
(i)
δ = Bu(i). (2.33)

The Jacobian-free Newton-Krylov method (JFNK) is selected to solve the dis-

cretized equation system. JFNK is a combination of a Newton-type nonlinear solver

and a consistent Krylov linear solver. This method saves the storage of the Jaco-

49

bian matrix by storing the vectors after Jacobian-vector multiplication operation in

Krylov solver resolution. It is widely used in implicit solvers. More information can

be found in the review (Knoll and Keyes, 2004).

The Newton solver is chosen as the nonlinear solver because its quadratic con-

vergence rate can be guaranteed as long as its initial guess is near the exact solution

(Kelley, 1995; Dennis Jr and Schnabel, 1996). This convergence rate is much faster

than other types of nonlinear solvers such as dichotomy, chord method, etc.

The process of Newton iteration is seeking for the roots of the nonlinear sys-

tem Eq. (2.32). Using the variable v to replace u(i) during Newton iteration, the

nonlinear system is rewritten as

N(v) = v − s−∆tai,iL(v) = 0. (2.34)

The Newton iteration consists of the following steps:

1. Choose the last stage’s solution u(i) as the initial approximation

v0 = u(i). (2.35)

Since the initial guess is very important to retain the quadratic convergence

property of Newton’s method, the introduction of other advanced methods

such as pre-iterations or extrapolating a high-order initial solution using pre-

vious solutions can be found in (Kelley, 2003).

2. Newton’s method applied to the nonlinear system Eq. (2.34) at kth step, reads

vk+1 = vk + ∆v, (2.36)

where the Newton step ∆v is updated through the following linearized equa-

tion (
∂N(vk)

∂vk

)
∆v = −N(vk). (2.37)

50

3. If the Newton residual of the updated solution vk+1 satisfies

‖N(vk+1)‖ ≤ τN, (2.38)

where τN is the Newton tolerance. A proper choice of τN is important because

it determines the magnitude of the iterative error introduced by the itera-

tive solver, which may degrade the overall error and the convergence order of

accuracy (Noventa et al., 2020). Here, we introduce two common choices of

Newton tolerance.

Absolute Newton tolerance One widely-used tolerance is the absolute

Newton tolerance (Bijl et al., 2002), which limits the Newton residual up to

an expected accuracy level

‖N(vk+1)‖ ≤ θ1‖v0‖, (2.39)

where θ1 is a constant safety factor and ‖v0‖ is the norm of initial fluid input.

One can directly give a specific value as the tolerance, but the ‖v0‖ is mul-

tiplied here so that the whole tolerance scales together with the scale of the

problem and a lower bound of θ1 can be derived based on the rounding error

of the simulation platform.

Absolute Newton tolerance τN = θ1‖v0‖ requires the residual up to a user-

defined accuracy level, which is relatively straight forward. However, this

method is very sensitive and case-dependent. For example, if the time step

of a simulation is decreased, the tolerance should be manually adjusted to

maintain accuracy.

Relative Newton tolerance Another commonly used approach is relative

Newton tolerance (Persson and Peraire, 2006a; Persson, 2009), which stops

iterations when the Newton residual reduces to a relative level compared with

51

its initial Newton residual (‖N(v0)‖)

‖N(vk+1)‖
‖N(v0)‖

≤ θ2, (2.40)

where θ2 is a safety factor.

This strategy linearly links the tolerance to the time step because the Newton

residual N changes with the size of ∆t. Therefore, the choice of constant θ2

can be less sensitive than the absolute tolerance. However, for simulations

near steady state, the iteration will have difficulty converging because the

(θ2‖N(v0)‖) term maybe close to or even smaller than the rounding error.

In Nektar++, we default use relative Newton tolerance τN = θ2‖N(v0)‖ and

θ2 = 10−3, which is based on numerical tests and other papers’ choices (Pers-

son, 2009; Noventa et al., 2016). We also develop an adaptive Newton tolerance

in Section 4.2, which is much less case-dependent.

4. The approximated solution v is then assigned into the time integration process

u
(i)
it = vk+1, (2.41)

where u
(i)
it is regarded as the approximate solution of the nonlinear system

Eq. (2.32). It is used to distinguish with the discretized solution u(i).

The remaining Newton residual after convergence is denoted as R(u
(i)
it). Re-

calling u is the exact solution of nonlinear equation system Eq. (2.32) and u
(i)
it

is the iterative approximation, we can get N(u(i)) = 0 and N(u
(i)
it) = R(i).

Thus we can derive the following relationship

N(u
(i)
it)−N(u(i)) = (u

(i)
it − u(i))−∆tai,i

(
L(u

(i)
it)− L(u(i))

)
= R(i). (2.42)

Using the above relationship, we will further discuss the contributions from

the iterative error to the total discretization error in the following Section 2.5.

52

2.5 Analysis of error estimates

After the discretization, it is meaningful to exploit the components of errors, which

could be a good reminder of accuracy convergence. Based on the estimates of these

errors, we develop an adaptive time-stepping strategy and adaptive Newton toler-

ance for the nonlinear solver, which will be introduced in Section 4.1 and Section

4.2 respectively.

The local discretization errors introduced at the current time step mainly consist

of spatial error, temporal error, and iterative error. The accumulation of these errors

is referred to as global errors, which are challenging and time-consuming to estimate,

such as considering the influence from initial condition and boundary conditions, the

propagation of errors from old time steps and neighboring elements. Studies on the

global error can be found in references such as (Shampine, 2005; Meisrimel and

Birken, 2020). In the contrast, the estimate of the local error introduced at the

current time step could help improve the solver’s efficiency such as doing time-step

adaptivity (Söderlind, 2002; Loppi et al., 2019), mesh adaptivity (Houston, 1999)

without much costs.

We will give a brief derivation of the relationship among the local errors. We

firstly recall the notations U is the mathematically exact solution, Uδ is the spatial

discretized solution, Un is the temporal discretized solution at nth time step, U(i)

is the ith stage’s temporal discretized solution, and Uit = Buit is the iterative

approximation (numerical solution). Because we are only evaluating the local time

step errors, at time tn, we assume all the values at t = tn are exact

U(tn) = Un = U(0) = Ûn = Û(0). (2.43)

We recall that the numerical solution at the time step t = tn+1 is calculated by

Un+1
it = Un + ∆t

s∑
i=1

biLδ(U
(i)
it), (2.44)

53

and the exact solution Un+1 based on Un can be expressed as

U(tn+1) = Ûn+1 +O(∆tN+2)

= Un + ∆t
s+1∑
i=1

b̂iL(U(i)) +O(∆tN+2),
(2.45)

where O(∆tN+2) represents all the high-order truncation terms and is not detailed

here. Subtracting Eq. (2.44) by Eq. (2.45) and ignoring the high-order truncation

terms O(∆tN+2), the total local error can be seen as the following difference

Un+1
it −U(tn+1) ≈ ∆t

s∑
i=1

biLδ(U
(i)
it)−∆t

s+1∑
i=1

b̂iL(U(i)). (2.46)

If we add then subtract the summation terms of ∆t
∑s+1

i=1 biL(U(i)), ∆t
∑s

i=1 biLδ(U
(i)
δ)

to the right-hand side of Eq. (2.46), we can construct the following relationship

Un+1
it −U(tn+1) ≈ ∆t

s+1∑
i=1

(bi − b̂i)L(U(i))

+ ∆t
s∑
i=1

bi

(
Lδ(U

(i)
δ)− L(U(i))

)
+ ∆t

s∑
i=1

bi

(
Lδ(U

(i)
it)− Lδ(U

(i)
δ)
)
,

(2.47)

where bs+1 is always zero in the embedded DIRK schemes we adopted (Kvrn, 2004).

In the last term of Eq. (2.47),
(
Lδ(U

(i)
it)− Lδ(U

(i)
δ)
)

is related to the residual defined

in Eq. (2.42) and can be considered as the iterative error E
(i)
it . Recalling the spatial

discretized error defined in Eq. (2.22) and the temporal discretized error defined in

(2.29), and ignoring high-order terms O(∆tN+2), O(hP+2), Eq. (2.47) is rewritten as

Un+1
it −U(tn+1) ≈CtDt(U)∆tN+1 + ∆tCsD̄s(U)hP+1 + ∆tĒit

≈En+1
t + ∆tĒs + ∆tĒit

=B
(
en+1
t + ∆tēs + ∆tēit

)
.

(2.48)

54

The over-bar on variables such as ēs, ēit denotes implementing a weighed average

operation of the form of ψ̄ =
∑s

i=1 biψ
(i), where

∑s
i=1 bi = 1.

Eq. (2.48) shows that the total local error per step is the sum of local temporal

error, averaged spatial error and averaged iteration error. This indicates that to

decrease the total error, these three errors all play an important role and should be

decreased simultaneously. The solver will not improve much if only one of them is

optimized to the best and the other two still contribute much to the total error.

2.6 Krylov linear solver

To calculate the Newton step ∆v in Eq. (2.36), we require the solution of the linear

equation system Eq. (2.37), that is simplified as

Ax = b, (2.49)

where A = ∂N(vk)
∂vk

, x = ∆v, and b = −N(vk).

The matrix A arising from the discretization of the Navier-Stokes equations is

large, sparse, and non-symmetric. The solving of Eq. (2.49) thus requires the use of

Krylov solvers such as GMRES methods adopted here.

GMRES aims to minimize the following functional

J(y) = ‖b−Ax‖ = ‖b−A(x0 + WJyJ)‖ (2.50)

in a J-dimensional Krylov subspace (x0 +KrJ), where the subspace is defined as

KrJ = span{r0,Ar0,A
2r0, . . .A

J−1r0}, (2.51)

and x0 is the initial guess, r0 = b−Ax0 is the initial residual.

Assuming GMRES stops if its residual is smaller than a pre-set convergence tol-

erance τGMRES after J iterations, the updated solution is expressed by J orthogonal

55

bases WJ = [w1 . . . ,wJ] and the corresponding coefficient vector y

x = x0 + Wy, (2.52)

where the process of seeking orthogonal bases is called Arnoldi process (Walker,

1988; Saad, 2003). The algorithm of GMRES includes the Arnoldi process and the

backward function to calculate the coefficients y, the details of which are introduced

in Appendix 6.2.

The process of classical GMRES is non-recurrent, the whole set of bases W has to

be stored. Therefore the storage and cost per step increase linearly with the iteration

number. The restarted GMRES(M) is adopted, which only stores M orthogonal

bases (Saad and Schultz, 1986). After updating xnew = x0 + WMyM in the first

round , namely, in the first Krylov space (x0 + KrM), the calculation is restarted

in another Krylov subspace (xnew +KrM). When M is small, the performance can

be very poor. Through numerical tests and following other researchers’ experience

(Birken, 2013), we default set M = 30.

Given the large size of the matrix A, GMRES is usually implemented using a

matrix-free method. Instead of storing the details of the whole Jacobian matrix,

matrix-free method calculates matrix-vector products in the following form

N′(vk)w ≈ N(vk + εw)−N(vk)

ε
, (2.53)

where w refers to any search bases in W and ε is a perturbation parameter. The

accuracy of the approximation Eq. (2.53) increases with the decreasing value of

ε, while for small values, the accuracy is affected by the cancelling error and the

rounding error. The choice for ε suggested in (Turner and Walker, 1992) is taken

to be ε = 10−8‖vk‖ when using the first-order finite difference approximation. By

storing N(vk), one extra evaluation of Newton residual N(vk + εw) is required per

GMRES iteration.

However, because this type of matrix-free method approximates the multipli-

56

cations in finite difference form, the orthogonality of vectors in Krylov space is

influenced since the Jacobian matrix keeps changing even though the disturbance

is not obvious. How the accuracy of approximations influences the convergence will

be discussed in Section 4.3.

In summary, the above process of combined use of Newton-type nonlinear solver,

Krylov linear solver, and matrix-free technique are called JFNK. The whole process

of JNFK is also summarized as Fig. 2.1. More references can be found in the review

(Knoll and Keyes, 2004).

In practice, preconditioning techniques to improve the performance and reliabil-

ity of a Krylov subspace solver play an important role in challenging problems. A

preconditioner is expected to transform the original linear equation system into a

less stiff system. Generally speaking, the preconditioner attempts to improve the

spectral properties of the Jacobian matrix (Benzi, 2002). For normal Jacobian ma-

trices, hopefully, the eigenvalues are clustered or the condition number is reduced

after the transform, which indicates the speed-up of convergence rate. For non-

normal systems, the relationship between spectral properties and the convergence

rate of an iterative solver such as GMRES may not be directly related. However, if

the system is not far from normal, spectral analysis is still an effective tool to assess

the performance of a preconditioner. The details of the spectral analysis and the

efficient implementation of a preconditioner are introduced in Section 3.

57

Figure 2.1: A flow chart of the JFNK process.

58

2.7 Implementation in Nektar++ framework

Nektar++ is open-source software that supports the development of high-performance

solvers for partial differential equations (PDEs) based on the spectral/hp element

framework, such as the diffusion solver, the incompressible flow solver, the compress-

ible flow solver, etc. As illustrated in Fig. 2.2, a solver usually begins from a driver,

which follows the traditional order of solving a PDE equation including initializing

conditions, imposing boundary conditions, solving equations, and post-processing.

For scientific studies, Nektar++ provides a set of pre-developed solvers and sep-

arates the commonly-used operators into the library for further development. The

library includes the projection operators, spatial discretization operators, tempo-

ral discretization operators, etc. Fig. 2.2 shows part of the functionalities of Nek-

tar++. For implementing an efficient implicit compressible flow solver, the author

contributes to adding the singly diagonally implicit Runge-Kutta to the time in-

tegration library, adding the interior penalty approach to the original spatial dis-

cretization library, creating a new library of nonlinear methods, complementing the

GMRES linear solver within the original linear solver library, creating a new library

of preconditioners including BRJ preconditioner and extra exploitation of shock-

capturing methods. The more details about the routines of the implementation and

the results simulated by the implicit solver are described in paper (Yan et al., 2020).

59

Solver Equation Library

Driver

Initialize
Objects

Initialize
Conditions

Solve
Equations

Output

ExpList

EquationSystem

UnsteadySystem

A
d
v
e
c
t
i
o
n

D
i
f
f
u
s
i
o
n

. . .

TimeIntegration

Bases φi

StdRegions
uS(ξ) =

P∑
i=0

φi(ξ)ûi

SpatialRegions
x = χ(ξ)

LocalRegions
uL(x) =

P∑
i=0

φi(χ
−1(x))ûi

MultiRegions
uG(x) =

Ndof∑
j=1

Φj(x)ûj

o
ξ1

ξ2

O
x1

x2

O
x1

x2

e1

e1

e1

e2

S

L

G

Figure 2.2: The components of a flow solver within Nektar++.

60

2.8 Verification of the implementations

The testing of the convergence order of accuracy of a solver is an effective tool to

verify the codes (Roy, 2005; Oberkampf and Roy, 2010). In this section, we verify

that simulations by the implicit compressible flow solver can achieve the desired

order of accuracy in space and time through several benchmark tests. The 2D

unsteady isentropic vortex convection is used to verify the discretization of advection

terms while the 2D Couette flow is used to verify the diffusion terms. Furthermore,

the unsteady flow past a cylinder case is utilized to verify the implementation of the

time integration part.

2.8.1 Advection: 2D isentropic vortex convection

The 2D unsteady isentropic vortex convection is one standard test case for the

verification of codes regarding with Euler equation. The test is widely-adopted

because its analytical solution is available. An inviscid isentropic vortex is convected

downstream in the computational region [0,10]×[-5,5], the analytical solutions of

which at time t are

u = u∞ − ϕȳ exp(1− r̄2), (2.54)

v = v∞ + ϕx̄ exp(1− r̄2), (2.55)

T = 1− (γ − 1)ϕ2

8γπ2
exp(2− 2r̄2), (2.56)

ρ = T
1

γ−1 , (2.57)

where ϕ = 0.5 is a parameter that controls the strength of the vortex, (u∞, v∞)=(1.0, 0.0)

are the far-field x, y direction velocities. The initial coordinate of the centre of per-

turbation is x0 = 5 and y0 = 0, the other input variables are

x̄ = x− x0 − u∞t, ȳ = x− x0 − v∞t, r̄ =
√
x̄2 + ȳ2. (2.58)

The boundary conditions are periodic and the initial condition is depicted in

61

Fig. 2.3.

Figure 2.3: 2D convected isentropic vortex: Initial condition.

The simulations utilize a small time step CFL = 0.1 and a fourth-order DIRK

scheme to ensure the spatial error is dominant. To notice, the commonly-adopted

absolute/relative Newton tolerances (Eq. 2.39/Eq. 2.40) are always problem depen-

dent. To ensure the iteration errors do not influence the estimate of discretization

order, the Newton tolerance is set very strict θ2 = 10×−6. The cartesian meshes are

gradually refined from [10×10] to [40×40] elements. The numerical results extracted

at T = 1s using different DG polynomials from the first order to the fourth-order

are compared with the analytical solution respectively. Their differences are referred

to as spatial discretization errors. The error distributions are drawn with respect to

the mesh size h in Fig. 2.4. The observed order of accuracy (OoA) of all the sim-

ulations, tested by the slopes of the error distribution lines, approximately reaches

the designed order of accuracy, which verifies the implementation of the advection

discretization codes.

62

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

h

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

L
2
 e

rr
o
r

P1

P2

P3

P4

4.66

4.02

3.15

2.00

Figure 2.4: 2D convected isentropic vortex:
Observed orders of spatial accuracy.

2.8.2 Diffusion: 2D Couette flow

This is one of the very few compressible flow cases available with an analytical

solution. The 2D Couette flow is a laminar viscous flow between two parallel plates.

The exact solution (Liepmann and Roshko, 2001) needs complicated integration

and the dynamic viscosity needs to obey specific power law µ
µ∞

= (T
T∞

)0.76. If the

Mach number is low, the exact solution is close to the analytical solution of the

incompressible Couette flow

u =
y

H
U∞, (2.59)

v = 0, (2.60)

p = p∞, (2.61)

T = T0 +
y

H
(T1 − T0) +

y

H

(
1− y

H

) PrU2
∞

2Cp
, (2.62)

where in the tests, the flow conditions are set as M = 0.1 with U∞ = 34m/s. The

temperature at the bottom wall and the upper wall are T0 = 240K, T1 = 255K

63

respectively.

The order of accuracy (OoA) study is then applied to verify the codes for solving

the compressible Navier-Stokes equations using interior penalty (IP) discretization.

The meshes are only gradually refined in the y-direction with mesh densities Ne =2,

3, 4, and 5. To keep spatial discretization errors dominant, the simulations are run

using a small time step CFL = 0.1 and a fourth-order DIRK scheme. The results

are extracted when the norm of the residual Lδ(Uδ) defined in Eq. (2.21) is reduced

by 10−10 compared with the initial residual norm ‖Lδ(U0)‖ of the simulation. The

results of simulations using DG polynomial order from the first-order to the fourth-

order are compared with the analytical solution. The simulation using P = 4 does

not run in the densest mesh because the simulation is so easy to reach a low-level

error, which is near the rounding error level. The error distribution lines drawn in

Fig. 2.5 show the simulations with polynomial orders P from 1 to 4 all approximately

reach their designed order of accuracy, which verifies the implementation of the

spatial discretization codes in the compressible flow solver.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

h

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

L
2
 e

rr
o

r

P1

P2

P3

P4

4.76

3.96

2.98

1.94

Figure 2.5: 2D Couette flow:
Observed orders of spatial accuracy.

64

2.8.3 Time integration: 2D flow past a circular cylinder

An unsteady vortex flow past a circular cylinder is used to verify the temporal

accuracy of the implicit time integration schemes. The simulation is run under free-

stream Mach number M = 0.3 and Reynolds number Re = ρuD
µ

= 1200 based on the

free-stream velocity u and cylinder diameter D. The far-field boundary condition

is applied at radial distance r = 20D from the center of the cylinder and non-slip

wall boundary condition is set at cylinder surface r = D/2. Before testing the

order of accuracy (OoA) of time integration schemes, the mesh convergence study

is used to ensure the spatial error is not dominant. We test in a set of refined mesh

with Nr = 20, 40, 60 and 80 (Nr is the mesh density in radial direction while the

tangential mesh density Nt = 64 remains constant). The flow is periodic and the

computed Strouhal number St shown in Table. 2.3 is compared with the results

by (Bijl et al., 2002). The following case running under mesh density Nr = 60

has converged. The later analysis of temporal accuracy is based on the mesh with

Nr = 60.

Mesh Strouhal number
20 0.2397
30 0.2407
60 0.2438
80 0.2438

Bijl et al. (2002) 0.2467

Table 2.3: Mesh convergence study.

The simulation is run for more than 50 periods to ensure the vortex sheds peri-

odically. The converged mesh and the initial field is shown as Fig. 2.6.

65

(a) Mesh (b) Periodic vortex shedding

Figure 2.6: 2D flow past a circular cylinder: Mesh and initial field.

A time interval of 1.7 periods is enough to accumulate temporal errors (Bijl et al.,

2002). Therefore, after 1.7 periods, lift and drag coefficients are chosen to test the

accuracy of time integration schemes. The time step samples for BDF series are

(a) 8 × 10−5 (b) 10−4, and (c) 2 × 10−4 while for DIRK series are (a) 8 × 10−5 (b)

10−4 (c) 2 × 10−4, and (d) 4 × 10−4. The result obtained by the simulation with

∆t = 4×10−5 using the fourth-order DIRK is treated as the ‘numerically exact’ ref-

erence. The error distributions and consistently observed order of accuracy (OoA)

of time integration schemes are obtained through the comparisons between the sam-

ple results with the reference solution. Fig. 2.7 shows all the schemes achieve their

designed order of accuracy. The OoA of BDF1 and BDF2 are tested approximately

1.0 and 2.0 while OoA of DIRK2, DIRK3 are tested approximately 2.0, 3.0 shown in

Fig. 2.7a and Fig. 2.7b. The OoA test using the lift coefficient of DIRK4 is only 3.48

because the lift coefficient of this case is small. Since the accuracy level achieved

using DIRK4 is very close to that of the ‘numerically exact’ solution, even rounding

errors could result in an inexact test of OoA. This phenomenon does not appear

when the OoA is tested using drag coefficient, in which the OoA of DIRK4 is ap-

proximately 4 (3.98). In conclusion, the achievement of expected temporal accuracy

in these OoA tests verifies the codes of the implicit solver.

66

0.01 0.015 0.02 0.025 0.03 0.035 0.04

Timestep t

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

L
2
 e

rr
o

r

BDF1

BDF2

DIRK2

DIRK3

DIRK4

BDF1=1.0456

BDF2=1.8852

DIRK2=2.0219

DIRK3=3.0288

DIRK4=3.4868

(a) Lift OoA comparison

0.01 0.015 0.02 0.025 0.03 0.035 0.04

Timestep t

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

L
2
 e

rr
o
r

BDF1

BDF2

DIRK2

DIRK3

DIRK4

BDF1=1.1275

BDF2=2.1122

DIRK2=2.0506

DIRK3=2.9890

DIRK4=3.9564

(b) Drag OoA comparison

Figure 2.7: 2D flow past a circular cylinder:
Observed orders of temporal accuracy.

67

Chapter 3

Preconditioners for linear solvers

In this chapter, we consider the preconditioning of the linear problem arising from

the linearization of the nonlinear system during Newton iterations. Although one

Krylov solver can be efficient compared with other types of linear solvers, it still

suffers from the slow speed of convergence in large-scale stiff problems. The idea of

preconditioning is to transform the system into a less stiff problem, which was first

proposed in (Evans, 1968), and is the key ingredient to accelerate the convergence.

As discussed in Section 2.6, the calculation of the Newton step ∆v is a linear

system resolution

Ax = b, (3.1)

where A = ∂N(v)
∂v

, x = ∆v, and b = −N(v).

In terms of solving a linear system, it is obvious that when A is close to the

identity matrix I, the system is easier to solve. A nonsingular preconditioner matrix

P, which approximates A, is therefore designed. Through left or right multiplication

of P−1, the linear system is transformed to Eq. (3.2) or Eq. (3.3)

P−1Ax = P−1b, (3.2)

AP−1x̂ = b, (3.3)

where the preconditioned matrices P−1A and AP−1 are expected to approximate

68

the identity matrix. The corresponding preconditioning methods are called left and

right preconditioning. The right preconditioned system Eq. (3.3) needs the following

extra step to achieve the final result

x = P−1x̂. (3.4)

The default strategy of preconditioning in Nektar++ is right preconditioning

because this form keeps the residual unchanged after preconditioning and makes it

easier to observe the residual convergence.

Recalling the formulation of using Jacobian-free Eq. (2.53), the approximation

of the matrix-vector products for right preconditioning is

(
∂N(v)

∂v
P−1

)
w =

N(v + εP−1w)−N(v)

ε
, (3.5)

thus the equivalent system of preconditioning can be denoted as

Py = w. (3.6)

In terms of the studies on the convergence theory for an efficient preconditioner,

as mentioned in (Greenbaum, 1997), the exact sense in which the preconditioned

matrix should approximate the identity depends on the iterative method being used.

For simple iterative methods, the spectral radius ‖I−AP−1‖ � 1 is a good indicator

of achieving fast asymptotic convergence rate. For symmetric systems using the

conjugate gradient (CG) method, it can be proved, for example see (Benzi, 2002;

Hogben, 2006), that the convergence rate is linked with the eigenvalue distributions.

In other words, a system with preconditioned matrices of only a few tightly clustered

eigenvalues are typically easier to solve.

When using GMRES to solve the nonsymmetric linear system, unfortunately,

there is not a general answer to assess the performance of a preconditioner (Nachtigal

et al., 1992). If the preconditioned matrix is not far from normal, the cluster of

69

eigenvalues could still be a good indicator of an efficient preconditioning strategy.

Other spectral properties like condition number can also indicate the stiffness of

preconditioned linear equation system. Therefore, the eigenvalue analysis of the

system after preconditioning is still an acceptable tool to assess a preconditioner’s

performance.

In terms of the classification of preconditioners, the most widely-used precon-

ditioners come from the modification of linear solvers. Splitting-type linear solvers

include the Jacobi method, Gauss-Seidel method, etc. These methods, even though

inferior to Krylov solvers as linear solvers, have numerically shown in (Diosady and

Darmofal, 2007; Ghai et al., 2019) to be efficient preconditioners. The idea of incom-

plete LU (ILU) factorization preconditioner arises from the use of the inexact linear

solver. Alternatively, p-multigrid solver can be used as an efficient linear solver. It

utilizes multigrid theory to smooth high-frequency errors in low-order resolution. Its

counterpart as a preconditioner can also be used to accelerate a Krylov solver effi-

ciently in some problems (Luo et al., 2006). The details of these preconditioners will

be introduced in Section 3.1. The convergence properties after preconditioning will

also be investigated through eigenvalue analysis in the test case of Lid-driven cavity

flow. Subsequently in Section 3.2, considering the balance of storage and efficiency,

a practical implementation of the preconditioner in Nektar++ will be introduced

and the efficiency of the implicit solver using the developed preconditioner will be

tested.

3.1 Eigenspectral analysis of preconditioners

Due to the use of the Jacobian-free method, the Jacobian matrix is not explicitly

stored. To perform eigenspectral analysis, we explicitly generate the Jacobian matrix

tested using a first-order finite difference method as follows

A(v)~el =
N(v + ε~el)−N(v)

ε
, (3.7)

70

where el is a unit vector of lth entry equals 1 and the perturbation parameter is

set ε = 10−12. The right hand side of Eq.(3.7) is an approximation of lth column’s

derivatives in Jacobian matrix A.

After the numerical generation of A, the matrix is then aligned as a global matrix

including (Ne×Ne) block matrices, where the derivatives of the ith element’s residual

N(vei) with respect to the jth element’s solutions vj are clustered in the (i, j)th block

matrix. A sketch of the alignment of Jacobian matrix is shown as Fig. 3.1. To notice,

the sketch does not consider the number of conservative variables.

Figure 3.1: Sketch of the Jacobian matrix:
3 elements using P = 1 DG polynomial (nDof=2 per element).

The operations of preconditioning are block matrix based, where each block

matrix operation is treated similarly to an entry operation.

The preconditioners studied in this section are block Jacobi (BJac), block Gauss-

Seidel (BGS), block ILU (BILU), and block p-multigrid preconditioners. The gener-

ation and usage of these preconditioners are also based on the numerically generated

71

Jacobian matrix.

The process of numerically generating a Jacobian matrix takes up large storage

and spends costly computation. This is not practical for large-scale problems and is

not implemented in Nektar++. This spectral analysis is only tested in a small-scale

problem Lid-driven flow to help us understand the performance of preconditioners

before developing a practical preconditioner.

3.1.1 Block spliting preconditioner

A standard linear equation system is denoted as

Ay = c. (3.8)

The ‘splitting’ type linear solvers are named because the target matrix A is split

into several parts

A = L + D + U, (3.9)

where L, D and U are the lower triangular, diagonal, and upper triangular parts.

Considering D is nonsingular, Eq. (3.8) is equal to the following fixed point

equation

y = D−1(c− (L + U)y). (3.10)

The corresponding splitting method is called Jacobi iterations. The process of

Z Jacobi iterations is

y0 = 0

yz = D−1(c− (L + U)yz−1)

z = 1, 2 . . . , Z

(3.11)

During the above process, A−1 is approximated by

D−1{I− (L + U)D−1 . . .−
(
(L + U)D−1

)Z−1}, (3.12)

72

where I is the identity matrix. Thus the process can implicitly work as precondi-

tioning, namely Jacobi preconditioning. The preconditioning process Eq. (3.6) is

implicitly solved as long as c is replaced by w.

The consistent block Jacobi (BJac) preconditioner replaces the entry operation

during Jacobi iterations by block operation.

When Z = 1, we have a block diagonal (BDia) preconditioner. Only the diagonal

blocks in D are evaluated, inverted and stored for preconditioning. The implemen-

tation of the BDia preconditioner is simple and saves storage. However, it performs

poorly in stiff problems because it is not enough to approximate A−1 by D−1. As

the smoothing iteration Z increases, the information from neighboring elements is

utilized, which typically leads to better preconditioning performance. However, the

factors of extra storage, computational cost, and parallel communication also need

consideration. It is a key gradient to balance the storage and computational cost to

construct an efficient iterative preconditioner.

Gauss-Seidel method is another splitting method. During zth iteration, after

calculating the ith block’s variables in vector yz, the updated solution is immediately

used for the solving of the next block’s variables. The process of Z Guass-Seidel

iterations is

y0 = 0

yz = D−1(c− Lyz −Uyz−1)

z = 1, 2 . . . , Z

(3.13)

The corresponding block preconditioner is block Gauss-Seidel (BGS) precon-

ditioner. Compared with the BJac preconditioner, the information is propagated

further and updated more immediately after each Gauss-Seidel iteration. It is ad-

vantageous in situations like encountering shocks. However, it also has its drawback

such as more frequent parallel communication due to the sequential process. For

methods to improve parallel efficiency such as multi-coloring reordering, etc, readers

can read (Sato et al., 2013; Li and Saad, 2013).

73

3.1.2 Block ILU preconditioner

The standard LU factorization is factoring A = L̃Ũ through Gauss elimination. The

structure of the remaining matrix to store L̃ and Ũ, in the form of C = L̃ + Ũ− I

(3.15), is typically denser than the original matrix (3.14), where I is the identity

matrix, L̃ is the lower triangular matrix, and Ũ is the upper triangular matrix. The

empty circles in (3.15) are examples to mark the new generated entries after the

matrix factorization.



• • • •

• •

• • •

• • • •

• • •

• • • •


(3.14)



• • • •

• •

• • ◦ • ◦

• • ◦ • ◦ •

• ◦ • •

• ◦ • • •


(3.15)

The new generated entries usually appear in the positions surrounded by the

original entries, which depends on the process of LU factorization. These new entries

are called fill-ins.

For a large sparse matrix A, a large number of fill-ins make the storage enlarged

significantly. Incomplete LU factorization denoted as ILU(0) is designed so that the

remaining matrix C does not have any fill-ins after factorization. The ILU factoriza-

tion algorithms that keep more fill-in are also good black-box preconditioners, but

obviously require more storage and cost. Assuming a set S includes the positions of

the entries in original matrix A such as the black circles demonstrated in Eq. (3.14),

the algorithm of ILU(0) is as follows

for i = 2, . . . , Ne do

for k = 1, . . . , i− 1 And (i, k) ∈ S(A) do

Calculate the block matrix Ai,k = Ai,k/Ak,k

74

for j = k + 1, . . . , Ne And (i, j) ∈ S(A) do

Calculate the block matrix Ai,j = Ai,j −Ai,k ×Ak,j

end for

end for

end for

By discarding the calculation when generating fill-in entries, it leads to signifi-

cantly less computational cost for a sparse matrix. Although ILU factorization can

not be used as an exact linear solver, it can be treated as an efficient preconditioner

for a Krylov iterative solver. It makes use of the lines of maximum coupling in-

formation of the flow, which promotes convergence (Diosady and Darmofal, 2007).

The efficiency of the ILU preconditioner has been numerically verified in various

works (Magolu monga Made et al., 2000; Diosady and Darmofal, 2007; Persson and

Peraire, 2008), especially for steady problems (Ur Rehman et al., 2008).

The applications of ILU preconditioners also encounter some challenging prob-

lems. The storage requirement in large-scale problems is a headache. Most im-

plementations of ILU both store the linearization A and incomplete factorization

L̃Ũ. Even though implementing ILU using some optimized algorithms, such as the

in-place storage mentioned in (Diosady and Darmofal, 2007), the process of ILU(0)

preconditioning still takes up more than the size of a Jacobian matrix. Further-

more, parallel implementation of an ILU preconditioner has still been recognized

as a challenging problem. This drawback is inherent from Gaussian elimination,

on which ILU is based. The forward and backward triangular solving during ILU

preconditioning are also highly sequential, which are ill-suited for parallelization.

Domain decomposition techniques such as Schur complement methods, alternating

Schwarz methods (Smith et al., 1998) can improve the parallel efficiency, but most

CFD solvers lack the required functions of mesh decomposition or mesh overlapping.

During the process of block ILU (BILU) preconditioning, the operations of block

matrices are treated as an entry operation in ILU processing. In the later tests, the

BILU(0) preconditioner is referred to as BILU.

75

3.1.3 p-multigrid preconditioner

For linear iterative solvers such as Jacobi or Gauss-Seidel solvers, the number of

operation counts required for convergence still scales poorly with the problem size

(Brandt, 1982; Braess, 1982; Kovac and Strang, 2005). This is because the iter-

ation process involves the coupled low-frequency and high-frequency errors. The

high-frequency errors can be smoothed within a few iterations while low-frequency

errors are hard to reduce. To remove the low-frequency errors, a multigrid solver at-

tempts to transform the algebraic equation to be solved in a hierarchical coarse mesh.

The original ‘low-frequency’ errors behave like high-frequency errors in the coarse

mesh. If optimized well, the required iteration number could be mesh-independent.

The multigrid algorithms using several sets of mesh are called geometric multigrid

or h-multigrid. The natural extensions of h-multigrid to high-order finite element

formulation such as spectral/hp element methods, where the equations using a dif-

ferent order of polynomial approximations solved recursively, are called p-multigrid.

The application of p-multigrid algorithms on preconditioning is called p-multigrid

preconditioners.

The process of p-multigrid can be summarized as ‘smooth high-frequency errors

in high-order system and solve the equation in the lower-order system’. The first

step is to pre-smooth the solutions at the current level using smoothers like BJac or

BGS mentioned in Section 3.1.1.

yZ1
1 = D−1(c− (L + U)yZ1−1

1). (3.16)

After obtaining the solution after Z1 iterations, the equation residual vector

r = c−AyZ1
1 at high-level system is projected to the lower-level resolution

rl = R̃(c−AyZ1
1), (3.17)

where the restriction matrix R̃ is a projection matrix to map the residual to the

lower level. The superscript l denotes the lower level.

76

The defect equation at the lower level is resolved to obtain the corrected error

el.

Alel = rl, (3.18)

where Al is the operation matrix for the defect equation. It is related to the pro-

jection matrices R̃ and P̃ (mentioned below).

The error is then interpolated to correct high-level approximations xZ1
1

y2 = yZ1
1 + P̃el, (3.19)

where the prolongation matrix P̃ is a projection matrix to map the error back to

the high-level system.

At the working level (highest level), the corrected solution needs post-smoothing

to obtain the final solution yZ2
2

yZ2
2 = D−1(c− (L + U)yZ2−1

2). (3.20)

The transform matrices P̃ and R̃ are determined by the methods of projection.

Recalling the DG methods introduced in Section 2.2, for P th order DG discretization,

the space of test functions is defined as

DP = {v ∈ L2(Ω) : v|Ωe ∈ PP (Ωe), ∀Ωe}, (3.21)

where PP (Ωe) represents the space of all polynomials of degree (p ≤ P) in Ωe.

Additionally, the inner product in DP space is denoted as (., .)P and the lower-

order space DP−1 is defined as

DP−1 = {v ∈ L2(Ω) : v|Ωe ∈ PP−1(Ωe),∀Ωe}. (3.22)

The prolongation operator P̃ is to interpolate the approximation from DP−1 to

77

DP

P̃v = v,∀v ∈ DP−1 ⊂ DP . (3.23)

The variational formulation of Eq. (3.23) is

(P̃v, w)P = (v, w)P ,∀v ∈ DP−1, w ∈ DP . (3.24)

Therefore, the prolongation operator P̃ can be calculated by

P̃ = (MP
P)−1MP

P−1, (3.25)

where the rectangular matrix MP
P−1(i, j) = (φPi , φ

P−1
j)P , and MP

P is the mass matrix.

The superscript of φP denotes the order of approximation.

The derivation of restriction operator R̃ is similar. Because R̃ must the the

Hilbert adjoint of P̃, the following relations need to satisfy when restricting DP to

DP−1

(R̃w, v)P−1 = (w, R̃v)P = (w, v)P , ∀v ∈ VP−1, w ∈ VP . (3.26)

Therefore, the restriction operator R̃ is calculated by

R̃ = (MP−1
P−1)−1MP−1

P , (3.27)

where MP−1
P = (MP

P−1)T because MP−1
P (i, j) = (φP−1

i , φPj)P , MP−1
P−1 is the mass

matrix of the lower-order system.

It is also easy to further derive the lower system operation matrix Al in Eq. (3.18)

as

Al = R̃AP̃. (3.28)

The above process only demonstrates the process of two-level multigrid. The

process can involve more levels and solve the system recursively. If the resolution

reaches the lowest level, the governing equation Eq. (3.18) can also utilize BILU as

its smoother. Because the resolution at the lowest level requires much less compu-

78

tational cost.

3.1.4 Spectral analysis of preconditioned matrices for a Lid-

driven cavity flow

The lid-driven cavity problem is an isothermal, incompressible flow in a 2D square

domain, where all the boundaries are walls. The top wall moves in u=1m/s in

x-direction while the other three walls are stationary. This test is adopted for

spectral analysis of the preconditioned matrices in consideration of its small size.

Especially in the case using high polynomial order with p-multigrid preconditioner,

the storage of the numerically-generated Jacobian matrix and the calculation of

spectral information, such as eigenvalues and condition numbers, are costly if testing

in a large-scale problem. The simulations are run under at a low Reynolds number

of Re = 5. The spectral analysis is based on the converged flow field, whose residual

Lδ(Uδ) is reduced by a factor of 10−9.

Figure 3.2: Lid-driven cavity flow: Steady-state field (Re=5).

Based on the above initial field, the solver is run using a backward Euler time

integration scheme and P = 4 order DG scheme. The tolerance convergence of

GMRES and Newton solvers were set to reduce the residual by a factor of 10−6

79

respectively. The preconditioned matrices are extracted for analysis after only one

time step ∆t = 0.001.

To do spectral analysis, we compare two properties, the condition number ,

and the eigenvalue distributions. The condition number is defined as the ratio

of the largest singular value to the smallest singular value (Kincaid et al., 2009).

The condition number of unpreconditioned Jacobian matrix is 9.71 × 1013 and the

eigenvalue distributions are shown as Fig. 3.3. The eigenvalues are widely distributed

and the maximum magnitude of eigenvalue reaches over 3000. It is always the case

that widely spread eigenvalues indicate a slow convergence (Wathen, 2015). Without

preconditioning, it is hard to converge.

0 500 1000 1500 2000 2500 3000

Real

-1500

-1000

-500

0

500

1000

1500

Im
a

g

Eigenvalue Distribution

Figure 3.3: Eigenvalue distributions of the unpreconditioned Jacobian matrix.

In the first test, we compare the performance of different BJac preconditioners.

The number in the bracket represents the number of smoothing iterations. The

simulation using BJac(1) does not converge, the result of which is not shown here.

Fig. 3.4 demonstrates that many eigenvalues of BJac(1) are distributed around the

circle with its center at (1,0) and radius=1. The eigenvalues of BJac(3) and BJac(5)

tend to cluster in a smaller circle and are distributed near the center. The condi-

tion number after BJac(1), BJac(3), and BJac(5) preconditioning are 3.17 × 1010,

9.61× 109, and 5.80× 109 respectively, which are much smaller than the case before

80

preconditioning. Lastly, the simulations with BJac(3) and BJac(5) take 187 and

181 GMRES iterations to converge. The changes of eigenvalue distributions and

condition number are consistent with the improvement of convergence after precon-

dition, which indicates in this case, the spectral analysis is a good tool to compare

preconditioners’ performance.

0 0.5 1 1.5 2

Real

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a

g

BJac(5) Preconditioned Matrix

BJac(3) Preconditioned Matrix

BJac(1) Preconditioned Matrix

Figure 3.4: Eigenvalue distributions of the block Jacobi preconditioned matrix.

The second test compares the performance of different BGS preconditioners.

The simulation using BGS(1) also does not converge. Different from the eigenvalue

distributions of BJac preconditioners Fig. 3.5 shows the eigenvalues of BGS precon-

ditioned matrices are non-symmetrically distributed in this test case. The condi-

tion number after BGS(1), BGS(3), and BGS(5) preconditioning are 3.07 × 1010,

9.54 × 109, and 5.64 × 109 respectively, which are smaller than their counterparts

of BJac preconditioners. Lastly, the simulations with BGS(3) and BGS(5) take 174

and 127 GMRES iterations to converge, which are also consistent with the changes

of spectral properties.

81

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Real

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a

g

BGS(5) Preconditioned Matrix

BGS(3) Preconditioned Matrix

BGS(1) Preconditioned Matrix

Figure 3.5: Eigenvalue distributions of the Block Gauss-Seidel preconditioned
matrix.

The third test compares the performance of p-multigrid preconditioners of dif-

ferent levels. The smoothers for these preconditioners are BGS solvers. The simu-

lations using p-multigrid of Level2(3), Level3(5), and Level4(7) take 174, 129, and

101 GMRES iterations to converge. The number in the bracket represents the total

iteration number and ‘Level’ represents the levels for a multi-level p-multigrid pre-

conditioner. For example, Level3(5) is a 3 levels p-multigrid preconditioner, where

the highest level resolution at P=3, the second level is at P=2 and the lowest level

is at P=1. The number 5 in Level3(5) means totally 5 smoothing iterations, con-

sisting of 1 pre-smooth in the highest level, 1 pre-smooth in the second level, 1

smoothing in the lowest level, 1 post-smooth in the second level, 1 post-smooth

in the highest level. Compared with the performance BGS(5) preconditioner using

127 GMRES iterations, Level3(5)’s performance is a little inferior to it with 129

iterations. The smoother performance at a low level still needs to be optimized to

achieve the same performance as high-level smoother. But the low-level resolution

saves computational cost. Lastly, the condition number after Level2, Level3 and

Level4 p-multigrid preconditioning are tested 9.54× 109, 5.77× 109, and 4.16× 109.

82

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Real

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Im
a

g

P-multigrid (four level) Preconditioned Matrix

P-multigrid (three level) Preconditioned Matrix

P-multigrid (two level) Preconditioned Matrix

Figure 3.6: Eigenvalue distributions of the p-multigrid preconditioned matrix.

In the fourth test, the simulation using BILU takes 139 GMRES iterations to

converge. The condition number after BILU preconditioning is 5.11 × 109. The

eigenvalue distributions of the Jacobian matrix after BILU preconditioning are not

compared separately. Fig. 3.7 compares the distributions of BILU preconditioner

with other types of preconditioners to demonstrate some interesting details.

To summarize, for the same type of iterative preconditioners, when we apply

more iterations, such as BJac(5) compared with BJac(3), the system converges

faster. The clustering of eigenvalues is consistent with better convergence property

as expected. However, for different types of preconditioners, they cluster in differ-

ent directions and there is no obvious rule between different types of precondition-

ers. When the smoothing number is the same, BGS generally performs better than

BJac. Because after each smoothing iteration, BGS can influence more elements

and smooth errors in a wider computational domain. The BILU preconditioner

does not perform well compared with BGS(3) in this case. Comparing Fig. 3.5 and

Fig. 3.6, the eigenvalue distributions of p-multigrid are quite similar to that of di-

rectly using its smoother as the preconditioner. To be clear, as shown in Fig. 3.7, the

p-multigrid (BGS as its smoother) preconditioner and the BGS preconditioner use

83

the same number of iterations, their eigenvalue distributions are quite similar. The

condition numbers after preconditioning are also close. For example, the condition

numbers after BGS(5) and Level3(5) p-multigrid preconditioning are both approx-

imately 5 × 109. The spectral properties are very similar between the p-multigrid

preconditioner and its smoother. It, therefore, hints an efficient smoother play an

important role for p-multigrid preconditioner. Most importantly, this property in-

dicates that even though p-multigrid preconditioner does not obviously improve the

convergence property compared with its original smoothing method (BGS) in this

test when the total smoothing number is the same, the computational cost can be

potentially reduced since part of smoothing iterations of p-multigrid are at lower

levels.

Extra spectral analysis based on the converged field of Lid-driven cavity flow at

Re = 100 is presented in Appendix 6.2. Similar conclusions can be verified, such as

the spectral properties of the p-multigrid preconditioner are directly related to that

of its smoother.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Real

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Im
a

g

BGS(5)

BGS(3)

PM(Level3, TotGS=5)

PM(Level2, TotGS=3)

BILU

Figure 3.7: Comparisons between eigenvalue distributions of
BGS, BILU and p-multigrid preconditioned matrices.

84

3.2 Efficient implementation of block relaxed Ja-

cobi preconditioner

The computational cost and memory consumption to calculate and store the whole

Jacobian matrix ∂N
∂v

explicitly in large-scale problem is expensive. The calculation of

a Jacobian matrix requires much more cost compared with calculating the residual

N. The frequent update of the preconditioner in an unsteady problem also does not

allow the direct calculation of the whole Jacobian. In terms of storage consumption,

the straightforward way to store a Jacobian matrix in 3D simulations takes up

approximately 8NnNe(Nvar(P + 1)3)2 in double precision (Yan et al., 2020). Nn is

the number of non-zero blocks per row, Ne is the number of partitioned elements,

Nvar is the number of conservative variables, and P is the DG polynomial order.

One Gbyte of memory can only support a 3D simulation using P = 4 DG polynomial

and 45 hexahedral elements. Moreover, frequently loading this large matrix into the

CPU cache will seriously influence the computational speed since most modern high-

performance computers (HPCs) are memory bandwidth limited (Knoll and Keyes,

2004; Witherden et al., 2014).

3.2.1 Block relaxed Jacobi preconditioner

Through the spectral analysis in Section 3.1, we understand some spectral properties

of different types of preconditioners. When we practically implement an efficient

preconditioner, we optimize the block Jacobi (BJac) preconditioner through the

consideration of balancing the storage requirement and computational cost.

Different from the BJac, the block relaxed Jacobi (BRJ) adds a relaxation factor

ω to the iteration. This factor can adjust the convergence rate and stability (Datta,

85

2010). The process of Z step block relaxed Jacobi preconditioner BRJ(Z) is

y0 = 0

yz = ωD−1(c− (L + U)yz−1) + (1− ω)yz−1

z = 1, 2 . . . , Z

(3.29)

which is equivalent to BJac if ω = 1.

To minimize the memory consumption, only the matrix D−1 is stored while the

product (L + U)yz−1 is calculated on the fly. Since we do not store the off-diagonal

blocks, it takes up much less storage than the straightforward approach of storing

the whole Jacobian matrix.

The calculation of D−1 is very critical to an efficient preconditioner. The algo-

rithm to construct D is very difficult because it includes all the components of the

solver such as the discretized advection term, the discretized diffusion term, bound-

ary conditions and Riemann numerical fluxes. Considering the various choices of

Riemann fluxes and boundary conditions, it would be tedious to code the Jacobian

matrix for each of these options. Since the derivation of diffusion term’s Jacobian is

much more complexed, the following section takes the derivation of Euler equation

(without diffusion term) as an example

∂N(vei)

∂vej
= Iδi,j −∆tak,k

∂L(vei)

∂vej
, (3.30)

where ak,k is the diagonal coefficient of DIRK scheme,
∂N(vei)

∂vej
is the Jacobian of

the ith element’ fluxes with respect to jth elements’ field variables, L(vei) is the

discretized operator of the advection term

L(vei) = M−1
ei

(∫
Ωei

F · ∇φeip dΩ−
∫

Γei

F̃n(V+,V−)φeip dΓ

)
, (3.31)

the variables’ meanings of which can be found in Section 2.2, except here V, v are

the solution vector and the coefficient vector during Newton iterations.

86

The volume Jacobian
∂F(Vei)

∂vej
and the trace Jacobian

∂F̃nei (V
+,V−)

∂vej
are the only

variables depending on V. The other operators such as integration, the mass matrix

Mei are stored at the beginning and unchanged throughout the simulation. The

volume Jacobian
∂F(Vei)

∂vej
are calculated analytically. The analytical expression of

volume Jacobian matrix can be found in references such as (Masatsuka, 2013). The

trace Jacobian matrix needs neighboring elements’ information reads

∂F̃n
ei

(V+,V−)

∂vej
=

(
∂F̃n

ei
(V+,V−)

∂V+

∂V+

∂Vej

+
∂F̃n

ei
(V+,V−)

∂V−
∂V−

∂Vej

)
B, (3.32)

where the backward transform matrix B, the interpolation matrices ∂V+

∂Ve2
and ∂V−

∂Ve2

are unchanged maps.

It is non-trivial to calculate the analytical solution of the trace Jacobian in

consideration of different types of Riemann solvers that have their consistent trace

Jacobian. Some analytical expressions of trace Jacobian of Riemann fluxes such as

Roe flux, HLLC flux can be found in (Rinaldi et al., 2014). Most of other types

of trace Jacobian are complicated to derive and explicitly expressed. It is also

mentioned that in most cases, the analytical and numerical Jacobian are identical in

practical use (Vanden and Orkwis, 1996). Therefore to provide a general formulation

for all these options, a finite difference approximation is adopted to calculate the

trace Jacobian matrices numerically

∂F̃n
ei

(V+,V−)

∂V±
=

F̃n
ei

(
V± + χ~el,V∓

)
− F̃n

ei
(V±,V∓)

χ
, (3.33)

where ~el is a unit vector of lth entry equaling to 1. The parameter χ is evaluated

in a fashion similar to ε used in Eq. 2.53. However, the scale is replaced by the L2

norm of each variable, which makes χ depends on each variable. Physical boundary

conditions need to be imposed on V+ specially in the F̃n
ei

(
V± + χ~el,V∓

)
evaluation

so that the Jacobian matrices of the boundary conditions are already included in

Eq. (3.33). The entries of
∂F̃nei (V

+,V−)

∂V±
are stored since they are also needed for the

evaluation of the product (L + U) ŷz−1 in Eq. (3.29). The computational cost and

87

storage consumption of the trace Jacobian matrices
∂F̃nei (V

+,V−)

∂V±
are however small

compared with the other parts of the implicit solver.

Considering the costly consumption of generating the preconditioner, we do not

update the preconditioner every time step, especially for the simulation of smooth

evolution. The frequency to update the preconditioner in Nektar++ is every 10

time steps. In other words, the ‘freezing number’ is set as 10. In Section 4.4, two

freezing strategies of the preconditioner will also be introduced and compared.

3.2.2 Efficiency comparison between explicit and implicit

solvers: 2D flow over a circular cylinder

After the completion of the BRJ preconditioner, the major part of the developed

implicit solver has been introduced. The efficiency of the implicit solver is compared

to that of an explicit solver through the case of 2D flow over a circular cylinder. This

case has been used as a verified test case in a wide range of Re (Bijl et al., 2002;

Gautier et al., 2013). The efficiency is compared in two states Re=1200 and Re=40.

The simulation run under Re=1200 is an unsteady problem while under Re=40, the

flow is near a steady state.

Re=1200 In the first test, the flow is simulated under the Mach number M=0.3

and the Reynolds number Re=1200. The initial setup has been introduced in Section

2.8.3. After reaching a periodic unsteady state, the St is tested approximately 0.243.

The efficiency (total CPU) is compared within one period. In terms of the

implicit solver, it utilizes a third-order DIRK (DIRK3) scheme and a second-order

DG polynomial, with a time step ∆t = 5×10−2 (CFL=475). BRJ(7) preconditioner

with a freezing number of 10 is set. For the explicit solver, it utilizes a third-order

Runge-Kutta (RK3) scheme and a second-order DG polynomial, with time step

∆t = 5 × 10−5 (CFL=0.0475). The time step used for the explicit solver is the

maximum allowed time step to guarantee stability. Fig. 3.8 shows the variation of

density at the history point (2r, 0) within one period.

88

0 0.5 1 1.5 2 2.5 3 3.5 4

Time t

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91
 history points

RK3

DIRK3

Figure 3.8: 2D flow over a circular cylinder (Re=1200):
ρ variation within one period.

Table .3.1 compares the efficiency of the implicit solver and the explicit solver

using (a) one core, (b) 8 cores, (c) 16 cores, (d) 24 cores. The speed-up of the

developed implicit solver can reach over 30 in this test.

Cores RK3 CPU Time (s) DIRK3 CPU Time (s) Speed-up

Serial 377815 11160 34
8 37315 919 41
16 22241 544 41
24 12703 377 44

Table 3.1: 2D flow over a circular cylinder (Re=1200): Efficiency comparison.

Re=40 In the second test, the flow is simulated under the Mach number M=0.3

and the Reynolds number Re=40. The solvers use the same schemes as the first

test (a) implicit solver uses DIRK3 and P = 2 DG schemes, (b) explicit solver uses

RK3 and P = 2 DG schemes. To avoid the limitations of using a very small time

step when starting, the initial field is run for a while from a uniform field using

low-order schemes, BDF1 scheme and P = 1 DG scheme. The initial ρ distribution

is shown as Fig. 3.9. The implicit and explicit solvers are run using their respective

89

largest time step ∆t = 10−2 and ∆t = 10−7, equally CFL = 100 and CFL = 0.001.

The history of residual is shown in Fig. 3.10. Compared with the explicit solver, it

shows the implicit solver speeds up by approximately two orders of magnitude in

this test. After the normalized residual Lδ(Uδ) of the implicit simulation reaches

10−7, we extract the result to compare with the results in (Gautier et al., 2013).

Fig. 3.11 shows the contour of ρ distribution. The separation angle θs and the

location of recirculation centre (xr,yr) of the numerical simulation are consistent

with the reference, which are shown in Table. 3.2.

Figure 3.9: 2D flow past a circular cylinder (Re=40): Initial field.

90

0 1 2 3 4 5

Cpu Time (s) 10 5

10 -6

10 -4

10 -2

10 0

R
e
s
id

u
a
l

RK3

DIRK3

Figure 3.10: 2D flow past a circular cylinder (Re=40):
Residual history of implicit and explicit simulations.

Figure 3.11: 2D flow past a circular cylinder (Re=40): ρ distributions.

θs xr yr
Reference 126.4 0.71 0.59

Numerical result 127 0.7 0.6

Table 3.2: 2D flow past a circular cylinder (Re=40):
Comparison of flow features.

91

Chapter 4

Choices of parameters for a

reliable implicit solver

Unlike explicit solvers which are typically limited by the time step restriction, im-

plicit solvers can utilize a much larger time step. Therefore, implicit solvers have

been widely used in a great variety of steady and unsteady simulations as a more

efficient choice (Bassi et al., 2016; Vandenhoeck and Lani, 2019; Noventa et al.,

2020). However, implicit solvers are generally more complex and introduce more

free parameters. Taking the solver we developed for example, the combined use of

diagonally implicit Runge-Kutta (DIRK) methods and the Jacobian-free Newton-

Krylov (JFNK) method introduces parameters such as the size of the time step, the

convergence tolerance for Newton nonlinear solver, the convergence tolerance for

Krylov linear solver, the order of finite difference approximation of matrix-vector

products, etc (Yan et al., 2020). If the system is preconditioned, other parameters

such as the number of smoothing iterations and the update frequency of the precon-

ditioner are involved. These parameters are nonlinearly coupled with each other and

dramatically influence the accuracy and efficiency of an implicit solver. It would not

be surprising that a naive set of parameter choices makes the simulations several

times slower than the optimal one.

This chapter aims to provide a set of strategies to avoid improper choices of

92

parameters based on the consideration of accuracy requirement and efficiency im-

provement. Firstly, in Section 4.1, an adaptive time-stepping strategy is developed

based on the idea that the local temporal error should be smaller than the spatial

error in fixed mesh simulations. This strategy can also help relax the difficulty to

choose the order of time integration schemes. Secondly, based on a similar error

analysis, an adaptive Newton tolerance is proposed in Section 4.2, considering the

numerical error generated during Newton iteration should be smaller than the tem-

poral error to ensure the temporal accuracy. The systematic introductions to the

adaptive time-stepping strategy and the adaptive Newton tolerance have also been

presented in (Pan et al., 2021). Section 4.3 studies the accuracy of approximated

Jacobian’s influence on the efficiency. In Section 4.4, an adaptive strategy to up-

date the preconditioner based on the observation of GMRES convergence state is

discussed. Combined with the strategy proposed in (Eisenstat and Walker, 1996)

to link the convergence tolerance for Newton solver with the tolerance for Krylov

linear solver, the implemented implicit solver can almost remove the headache to

choose user-defined parameters.

4.1 Error-based adaptive time step

Recalling the error relationship Eq. (2.48) derived in Section 2.5, the total error

generated within one time step is the sum of local temporal error Et, averaged

spatial error Ēs and averaged iteration error Ēit

Etot =En+1
t + ∆tĒs + ∆tĒit

=B
(
en+1
t + ∆tēs + ∆tēit

)
,

(4.1)

where et, ēs and ēit are corresponding coefficient vectors. The over-bar on ēs and

ēit denotes implementing a weighted averaged operation over substages in the form

of ψ̄ =
∑s

i=1 biψ
(i), where

∑s
i=1 bi = 1.

This indicates that to decrease the total error, these three errors should be

93

reduced simultaneously. It will not help much if one of them is optimized to a small

level but much smaller than the largest one.

Based on the error estimate, an adaptive time-stepping strategy is proposed that

the time step should be as large as possible without obviously influencing the total

discretization error. If the spatial error fixed in a specific simulation, this implies

that

‖En+1
t ‖ = β∆t‖Ēs‖, (4.2)

with β < 1.0 and a proper defined norm. When ‖En+1
t ‖ is orders of magnitude

smaller than ∆t‖Ēs‖, the total error Etot will be dominated by the spatial error

and further decreasing the temporal error through adjusting the time step will not

improve the solution accuracy.

To ensure Eq. (4.2) is satisfied, the spatial error and temporal error need to

be estimated. The embedded ESDIRK schemes offer a suitable way to estimate

temporal error en+1
t using Eq. (2.29). In terms of the spatial truncation error Ēs, it

is estimated through a one order higher approximation at the end of each time step,

reads

Ēs ≈ LP+1
δ (Un+1

it)− LPδ (Un+1
it)

= CsDs(U)hP+1 +O(hP+2),
(4.3)

the leading term of which is the same as that in Eq. (2.22) and P is the order of

DG polynomial. Therefore, Eq.(4.2) implies that the desired time step (∆t̂) should

satisfy

‖En+1
t (∆t̂)‖ ≈ ‖CtDt(U)∆t̂N+1‖ = β∆t̂‖Ēs‖. (4.4)

Dividing Eq. (4.4) by Eq. (2.29), the expected time step ∆t̂ using the N th order

time integration scheme can be calculated by

∆t̂ = ∆tn
(
β∆t‖Ēs‖
‖Et‖

) 1
N

, (4.5)

which can be used as the time step for the next time step. The simplest elementary

94

controller (Sóderlind and Wang, 2006) is adopted to determine the time step and

other choices are also possible (Sóderlind and Wang, 2006).

In the designs of adaptive time-stepping in (Blom et al., 2016; Noventa et al.,

2020), a L2 norm of the En+1
t and Ēs for all the variables throughout the flow field

is adopted as the norm in their adaptive strategy. However, the norm of the error

with this choice may be dominated by a specific variable or the large-scale unsteady

structures. As a result, the adapted time step may be determined by one of the

variables and/or the dominating unsteady structure in the flow field, which could

be too large for the small unsteady structures of interest.

To avoid these problems, the norm is defined in each element. The L2 norm of

En+1
t and Ēs are calculated in element e for variable m and the elemental time step

is calculated using

∆tn+1
e,m = ∆tn

(
β∆t‖Ēs‖e,m + 1.5Nεm
‖Et‖e,m + εm

)1/N

. (4.6)

Here, the scaling factor β controls the relation between the temporal error and

the spatial error. The perturbation parameter εm is added to the denominator to

avoid division by zero. But it also serves as a threshold of the error magnitude of

interest. If the local temporal error magnitudes are much smaller than εm, the local

unsteady structures are either too weak to be of interest or are already accurately

captured, which indicates the current time step choice is already excessively accurate

in that element. Thus, a term 1.5Nεm is also added to the numerator to ensure the

elemental time step will at least grow by 1.5 times. The choice of 1.5, which is not

optimized, ensures that the time step will increase but not too fast.

The value of εm adopted here is,

εm = 10−12Urms
it,m, (4.7)

where Urms
it,m denotes the root mean square value over the whole flow field of the

mass, momentum magnitude and energy variables. Such a threshold value is based

95

on the rounding error of the mth variable. One purpose of introducing this term is

to avoid noisy elemental time steps caused by rounding errors in uniform flow areas.

With elemental time steps ∆tn+1
e,m , the time step for variable m can be calculated

using different strategies. For example, a minimum of ∆tn+1
e,m would maintain that

Eq. (4.2) is satisfied in every element. Here we choose to calculate it using a weighted

average of ∆tn+1
e,m as

∆tn+1
m =

∑Ne
e=1 ‖Et‖re,m∆tn+1

e,m∑Ne
e=1 ‖Et‖re,m

. (4.8)

The temporal error ‖Et‖re,m is used as the weights such that elements with larger

temporal errors have larger contributions to the global time step. The value of

r ∈ [0,∞) can be chosen based on the smallest temporal structure of interest in

the simulations, a larger value of which would lead to a larger contribution from

elements with large temporal errors. In this work, r = 1 is adopted. This weighted

averaging helps maintain a relatively smooth change of the time step. Finally, the

time step ∆tn+1 is calculated by

∆tn+1 = min(∆tn+1
m). (4.9)

4.1.1 Discussion of the new adaptive time-stepping strategy

The basic idea behind the time step adaptation strategy proposed in Section 4.1 is

the relation between temporal and spatial errors that is sufficient for maintaining

temporal accuracy in unsteady simulations. Here, we give a brief discussion to

illustrate that it is a rational choice because it shares a very similar logic behind

the convergence tests in CFD, which is also a key point in guaranteeing the high

efficiency in implicit time integration methods.

The implicit time integration methods are broadly accepted to be much more

efficient than explicit ones in simulations of stiff problems such as problems with

low Mach numbers, high Reynolds number, and highly-stretched grids (Bassi et al.,

2016; Vandenhoeck and Lani, 2019). The assumption behind this conclusion is that

96

we can safely increase the time steps and temporal errors when using implicit time

integration methods without obviously degrading the simulation results. In another

word, the comparison of implicit and explicit time integration in efficiency is not

based on the computation time of the same temporal error level as is done in most

studies of time integrations methods (Bijl et al., 2002; Holst et al., 2020) but is

based on the computation time as long as the results are sufficiently accurate 1.

This implicitly defined sufficiently accurate condition is the maximum error level

without obviously degrading the target quantity of interest, which is the one we

are seeking when performing convergence tests in CFD simulations. However, this

condition usually depends on the unsteady properties of the problem (the magnitude

and frequency of the unsteady waves), the scale of interest, the acceptable error level,

etc, and is not known before an accurate simulation result is obtained.

Similarly, the error condition behind the time adaptation strategy in this study,

is to achieve the maximum value of ∆t without obviously degrading the results of the

discrete PDE (partial differential equation) system. Although, convergence tests are

still needed to ensure physical accuracy, the strategy avoids improper error relations,

which may seriously lower the efficiency without obviously improving the results. In

a case presented in (Noventa et al., 2016), the improper error relations can increase

the CPU time by about 20 times without obviously improving the results.

In some adaptive time-stepping strategies, the adapted time step is limited to be

no larger than a user-defined time step ∆tlimit, which is based on their understanding

of the physical time scale to be resolved as in (Noventa et al., 2020). However,

Eqs. (4.1) and (4.2) indicate that limiting the time step will not improve the results

but possibly will increase the computational costs. Instead, refining the spatial grid

will be much more efficient in improving the results. Therefore, it is advised to

refine the mesh instead of limiting the time step in our time adapting strategy when

the adaptive time step is obvious too large to capture the unsteady flow. As a

1These studies are still of great value because as long as the time step can be freely chosen
for the two methods in comparison, the results can always get the same (desired) error level.
However, there is a large difference between these two conditions when comparing explicit and
implicit methods, since the time step of explicit methods is restricted by the stability condition.

97

by-product of this observation, if the temporal scale of interest is well defined and

the properties of the ODE solver (ESDIRK in this paper) is well understood, the

adapted time step can also serve as a good indicator of mesh refinement.

In the adaptation strategy, extra computational costs are required to estimate

spatial and temporal errors. The embedded schemes (Kvrn, 2004) require an extra

implicit RK stage, which will approximately increase the computational costs by

1/(s − 1), where s is the number of stages of the main ESDIRK scheme, which

has values of 3, 4, and 6 for the second, third and fourth order ESDIRK schemes

adopted, respectively. Similarly, the spatial error estimation in Eq. (4.3) requires

the calculation of a higher-order spatial discretization operator LP+1
δ (Un+1

it), which is

similar in costs as LPδ (Un+1
it) since the same number of quadrature points 3(P +1)/2

is adopted and most of the computations in the DG methods are related to the

number of quadrature points. Moreover, these extra costs could be further reduced

by exploring the hierarchical structure of the base functions. The extra costs from

spatial error estimation are lower than those of temporal error estimation since up

to ten or more Lδ operations are needed in one implicit RK stage. In summary, we

can roughly estimate the extra costs to be 100/(s− 1)%. For simulations with little

or slow time scale changes, a freezing strategy of the time step can also be adopted

to lower the additional costs.

Compared with adaptive time-stepping strategies reported in (Birken et al., 2013;

Noventa et al., 2016; Blom et al., 2016; Noventa et al., 2020), the current strategy

is improved in the following ways:

• The adaptive time step is determined by the relation between the temporal

and spatial error instead of a user-defined temporal error level. Therefore,

highly problem-dependent user-defined tolerances are avoided.

• An embedded ESDIRK scheme with an order of (N + 1) is employed instead

of a (N−1)th order embedded scheme, which predicts the temporal error more

accurately. This also helps avoid problem-dependent calibration parameters

of the estimated errors.

98

• The adaptation is determined element by element first instead of using the

L2 norm of the temporal error of the whole flow field. Therefore, it has the

potential to avoid time steps being determined primarily by the large-scale

unsteady structures and avoid small-scale unsteady structures being under-

resolved.

4.1.2 2D isentropic vortex convection

This test case is adopted because its analytical solution is available, which makes

it easier for spatial and temporal error estimations. In the computational domain

[0, 10] × [−5, 5] with periodic boundary conditions in both directions, an inviscid

isentropic vortex is convected down stream. The analytical solutions have been

introduced in Section 2.8.1. The cartesian meshes and the density distribution have

also been illustrated in previous Fig. 2.3.

To estimate different errors, different solutions are adopted as the reference in

the error estimation. The total discretization error of a solution is obtained by

subtracting it from the analytical solution of Eq. (2.57). As mentioned in (Bijl

et al., 2002), the difference between the specific solution and a solution with a very

small time step is regarded as the sum of temporal and iterative errors as the two

solutions share the same spatial discretization. The difference between the solution

with a very small time step and the analytical solution is regarded as the spatial

error, since the error is dominated by the spatial error with a very small time step.

This Section aims at studying spatial, temporal, and total discretization errors

characterized in terms of parameters such as the CFL number and the mesh size,

h. The adaptive time-stepping strategy is evaluated at a polynomial order P = 6.

The total discretization errors and temporal errors are calculated with respect to

the analytical solution and a reference solution computed at a CFL number of 0.01.

The total errors of the third-order ESDIRK (ESDIRK3) with the adaptive time-

stepping, CFL=10.0, CFL=1.0, and CFL=0.2 using different mesh sizes, h = 0.2,

h = 0.1, h = 0.067 and h = 0.05, are presented in Fig. 4.1. The corresponding

99

temporal errors are shown in Fig. 4.2. The spatial errors are also presented for

comparison. The temporal errors with the adaptive time steps are always smaller

than the spatial errors, as per design, and the total error converges at the same rate

as the spatial error. However, for simulations with CFL=10.0, the total errors are

dominated by the temporal errors and converge at a lower order. For simulations

with CFL=0.2, the total errors are dominated by spatial errors. However, the tem-

poral errors are much smaller than the spatial errors, which may lead to extra costs

without obviously improving the results. For simulations with CFL=1.0, temporal

error is smaller than the spatial error for h = 0.2 but larger than that for h = 0.05,

which emphasizes the need for calibration for each time step when using a time

step based on a CFL number. Referring to the adaptive time-stepping methods in

(Noventa et al., 2020; Blom et al., 2016), the temporal error curve should be hor-

izontal lines because the temporal error tolerance in these methods is user defined

and independent of h.

0.05 0.1 0.15 0.2

h

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E
rr

o
r

 Total Error (Adapt)

 Total Error (CFL=10)

 Total Error (CFL=1.0)

 Total Error (CFL=0.2)

 Spatial Error

6.50
6.50

3.55

2.25

6.49

Figure 4.1: Isentropic vortex problem:
Effect of time-stepping method on total errors.

100

0.05 0.1 0.15 0.2

h

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E
rr

o
r

 Temporal Error (Adapt)

 Temporal Error (CFL=10)

 Temporal Error (CFL=1.0)

 Temporal Error (CFL=0.2)

 Spatial Error

2.25

4.08

3.45

6.50

6.50
5.30

Figure 4.2: Isentropic vortex problem:
Effect of time-stepping method on temporal errors and spatial errors.

The CPU time of the above simulations is compared in Fig. 4.3. The simulation

with the adaptive strategy is close to the most efficient ones at all the error levels.

It is slightly more expensive than the most efficient one at some error levels partly

due to the extra costs in estimating the errors. Fig. 4.4 and Fig. 4.5 also show the

corresponding curves of residual evaluation number and GMRES iteration number.

These numbers are the summation of all the time steps during the time interval. The

residual evaluation number and GMRES iteration number of the adaptive method

are also close to the smallest among different time-stepping methods. For the pa-

rameters adopted in this test, the efficiency of the adaptive stepping can be up to ten

times more efficient at the same error level than the simulations with a naive choice

of CFL, which highlights the importance of balancing the spatial and temporal error

from the point view of efficiency.

101

10 -1 10 0 10 1 10 2 10 3

CpuTime (s)

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

E
rr

o
r

 TotalError (Adapt)

 TotalError (CFL=10)
 TotalError (CFL=1.0)

 TotalError (CFL=0.2)

Figure 4.3: Isentropic vortex problem: CPU time.

10
3

Rhs number

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E
rr

o
r

 Rhs Number (Adapt)

 Rhs Number (CFL=10)
 Rhs Number (CFL=1.0)

 Rhs Number (CFL=0.2)

Figure 4.4: Isentropic vortex problem: Residual evaluation numbers.

102

10
3

GMRES number

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

E
rr

o
r

 GMRESIterNum (Adapt)

 GMRESIterNum (CFL=10)
 GMRESIterNum (CFL=1.0)

 GMRESIterNum (CFL=0.2)

Figure 4.5: Isentropic vortex problem: GMRES iteration numbers.

The errors of the second-order, third-order, and fourth-order ESDIRK schemes

are compared in Fig. 4.6. All temporal errors are smaller than the spatial errors and

the total errors almost coincide with each other for different values of N . Therefore,

the simulation results are almost independent of the ESDIRK scheme adopted in the

adaptive time-stepping. This property can also be achieved by the adaptive methods

proposed in (Blom et al., 2016; Noventa et al., 2020), but it requires an additional

calibrating process which is problem dependent. The temporal errors are just a little

smaller than the spatial errors in the fine mesh cases (h = [0.05 ∼ 0.1]) while the

spatial errors are larger than the temporal errors in the coarse mesh cases (h = 0.2).

The phenomenon shown in coarse mesh cases indicates the adaptive strategy cannot

help improve accuracy further mesh refinement is in need in such situations. This

phenomenon will also be explained in later 3D cylinder flow simulation (4.1.5) that

the post-processing of the adaptive strategy can be an indicator of regions in need

of mesh refinement.

103

0.05 0.1 0.15 0.2

h

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

E
rr

o
r

 Total Error (ESDIRK2)

 Temporal Error (ESDIRK2)

 Total Error (ESDIRK3)

 Temporal Error (ESDIRK3)

 Total Error (ESDIRK4)

 Temporal Error (ESDIRK4)

 Spatial Error

Figure 4.6: Isentropic vortex problem:
Performance of adaptive time-stepping for different ESDIRK schemes.

4.1.3 2D steady-state flat plate boundary layer flow

The steady-state flat plate boundary layer flow is a validation case involving flow

past a flat plate. The Mach number of the flow is M = 0.1 and the Reynolds number

is Re = 1.6 × 106. The low Mach number assumes the flow is incompressible and

the high Reynolds number motivates the flow to gradually grow into a thin laminar

boundary layer along with the plate.

The objective of this example is to illustrate how the adaptive time-stepping

strategy could be used to accelerate convergence towards steady-state in a practical

case. The geometry and boundary conditions are depicted in Fig. 4.7. The details

of boundary conditions can be found in (Mengaldo, 2015; Yan et al., 2020). The

simulations are performed using a second-order DG polynomial and a third-order

ESDIRK (ESDIRK3) scheme with the highly-stretched meshes shown in Fig. 4.8(a).

The computed profile of the horizontal velocity is shown and compared with the

analytical Blasius profile in Fig. 4.8(b). In all the simulations below, the time step

is set to be no larger than that corresponding to a CFL number of 5×104 to maintain

104

the stability of the simulations.

For the steady-state problem, we adopt the same adaptive time-stepping strat-

egy and parameters used for the unsteady simulations to show that the proposed

adaptive strategy can adjust itself based on the properties of the problem. For com-

parison, a time-stepping strategy based on a growing CFL is also presented, which

starts from CFL=0.1 and grows by a rate of 1.5 and 2.0 up to CFL=5 × 104. A

relative Newton tolerance of θ2 = 10−6 in Eq. (2.40) is adopted since the default

choice of θ2 = 10−3 cannot guarantee the stable simulation at such a large CFL

number. 2 The growing CFL number method is a commonly-adopted strategy for

steady-state simulations because a small time step is needed to maintain stability

in the initial transient phase, while a large time step is needed to accelerate the

convergence when the flow field is close to the steady-state solution (Bucker et al.,

2009; Vanderstraeten, 2001).

Characteristic boundary

Symmetry Viscous wall

Pressure Outflow

Farfield

(-0.15,0.0) (0.0,0.0) (0.2,0.0)

(-0.15,0.05) (0.2,0.05)

Figure 4.7: Boundary-layer flow past a flat plate: Geometry and boundary
conditions.

2Instability problem occurred using a CFL number larger than 5×104 in this case. This problem
may be caused by the nonlinear instability of ESDRIK (huu Cong, 1993; Kvrn, 2004) or by the
approximations in constructing the preconditioner. The headache to choose proper parameters
such as maximum CFL and Newton tolerance in this case also highlights the advantage of the
adaptive strategy.

105

(a) Mesh and x-momentum.

u/u

y
/

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Result

Blasius

(b) Velocity profile, where δ is the boundary layer thickness,

Figure 4.8: Boundary-layer flow past a flat plate: mesh and velocity profile.

The convergence history of the normalized residual norm ‖Lδ (Uδ)‖ is presented

in Fig. 4.9. The simulation with the adaptive time-stepping proposed in Section 4.1

converges almost as fast as the simulations with a CFL growth rate of 2.0. The

residual, ∆t and CPU time at different steps are illustrated in Figs. 4.10, 4.11 and

4.12 respectively. It shows that the ∆t of the adaptive method grows much slower

at the first 100 time steps. However, the extra CPU cost because of the extra steps

is low since it is cheap to converge at a small ∆t. Fig. 4.11 also demonstrates that

the adaptive ∆t is small at the beginning of the simulation. This is because the

transient flow is highly unsteady leading to a large temporal derivative term Dt(U)

in Eq. (2.29) and consequently to a smaller ∆t. As the flow field becomes closer to

the steady state, the ∆t increases because the magnitude of the unsteady waves in

the flow field becomes smaller, which leads to a smaller term Dt(U) and larger ∆t

based on the relation of Eq. (4.2). The adaptive time-stepping adjusts the ∆t based

on the unsteady properties of the flow field and achieves fast convergence whilst

maintaining stability.

Although the adaptive time-stepping may not be as efficient as methods specially

106

designed for steady-state simulations, such as local time-stepping and multi-grid, it

is general and, with a fixed set of parameters, is capable of efficiently simulating a

wide range of steady and unsteady flows.

CPU time

R
e

s
id

u
a

l
o

f
E

0 200 400 600 800 1000 1200

10
­9

10
­7

10
­5

10
­3

10
­1

GrowCFL(Ratio1.5)

GrowCFL(Ratio2.0)

Adaptive

Figure 4.9: Boundary-layer flow past a flat plate: Residual convergence history.
The number in the parenthesis indicates the growth rate of the CFL number.

107

Step

R
e

s
id

u
a

l
o

f
E

50 100 150
10

­11

10
­9

10
­7

10
­5

10
­3

10
­1

GrowCFL(Ratio1.5)

GrowCFL(Ratio2.0)

Adaptive

Figure 4.10: Boundary-layer flow past a flat plate:
Residual with respect to the number of steps.

Step

∆
t

50 100 150
0

0.0002

0.0004

0.0006

0.0008
GrowCFL(Ratio1.5)

GrowCFL(Ratio2.0)

Adaptive

Figure 4.11: Boundary-layer flow past a flat plate:
Time step size with respect to the number of steps.

108

Step

C
P

U
 t

im
e

50 100 150
0

500

1000

1500

2000

2500

3000

GrowCFL(Ratio1.5)

GrowCFL(Ratio2.0)

Adaptive

Figure 4.12: Boundary-layer flow past a flat plate:
CPU time with respect to the number of steps.

4.1.4 Taylor-Green vortex

We next apply the adaptive time-stepping strategy to the simulation of the Taylor-

Green vortex, which represents an unsteady flow of decaying vortices. The initial

large vortices break down into smaller-scale vortices and eventually transition into

turbulent flow. The simulations are run under the Mach number M = 0.1, the

Reynolds number Re = 1600, and with periodic boundary conditions on a 323

uniformly distributed mesh using a fourth-order DG polynomial and a fourth-order

ESDIRK (ESDIRK4). Note that, to simulate nearly incompressible conditions, the

flow is taken to be compressible but at a low Mach number of M = 0.1.

Fig. 4.13 presents the evolution of 2µε/ρ, where ε denotes the enstrophy. Accord-

ing to (De Wiart et al., 2014), this variable is a good estimate of the kinetic energy

dissipation rate in the incompressible limit. Fig. 4.14 presents the errors of the dis-

sipation rate as defined by Eq. (18) of (De Wiart et al., 2014). The simulations

are run with the set of values β = 0.1 and β = 0.01 for the adaptive time-stepping

109

strategy and they are also run with ∆t = 0.1 and ∆t = 0.2 for comparison. The

decay curves of 2µε/ρ are in relatively good agreement with each other for all the

simulations. Their differences can be analyzed from the distributions of the errors in

Fig. 4.14. The error with adaptive time-stepping and β = 0.1 is sightly larger than

other errors. The error with β = 0.01 almost coincides with the error of ∆t = 0.1.

Both simulations with β = 0.1 and β = 0.01 are accurate in temporal accuracy

especially compared with the spatial error, which can be roughly estimated by the

deviation from the DNS result (De Wiart et al., 2014).

t

2
µ

ε/
ρ

0 2 4 6 8 10 12 14 16 18
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

DNS

∆t=0.2

∆t=0.1

Adapt (β=0.1)

Adapt (β=0.01)

Figure 4.13: Taylor-Green vortex: Evolution of the enstrophy.

We enforce the local temporal error to be smaller than the spatial error by design,

but there is no reason to introduce a bias towards the spatial error if the main

consideration is simply to minimize the error magnitude. This consideration may

be of relevance for under-resolved turbulent simulations where the spatial truncation

error terms sometimes serve as implicit modeling of the under-resolved scales, which

is referred to as the implicit large eddy simulation model (Grinstein et al., 2007).

110

To avoid the temporal error from influencing the modeling of the under-resolved

scales, a smaller temporal error compared with the spatial error, β = 0.01, is adopted

in implicit LES simulations of turbulent flows in our study. This approach gives

reasonable results as shown in Fig. 4.14 and in Section 4.1.5. The computational

CPU time of the simulations with β = 0.01 is slightly larger than that of simulation

with ∆t = 0.1 (1.27 times) partly because of the additional costs required for the

error estimation.

t

E
rr

o
r

n
o

rm

0 2 4 6 8 10 12 14 16 18
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

∆t=0.2

∆t=0.1

Adapt (β=0.1)

Adapt (β=0.01)

Figure 4.14: Taylor-Green vortex:
Error norms of the kinetic energy dissipation rate.

4.1.5 Turbulent flow over a circular cylinder at Re = 3 900

The widely studied test case of the turbulent flow over a circular cylinder at Re =

3 900 is adopted here to further illustrate the performance of the adaptive strategy

in wall-bounded turbulence simulations. Details of the settings of the test case can

be found in (Yan et al., 2020), which employ 123 360 curved unstructured hexahe-

dral elements and polynomial order of P = 2. The unstructured mesh distributions

111

and the vortex structures behind the cylinder are illustrated in Fig. 4.15. Yan et al.

(2020) adopted a second-order DIRK scheme (DIRK2) with a time step of 0.01,

which corresponds to a CFL number of about 40. The time step was determined

based on some numerical tests on its efficiency and accuracy in (Yan et al., 2020).

Here we simulate the same case using the ESDIRK2, ESDIRK3, and ESDIRK4, to-

gether with the adaptive time-stepping strategy, to demonstrate their performance.

Figure 4.15: Turbulent flow over a circular cylinder:
Q criteria iso-surface (Q = 5) and mesh from (Yan et al., 2020).

112

y

u

­2 ­1 0 1 2
­2.5

­2

­1.5

­1

­0.5

0

0.5

1

1.5

Exp
DIRK2(∆t=0.010)
ESDIRK2(∆t=0.027)

x=1.06

x=2.02

x=1.54

Figure 4.16: Turbulent flow over a circular cylinder:
Comparison of time-averaged velocity distribution. The velocity profiles at

x = 1.54 and x = 2.02 are shifted down by increments of u = −1 and u = −2,
respectively.

The adaptive time steps for a duration corresponding to approximately 19 vortex

shedding periods are shown in Fig. 4.17. Table. 4.1 presents the corresponding

averages, ∆t̄. The averaged time step of ESDIRK2 is approximately 0.027, which is

2.7 times larger than the ∆t = 0.01 of the DIRK2 scheme. The adapted time steps

are larger for the ESDIRK3 and ESDIRK4 with averaged values of 0.043 and 0.127,

respectively, because of the improved resolution of the high-order ESDIRK schemes.

Table. 4.1 summarizes the averaged time steps and CPU time of the simulations.

The results show that the simulations with the adaptive time-stepping strategy

achieve good efficiency with only a small overhead in CPU time partly due to the

extra costs of error estimations. The time-averaged velocity distributions are pre-

sented in Fig. 4.16. The result of ESDIRK2 with ∆t = 0.027 almost coincides with

the result of DIRK2 with ∆t = 0.01, both of which are in good agreement with

experimental results (Parnaudeau et al., 2008). The simulations with adaptive time

113

steps give accurate predictions of the time-averaged quantities.

t

T
im

e
 s

te
p

100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ESDIRK2

ESDIRK3

ESDIRK4

Figure 4.17: Turbulent flow over a circular cylinder:
Adaptive time steps (∆t) of ESDIRK2, ESDIRK3 and ESDIRK4.

Methods ∆t̄ CPU time CPU time ratio
DIRK2 0.010 7.2×102 1.00

ESDIRK2 0.027 7.9×102 1.09
ESDIRK3 0.043 9.8×102 1.36
ESDIRK4 0.127 1.1×103 1.53

Table 4.1: Turbulent flow over a circular cylinder:
Comparisons of averaged time steps and CPU times for different DIRK schemes
with the CPU time ratio defined as the ratio of CPU time between the current

method and the DIRK2 method.

Fig. 4.18 depicts the distribution of elemental ∆t for the ESDIRK2 scheme cor-

responding to the variable ρu on a slice of the flow field. To highlight the elements

with a smaller elemental time step than the global time step, the contour coloring

is cut below the global time step and these elements are presented in white. One

114

important observation is that the relation of Eq. (4.2) is satisfied in the majority of

elements. Only fewer than 1% of the elements (white region), the elemental time

step is smaller than the global time step. The influence of εm in Eq. (4.6) is negligi-

ble in the global time step in this test case, which is only effective in elements with

very small error magnitudes.

Figure 4.18: Turbulent flow over a circular cylinder:
Values of the elemental time steps.

4.1.6 Summary of parameters in the simulations

The tunable parameters in the adaptive strategy are listed in Table. 4.2. The pa-

rameter β controls the relation between the temporal error and spatial error, which

is set to 0.1 for general simulations, but to 0.01 for implicit large-eddy simulations

as discussed in Section 4.1.4. The value r in Eq. (4.8) determines the contribution

of elemental time steps to the global time step. For r = 0, a simple algebraic av-

erage is used. A larger r leads to a larger contribution from elements with larger

115

temporal errors. The term εm in Eq. (4.6) avoids division by zero and also serves as

a threshold values for the error level of interest. The current choice of Eq. (4.7) is

motivated by the truncation error of the time integration process.

Parameter Position Range Current choice
β Eq. (4.2) 0 < β < 1 β = 0.1 or β = 0.01
r Eq. (4.8) r ∈ [0,∞) r = 1
εm Eq. (4.6) Small relative to U Eq. (4.7)

Table 4.2: Summary of tunable parameters in the adaptive strategy.

The current adaptive time-stepping strategy is used together with the adaptive

Newton tolerance introduced in later Section 4.2, because they are both based on

error estimates and there is no extra cost to utilize the adaptive Newton tolerance.

Without using the adaptive strategy, the choices of ∆t and Newton tolerance have to

be changed case by case to achieve a good performance as summarized in Table. 4.3.

These case by case choices are obtained at costs of repeated numerical experiments,

which could be expensive especially when starting the simulations of a new test case.

The comparison of computational efficiency in Table. 4.3 shows that the adaptive

strategy is close to the most efficient choices in all the cases without case by case

optimized parameters, which demonstrates the remarkable generality of the adaptive

strategy.

Test case CFL Newton Tolerance CPU time ratio
Isentropic Vortex (h = 0.2) 1.0 θ2 = 10−3 0.96
Isentropic Vortex (h = 0.05) 0.2 θ2 = 10−7 1.01

Boundary layer 0.1− 5× 104 θ2 = 10−6 1.21
Taylor-Green vortex ≈ 29 θ2 = 10−3 1.27

Circular cylinder ≈ 40 θ2 = 10−3 1.09

Table 4.3: Summary of parameters in different test cases and comparison of
efficiency. The CPU time ratio is defined as the ratio of CPU time using the

adaptive strategy and that using the parameters listed above.

116

4.2 Error-based adaptive Newton tolerance

In (Noventa et al., 2016; Blom et al., 2016), the authors proposed choices of Newton

tolerance that ensure the iteration error should not interfere with the temporal

accuracy. Based on the similar idea and previous error analysis, an adaptive Newton

tolerance τN is proposed by directly relating the Newton tolerance to the temporal

error, that has the following form

τN = η‖et‖, (4.10)

with η = 0.1. However, the relation between the Newton residual vector, R, and

the iteration error, ∆t ēit, introduced into Eq. (4.1) is not trivial. In the following

this relation is estimated to illustrate the assumptions made in choosing the Newton

tolerance of Eq. (4.10).

Considering that

∆t‖ēit‖ = ∆t‖
s∑
i=1

bie
(i)
it ‖ ≤ ∆t

s∑
i=1

bi‖e(i)
it ‖, (4.11)

and
∑s

i=1 bi = 1, a sufficient condition for

∆t‖ēit‖ ≤ η‖et‖, (4.12)

is that

∆t‖e(i)
it ‖ ≤ η‖et‖, (4.13)

which maintains that the iterative error is smaller than the temporal error in Eq. (4.1)

with η < 1.0.

The relation between ∆te
(i)
it and R(i) is estimated in the following. The R(i) can

expressed as

R(i) = N(u
(i)
it)−N(u(i)) = N′(u

(i)
it)
(
u

(i)
it − u(i)

)
+O

(
∆u2

)
, (4.14)

117

where ∆u = u
(i)
it − u(i). Therefore, the iterative error of the solution u

(i)
it can be

approximated as

u
(i)
it − u(i) = (N′)

−1
(
R(i) −O

(
∆u2

))
=
(
I−∆taiiL′δ

(
u

(i)
it

))−1 (
R(i) −O

(
∆u2

))
.

(4.15)

Subtracting Eq. (4.15) by Eq. (2.42) and ignoring high-order terms of O (∆u2),

we can further deduce the relation between ∆teit and R as

∆te
(i)
it =∆t

(
Lδ
(
u

(i)
it

)
− Lδ

(
u(i)
))

=∆tL′δ
(
u

(i)
it

)
(N′)

−1
R(i),

(4.16)

substituting Eq. (4.16) into Eq. (4.13), we get

‖L′δ (I/∆t− aiiL′δ)
−1

R(i)‖ ≤ η‖et‖. (4.17)

The presence of L′δ (I/∆t− aiiL′δ)
−1, which is difficult or expensive to estimate

accurately, makes the relation between ∆teit and R problem dependent and difficult

to evaluate. As ∆t becomes larger L′δ (I/∆t− aiiL′δ)
−1 becomes closer and closer

to a diagonal matrix with diagonal values of 1/aii and at the limit of ∆t → ∞,

Eq. (4.17) becomes

‖R(i)‖ ≤ ηaii‖et‖, (4.18)

with 0.25 < aii < 0.45 in the ESDIRK schemes adopted. When ∆t becomes smaller

and smaller, the entities of the matrix L′δ (I/∆t− aiiL′δ)
−1 will tend to zeros. There-

fore, a even larger Newton tolerance will maintain that Eq. (4.17) is satisfied. Over-

all, Eq. (4.18) appears to provide a good estimate of the convergence upper bound

at least at the limits of ∆t → ∞ and ∆t → 0. Based on numerical experiments,

we observe that the Newton tolerances of Eq. (4.10) seems good enough to main-

tain temporal convergence accuracy, as will be shown in Section 4.2.1. However,

the assumptions made in the derivation of the Newton tolerance may be invalid

118

in some simulations, and if an accurate estimate of Newton tolerance is needed,

L′δ(I/∆t − aiiL′δ)−1 can be estimated using the Jacobian matrix or simply by a

calibration for a specific problem.

Although based on some assumptions, Eq. (4.10) is still much less problem de-

pendent compared with the commonly-used absolute Newton tolerance and relative

Newton tolerance. It will also vary in a more consistent manner with the temporal

error when ∆t changes. Here, for convenience, we rewrite the forms of the absolute

Newton tolerance Eq. (4.19) and the relative Newton tolerance Eq. (4.20)

τN = θ1‖v0‖, (4.19)

τN = θ2‖N(v0)‖. (4.20)

4.2.1 2D isentropic vortex convection

The setup of the isentropic vortex flow has been introduced in Section 4.1.2. This test

is also used to compares the performance of the proposed Newton tolerance, given

by Eq. (4.10) and η = 0.1, with commonly-adopted tolerances given by Eq. (4.19)

using values θ1 = (10−6, 10−10), and Eq. 4.20 using θ2 = (10−3, 10−7). The main

purpose is to show that Eq. (4.10) can give a reasonable tolerance and still maintain

temporal accuracy. In this case, we employ a second-order DG polynomial and a

third-order ESDRIK (ESDIRK3) scheme with mesh size h = 1/3 and three different

time steps: ∆t = 0.05, 0.1, and 0.2.

Fig. 4.19 shows that large values of the parameters θ1 and θ2 in the Newton

tolerances from Eq. (4.19) and Eq. (4.20) lead to a degradation of the order of

temporal accuracy. Small values of these parameters achieve desired temporal order

of accuracy but are not necessarily the best choice or the most efficient choice.

Furthermore, they need to be calibrated for each test case and for each time step

to obtain the best performance because in general the term ∆tēit based on the

tolerances of Eq. (4.19)/Eq. (4.20) does not scale simultaneously with the temporal

119

error. On the other hand as shown in Fig. 4.19, the adaptive Newton tolerance of

Eq. (4.10) achieves the optimal order of accuracy.

To verify that the Newton tolerance is not unnecessarily small, we numerically

seek the maximum Newton tolerance τmax which maintains a difference between

‖en+1
t + ∆tēit‖ and ‖en+1

t ‖ is within 1%. Compared with τmax, the designed adap-

tive Newton tolerance η‖et‖ should be no larger than required tp maintain temporal

accuracy and should not be too small to maintain efficiency. Table. 4.4 shows that

the ratios between the adaptive Newton tolerance and the τmax is of the same order

of 0.1 for different time steps. This indicates that the iterative error scales simulta-

neously with temporal error and η = 0.1 is close to the maximum choice that can

maintain temporal accuracy in this test.

0.05 0.1 0.15 0.2

 t

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

L
2
 e

rr
o
r

 Adaptive (OoA=3.27)

1

=10 - 6

1

=10 - 1 0

2

=10 - 3

2

=10 - 7

Figure 4.19: Isentropic vortex problem:
Effect of different Newton tolerances on temporal accuracy.

120

∆t τmax η‖et‖ η‖et‖/τmax

0.05 1.0×10−5 5.7 ×10−6 0.57
0.1 4.0×10−5 5.5×10−5 0.14
0.2 2.0×10−4 6.3×10−4 0.31

Table 4.4: Isentropic vortex problem:
Comparison of the adaptive Newton tolerance and the maximum Newton tolerance

that maintains temporal accuracy.

4.2.2 2D flow past a circular cylinder

To verify the adaptive Newton tolerance has a more general application, we do the

same test to compare the adaptive tolerance with the ‘numerically tested maximum

Newton tolerance’ τmax in 2D flow past a circular cylinder case. The setup of this

test case has been introduced in Section 2.8.3. A 2D flow past a cylinder is simulated

under free-stream Mach number M = 0.3 and Reynolds number Re = 1200. Based

on the flow field running after 50 periods when the vortex sheds periodically, we do

the following tests. The simulations are run using a second-order DG polynomial

and a fourth-order ESDIRK (ESDIRK4) scheme. We adopt three time step samples

∆t = 0.02, 0.05 and 0.1 and treat the simulation of ∆t = 0.005 as the reference.

After running t = 0.4s, the errors are tested by comparing the values of momentum

(ρu) with that of the reference. τmax is numerically found in the same manner

as Section 4.2.1. Shown in Table. 4.5, the adaptive tolerance is consistent with the

optimal tolerance at all time step samples. Therefore, the adaptive Newton tolerance

strategy has a general applications.

∆t τmax η‖et‖ η‖et‖/τmax

0.02 2.41×10−4 2.84 ×10−5 0.12
0.05 2.40×10−3 5.87×10−4 0.24
0.1 2.42×10−2 4.50×10−3 0.31

Table 4.5: 2D flow past a circular cylinder:
Comparison of the adaptive Newton tolerance and the maximum Newton tolerance

that maintains temporal accuracy.

121

4.3 Accuracy of Jacobian matrix approximation

For the JFNK method introduced in Section 2.4 and Section 2.6, the products

of Jacobian matrix N′(v) and vectors such as the orthogonal bases w during the

Arnoldi process are approximated by a specific finite difference method to save

storage. In most cases, the matrix-vector products N′(v)w use a forward difference

(FD) approximation like

∂N(v)

∂v
w ≈ N(v + εw)−N(v)

ε
. (4.21)

Clearly, other finite difference schemes are also possible, for instance, a centered

difference (CD) approximation is given by

∂N(v)

∂v
w ≈ N(v + εw)−N(v − εw)

2ε
. (4.22)

It was proved by (An et al., 2011) that the matrix-free method using CD has

a second-order accuracy while FD is only first-order accurate. The higher-order

approximation can achieve higher-order accuracy but spends more time calculating

extra Newton residual N. Therefore, it is important to choose the right approxima-

tion to improve efficiency in different problems.

According to (Turner and Walker, 1992), the optimized perturbation parameter

ε for different order finite difference schemes are

ε ≈ ū
1
p̄+1‖v‖, (4.23)

where ū is the machine epsilon of computer systems ū ≈ 10−16 and p̄ is the order

of the finite difference scheme. Therefore, ε used in later tests for FD and CD

approximations are set 10−8 and 4.6416× 10−6, respectively.

122

4.3.1 2D steady-state flat plate boundary layer flow

The setup of this laminar flat plate boundary layer flow has been introduced in

Section 4.1.3. The simulation is run under Mach number M = 0.1 and Reynolds

number Re = 1.6 × 106. This case is selected because the boundary layer flow us-

ing high Reynolds number and highly-stretched meshes is a relatively stiff problem.

Therefore, we can observe the residual history of GMRES and compare the con-

vergence rate more clearly when using FD approximation and CD approximation.

Secondly, we will extract the exact (analytical) Jacobian matrix N′ for comparison

with approximated Jacobian since the computational cost and storage of this case

are acceptable.

The geometry, mesh and boundary conditions are also the same as shown in

Fig. 4.7 and Fig. 4.8a. Unlike the test running to the converged result as shown in

Fig. 4.8b, the initial field for this test is near the converged state shown as Fig. 4.20.

0 0.2 0.4 0.6 0.8 1

u/u

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Numerical solution

Analytical Blasius solution

Figure 4.20: 2D steady-state flat plate boundary layer flow:
Test based on a near converged flow field.

The compressible flow solver uses a second-order DG scheme and a second-order

DIRK scheme. At each stage, the JFNK solver is applied to the nonlinear equation

system. We focus on the resolution of the linear equation system in the first Newton

123

step on the non-converged initial field.

In the first test, two types of restarted GMRES(60) are utilized, where the

matrix-vector products adopt FD approximation and CD approximation respec-

tively. The tolerance of GMRES is set very low thereby reducing the initial residual

norm r0 by a factor of 10−12 so that the whole residual history can be observed.

Fig. 4.21 compares the residual between FD and CD in the cases: (a) without pre-

conditioning, (b) preconditioned by BRJ(1), (c) preconditioned by BRJ(3). Fig. 4.22

compares the residual history of cases with time step ∆t: (a) 4× 10−5, (b) 2× 10−5,

(c) 10−5. The cases using fewer preconditioning iterations and larger time steps are

considered stiffer. It can be seen that in the case without preconditioning and the

case using a larger time step, the stiffest problem, CD is advantageous in reducing

to a lower level residual.

10 0 10 1 10 2

Iteration

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

R
e

s
id

u
a

l

FD approximated Jacobian without preconditioner

FD approximated Jacobian using BRJ(1) preconditioner

FD approximated Jacobian using BRJ(3) preconditioner

CD approximated Jacobian without preconditioner

CD approximated Jacobian using BRJ(1) preconditioner

CD approximated Jacobian using BRJ(3) preconditioner

Figure 4.21: 2D steady-state flat plate boundary layer flow:
Residual history of using different preconditioners.

124

10 0 10 1 10 2

Iteration

10 -1

10 0

10 1

R
e

s
id

u
a

l

FD approximated Jacobian using t=4 10
-5

FD approximated Jacobian using t=2 10
-5

FD approximated Jacobian using t=1 10
-5

CD approximated Jacobian using t=4 10
-5

CD approximated Jacobian using t=2 10
-5

CD approximated Jacobian using t=1 10
-5

Figure 4.22: 2D steady-state flat plate boundary layer flow:
Residual history of using different time steps.

In the second test, we compare the situations after restarting. We still use GM-

RES(60) linear solver and further observe the residual history after restarting. For

comparison, we run the reference case using the exact Jacobian matrix N′ rather

than the approximated Jacobian (Jacobian-free). In other words, when we calcu-

late the matrix-vector products during GMRES process, we compare the following

three approaches: (a) N′(v)w, (b) N(v+εw)−N(v)
ε

, and (c) N(v+εw)−N(v−εw)
2ε

. Shown in

Fig. 4.23, the residual nearly overlap in all the cases before restarting. After restart-

ing, there is a big jump of residual using approximated Jacobian methods because

the searching bases w using the approximated Jacobian (Jacobian-free) method will

gradually lose its orthogonality and influence the convergence after restarting. This

situation is more serious for the case using FD approximation because the approxi-

mation is less accurate. This is why in Nektar++, we default set GMRES(M) not

restart and directly jump into next Newton step after M GMRES iterations.

125

10 0 10 1 10 2

Iteration

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

R
e

s
id

u
a

l

GMRES Residual Comparison

FD approximated Jacobian

CD approximated Jacobian

Exact Jacobian

Figure 4.23: 2D steady-state flat plate boundary layer flow:
GMRES residual using approximated Jacobian and exact Jacobian.

After studying the influence from the accuracy of the approximated Jacobian

matrix, it is obvious that a higher-order approximation can help reach a low-level

residual after the same number of GMRES iterations. However, as mentioned at

the beginning, the higher-order approximation spends more time calculating extra

Newton residual N. The choice of approximation method depends on the stiffness of

the problem. A higher-order approximation is more advantageous in stiff problems.

4.3.2 Turbulent flow over a circular cylinder at Re = 3 900

The 3D turbulent flow over a circular cylinder flow has been introduced in the

previous Section 4.1.5. From previous observation, we found a more accurate ap-

proximation of matrix-vector products can help GMRES reach a lower level residual.

This is advantageous to accelerate convergence in stiff problems. As this case is more

difficult and stiffer to solve with 3.3 million DoFs, the reduction in iteration number

of GMRES is more obvious when using CD approximation. Table 4.6 lists the total

GMRES iterations and CPU time within one time step ∆t = 8 × 10−3. There is a

19% improvement in CPU time when using CD matrix-free scheme.

126

GMRES number CPU time (s)
FD 48 1.9892× 102

CD 25 1.6618× 102

Table 4.6: Turbulent flow over a circular cylinder:
GMRES iterations and CPU time within one time step.

4.4 Control of freezing number of preconditioner

The frequency of updating the preconditioner is another important user-defined

parameter that could influence the efficiency of the solver. The construction of a

preconditioner takes up a large part of the computational cost during simulation.

During intervals of smooth evolution, variables and their derivatives do not change

much and the preconditioner can still remain a good approximation of the Jacobian

matrix. In such situations, there is no need to update the preconditioner frequently.

A commonly-used practice is to freeze the update of the preconditioner every con-

stant number of time steps. However, when the field variables vary greatly such as

flowing across a shock, delayed updates of the preconditioner based on time step will

slow down, or even ruin the simulation. There are also other studies on the freezing

strategies such as (Birken et al., 2008; Birken, 2013) based on ILU decomposition.

But such detection of variations of the Jacobian matrix to trigger the update of the

preconditioner is costly. We study the following strategy to update the precondi-

tioner for every const number of GMRES iterations. Combined with the proposed

time-stepping strategy in Section 4.1, it is expected to automatically adjust the

update frequency of the preconditioner according to the stiffness of problems.

4.4.1 Taylor Green vortex

The Taylor-Green vortex test case has been described in Section 4.1.4. This case

is selected because the stiffness of the problem varies during the evolution. We

compare the above two freezing strategies, one is based on time step and the other

is based on GMRES iterations, using three cases: (a) freezing the preconditioner

127

every 600 GMRES iterations, (b) freezing the preconditioner every 5 time steps, (c)

freezing the preconditioner every 10 time steps.

The simulations are run using a fourth-order DG scheme and a fourth-order

ESDRIK (ESDIRK4). The results are compared by the evolution of enstrophy.

Using the same order of spatial and temporal discretization, Fig. 4.24 shows the

results are similar.

0 2 4 6 8 10 12 14 16 18

t

0

0.002

0.004

0.006

0.008

0.01

0.012

 FrezGMRESNum=600)

 FrezTimeStepNum=5

 FrezTimeStepNum=10

Figure 4.24: Taylor Green vortex: Evolution of the enstrophy.

Shown in Fig. 4.25, at the beginning of smooth evolution, the time step grows

slowly from a small time step. When the vortex develops, the time step becomes

larger and varies. Finally, the time step is large when the flow is close to a con-

verged state. During the development of vortex, the time step varies largely and the

preconditioner is expected to be updated more properly according to the stiffness of

resolution.

128

Figure 4.25: Taylor Green vortex: Time step evolution.

Fig. 4.26 demonstrates the evolution of the CPU cost per time step. The jumps

on the lines are due to the extra cost to construct the preconditioner. As Fig. 4.26

shows, during the first 100 time steps, Case (b) takes more time due to more frequent

updates of the preconditioner (more jumps shown in the blue line). When the time

step becomes larger, some slowly converged situations happened when the update

of the preconditioner is not immediate. Case (c) wastes much time around the 250th

time step. This is the drawback of using the freezing strategy based on time step.

For smooth simulations, frequent update of the preconditioner wastes much time

while for stiff problems, delayed update leads to slow convergence. The strategy

of freezing the preconditioner based on GMRES iterations improves the situation

as the results of case (a) show. The line of CPU time per time step behaves very

average and smooth. As the stiffness becomes larger, the preconditioner is updated

frequently.

129

Figure 4.26: Taylor Green vortex: CPU per ∆ t.

Table. 4.7 compares the total CPU time, in this case, the freezing strategy based

on GMRES iterations is more efficient compared with the other two cases using

freezing strategies based on time step.

One might doubt the number of GMRES iterations to freeze the preconditioner

is also a user-defined parameter. However, it is much less case-dependent than the

freezing strategy based on the time step, because it adjusts the update frequency

automatically based on the stiffness of problems.

Case Total CPU time (s)
Freeze GMRES (a) 7.1450×103

Freeze time step (b) 8.2150×103

Freeze time step (c) 1.3539×104

Table 4.7: Taylor Green vortex: Total CPU time.

130

4.5 Discussion and conclusions

An implicit solver always performs more efficiently than an explicit solver in situ-

ations such as steady flows, low-Mach high-Reynolds-number flows, or simulations

using highly-stretched meshes. However, an implicit solver is more complicated and

involves many user-defined parameters. In this section, we have introduced the

strategies to relax the difficulty of choosing proper parameters in the implicit solver,

which makes the implemented solver more user-friendly and effective.

The adaptive time-stepping strategy introduced in Section 4.1 is based on the

idea of balancing the errors generated within one time step. This strategy maintains

temporal accuracy in the sense that the total error is dominated by the spatial error

and further decreasing the temporal error will not obviously improve the results of

the discrete PDE system, which is verified by numerical experiments in the isentropic

vortex, Taylor-Green vortex and turbulent flow over a circular cylinder problem.

Moreover, this adaptive strategy is a relatively efficient choice because it is around

the maximum value with temporal accuracy, the efficiency of which is tested in

a variety of steady state and unsteady problems, including the isentropic vortex,

Taylor–Green vortex, flat plate boundary layer, and turbulent flow over a circular

cylinder. In all these tests, the adaptive methods are close to the most efficient one

possibly with a small overhead due to extra costs in error estimate.

This adaptive time-stepping strategy performs well in a variety of problems with-

out the need of tuning parameters or requiring a priori knowledge of the flow prop-

erties, thus reducing the necessity for user intervention. This feature will facilitate

the development of automatic CFD simulation pipelines in a variety of application

areas such as, for instance, shape optimization.

The main idea of the adaptive time-stepping is to construct a proper relation

between different errors, which is not limited to the spatial discretization methods,

temporal discretization methods and error estimators adopted in this paper. Pro-

vided proper defined spatial and temporal error estimators, the idea should also

be applicable to other unsteady PDE solvers. Currently, the adaptive method is

131

based on the local errors generated within one time step, which in theory can not

guarantee the global error is still spatial error dominated. This could be improved

by adopting some global error estimators. The adaptive strategy provides an upper

bound of the time step based on the requirement of temporal accuracy. However,

this upper bound does not necessarily maintain simulation stability in challenging

problems. Methods for improving robustness could be considered in the future.

In Section 4.2, based on the similar idea that the iteration error should not

be larger than the temporal error to guarantee temporal accuracy, an automatic

Newton tolerance is developed. Combined with the adaptive time-stepping strategy,

there is no extra computational cost to do the error estimate. This strategy has

been theoretically proved much less problem-dependent than other common choices

of Newton tolerance such as absolute/relative Newton tolerance (Eqs. (2.39) and

(2.40)). This adaptive Newton tolerance has also been numerically-tested in the

benchmark tests of isentropic vortex flow and 2D flow past a circular cylinder that

the Newton tolerance based on the error analysis can be close to the most efficient

choice of Newton tolerance (τmax in Section 4.2). Therefore, this strategy can be

used in a general application.

The studies on the approximation of Jacobian matrices’ influence in Section 4.3

tell us the accuracy of the approximation method influences the orthogonality of

searching bases in GMRES, thus influencing the convergence. The restart of GM-

RES will worsen this situation because the initial residual r0 after restarting is not

accurate. That is why we do not restart in practice. Even though the computational

cost per GMRES iteration using a higher-order approximation such as the centered

difference approximation is larger, the reduction in GMRES iteration number can

balance the extra cost. In the test of 3D turbulent flow past a circular cylinder,

there is 19 percent improvement in efficiency.

In Section 4.4, we compare the common freezing strategy to update the precondi-

tioner based on the number of time step with the proposed freezing strategy based

on the number of GMRES iterations. The proposed strategy can automatically

132

adjust the update frequency of the preconditioner according to the stiffness of the

problem. When the simulation is smoothly evolved, the preconditioner is updated

not so frequently while meeting stiff situations such as shocks, the preconditioner

can be updated immediately as a reaction. By default, we set the period of updat-

ing the preconditioner every 600 GMRES iterations based on the experience. Even

though it is also a user-defined parameter, it is much less problem-dependent than

the freezing strategy based on the time step.

133

Chapter 5

An improved shock-capturing

strategy for high-order DG

compressible flow simulations

We present a novel shock-capturing strategy for high-order compressible Navier-

Stokes solvers, that improves the robustness and efficiency in high-order discontin-

uous Galerkin (DG) simulations using a combination of the best-leading terms of

existing artificial viscosity approaches, which include bulk stress, shear stress, and

Laplacian operators. This strategy includes two components: a modified bulk stress

and an additional shear stress. The majority of the artificial viscosity is based on

the bulk stress modification, which has good performance in capturing sharp shock

profiles in steady simulations (Ramshaw and Mousseau, 1990; Masatsuka, 2013).

Inspired by the paper (Guermond et al., 2011), it mentioned extra density-related

artificial viscous flux is needed in the mass conservation equation for compressible

Navier-Stokes solver to increase stability. And also impressed by Laplacian artificial

viscosity’s good performance in later 1D benchmark tests, we realized the importance

of the density term. We further add extra density-related terms to the momentum

equations and energy equation. This modified version helps dissipate oscillations at

shocks and has negligible dissipation in smooth regions, which is very critical for a

134

robust and efficient compressible solver. We also analyze the use of auxiliary shear-

stress based artificial viscosity to help improve the robustness in simulating strong

shear layers. The performance of the new shock-capturing extension is verified on a

number of benchmark problems.

The shock sensor adopted is briefly introduced in Section 5.1.1. Section 5.1.2

lists the typical forms of artificial viscosity models for comparison, like shear-stress

based artificial viscosity, bulk-stress based artificial viscosity, and Laplacian artificial

viscosity. Section 5.2 and Section 5.3 introduce the main contribution of this chap-

ter which is the proposed new shock-capturing strategy, including the major part

of modified bulk-stress based artificial viscosity dealing with shocks and the auxil-

iary extra shear-stress based artificial viscosity to help improve robustness in shear

stress dominant regions. Results of benchmark tests are presented in Section 5.4,

which also presents the design process of the new shock-capturing strategy through

theoretical analysis and numerical tests. Finally, conclusions are drawn in Section

5.5.

5.1 High-order DG methods with artificial viscos-

ity shock-capturing

This section introduces the various forms of artificial viscosity employed in shock-

capturing methods for the simulations of the compressible Navier-Stokes equations.

Firstly, recall the governing equations Eq.(2.1) are

∂U

∂t
+∇ · F(U) +∇ ·G(U,∇U) = 0, (5.1)

where F and G are the inviscid and viscous fluxes. Because the components of the

viscous term such as viscous tensor τ (Eq. (2.3)) and heat flux q (Eq. (2.4)) are both

functions of the dynamic viscosity µ, bulk viscosity θ and U, we denote the viscous

135

term as

G = G(µ, θ,U). (5.2)

The shock-capturing ability of high-order DG methods is enhanced through the

explicit addition of artificial diffusion flux to the original governing equation. AV

methods mainly include two components, a sensor and a consistent PDE-based

dissipation term. The former is designed to detect if a discontinuity exists in certain

regions. The AV flux determines the form and amount of AV to each equation of

the system. The employed discontinuity sensor and various forms of AV fluxes are

presented in Sections 5.1.1 and 5.1.2, respectively.

5.1.1 Discontinuity sensor

Various kinds of discontinuity sensors have been developed based on the physical

(Ducros et al., 1999) and mathematical (Tonicello et al., 2020) properties of disconti-

nuities. Here, we adopt a sensor based on the decay rate of coefficients in polynomial

modal space. As discussed in (Klöckner et al., 2011), these coefficients should decay

sufficiently quickly for a smooth function. A highest modal decay (MDH) model

(Persson and Peraire, 2006b) was proposed based on this mathematical property of

smooth flows. The sensor is defined as the energy fraction of the highest modes of

a variable f , which is

Sk =
‖f − f̂‖2

‖f‖2
, (5.3)

where f̂ is the polynomial expansion containing the first (P−1) terms in an or-

thonormal polynomial coefficient space and P denotes the polynomial order of the

numerical approximation. The choice of f can be solution components like density,

entropy or characteristic variables (Krivodonova et al., 2004). Here, density is se-

lected as the variable for the sensor as suggested in (Persson and Peraire, 2006b).

Based on the sensor, an artificial viscosity coefficient is defined to determine the

136

amount of artificial viscosity

µ̄av = µmax


0, sk < c0 − ck,

1

2

(
1 + sin(

π(sk − s0)

2ck
)

)
, c0 − ck ≤ sk < c0 + ck,

1, sk ≥ c0 + ck,

(5.4)

µ̂av =
hwmax
P

µ̄av, (5.5)

where the variables sk = logSk, c0 = −cA−4 logP , and µmax, cA and ck are tunable

parameters. Suggested by the optimal parameters achieved using neural networks in

(Discacciati et al., 2020), we set µmax = 0.5, cA = 2.5 and ck = 0.2. h is the element

characteristic size, wmax = Max(c + |u|) is the maximum wave speed. Persson and

Peraire (2006b) proposed this scaling of viscosity coefficient with h
P
wmax to add

appropriate amount of diffusion and achieve sub-cell shock resolutions.

A simple global smoothing mentioned in (Yu and Hesthaven, 2017) is applied to

the artificial coefficient to reduce the numerical oscillations and enhance the viscosity

sub-cell resolution (Discacciati et al., 2020).

The discontinuity sensor determines when and where to add artificial viscosity,

and therefore has a significant impact on the performance in shock-capturing. The

performance of various widely-used sensors is analyzed in more detail in studies such

as (Fernandez et al., 2018; Discacciati et al., 2020).

5.1.2 Artificial viscous flux

An artificial viscosity (dissipation) flux H based on the discontinuity sensor is added

to the original governing equations (5.1) to smear out oscillations near discontinu-

ities, to read
∂U

∂t
+∇ · F +∇ ·G = ∇ ·H, (5.6)

where the artificial viscous flux H is the same formulation as G, namely H =

H(µav, θav,U).

137

Different forms of artificial viscous fluxes have been proposed, including the

Laplacian (Persson and Peraire, 2006b), shear-stress based (or physical) (Klöckner

et al., 2011) and bulk-stress based viscous fluxes (Fernandez et al., 2018).

The Laplacian artificial viscous flux is expressed as

HL
i = µ̂L

∂U

∂xi
, (5.7)

which is a straightforward extension of the artificial viscous flux of scalar equations.

The shear-stress based artificial viscous flux is defined as

HS
i = Hi

(
µS, 0,U

)
, (5.8)

which is the same as the physical diffusion term but with an artificial viscosity

coefficient. µS includes the dimension of density.

The bulk-stress based artificial viscous flux is defined as

HB
i = Hi

(
0, µB,U

)
, (5.9)

which has zero viscosity based on the shear stress but a non-zero viscosity based on

the bulk term. µB includes the dimension of density.

A comparison of the Laplacian and shear-stress based artificial viscosities is

performed in (Persson and Peraire, 2006b), where the authors conclude that shear-

stress based (or physical) flux is superior to the Laplacian one since it is consistent

with the physical diffusion and keeps the enthalpy constant across shocks. However,

it is pointed out in (Klöckner et al., 2011) that the shear-stress based (or physical)

diffusion flux cannot suppress the oscillations in density, which is also observed in our

numerical tests. The bulk viscosity is shown to be suitable for large-eddy simulations

in a DG framework in (Fernandez et al., 2018). However, it shares a similar problem

with the shear-stress based artificial viscosity as still exhibits unwanted oscillations,

which will be shown in later tests.

138

5.2 Development of a modified bulk-stress based

artificial viscosity

An appraisal of the artificial viscous fluxes is conducted in Section 5.2.1. Based on

this analysis, a modified bulk viscosity is proposed in Section 5.2.2 that combines

the good shock-capturing ability and low dissipation in vortex dominated flows of

different artificial viscosity forms.

5.2.1 Appraisal of different artificial viscosity forms

Numerical tests are conducted based on Sod’s shock tube problem to appraise the

discontinuity capturing ability of different forms of artificial viscous fluxes. The

initial condition is

(ρ, u, p) =

 (1.0, 0, 1.0), x < 0

(0.125, 0, 0.1), x < 0
(5.10)

This shock tube problem is a traditional test with shocks, contact discontinuities and

rarefaction waves. A contact discontinuity separates the gases with different pressure

and density in uniform flow. The computational region Ω = [0, 1] is partitioned

using 100 elements. The simulations are run by a solver using a forward Euler

time integration scheme and a fourth-order DG scheme. The results are compared

at t = 0.4s. The results with the three different forms of artificial viscosity in

Section 5.1.2 and the same sensor in Section 5.1.1 are presented in Fig. 5.1. It shows

that there are obvious overshoots near the contact discontinuity and the rarefaction

wave when using shear-stress based artificial viscosity and bulk-stress based artificial

viscosity. In contract, the Laplacian artificial viscosity shows better performance in

suppressing oscillations, which is consistent with the conclusion in (Klöckner et al.,

2011).

139

x

rh
o

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Ref

Shear Stress based Av

Bulk stress based Av

Laplacian Av

Figure 5.1: Sod shock tube (ρ distribution).

5.2.2 Modified bulk-stress based artificial viscosity

Inspired by the paper (Guermond et al., 2011), it mentioned extra density-related

artificial viscous flux is needed in the mass conservation equation for compressible

Navier-Stokes solver to increase stability. We further modify the momentum equa-

tions and energy equation through adding extra density-related terms on the original

form of bulk-stress based artificial viscosity.

HM
i =



µ̂M∂ρ/∂xi

τM
1i

· · ·

τM
di

ukτ
M
ki − qM

i


, (5.11)

140

The consistent heat flux and stresses are defined as

qM
i = − µ̂M

γ − 1

∂p

∂xi
, (5.12)

and

τM
ij = µ̂M∂ρuk

∂xk
δij. (5.13)

where the parameters µ̂M and κ̂M do not include the dimension of density.

The modified artificial viscosity model is developed through comparing the differ-

ences between the original bulk-stress based artificial viscosity model and Laplacian

artificial viscosity model in 1D case. We research different terms’ dissipation per-

formance. In the later section, the modification process will be introduced through

researching the Sod shock tube problem. Laplacian artificial viscosity performs well

in this case. We modify the bulk-stress based artificial viscosity by comparing the

differences in these two models’ forms and finally improve its performance.

5.3 Extra shear-stress based artificial viscosity

Many shock-involving simulations also encounter boundary layer resolutions, where

shear stress is dominant. The adding of bulk viscous flux alone sometimes cannot

maintain stability. Specific artificial viscosity aimed at diffusing oscillations in strong

shear layers is needed to help stabilize the resolution.

Because the shear stress is linked with curl. The auxiliary shear layer sensor is

designed to detect vorticity in the flow and it is defined as

sextra =
h

P

‖∇ × u‖
vmax

, (5.14)

where ‖∇× u‖ is elemental L2 norm of all the curl coefficients within local element

and vmax is the maximum isentropic velocity, defined as the velocity the flow if

all total energy was converted into kinetic energy through an isentropic expansion

141

(Fernandez et al., 2018)

vmax =

√
2

γ − 1
c2 + u2. (5.15)

The multiplication of h
P

1
vmax

ensures the amount of artificial viscosity approxi-

mated by P th order polynomial to resolve a shock profile is only O(h/P) (Persson

and Peraire, 2006b). Further division of vmax to guarantee dimensional consistence.

Next step is to bound the viscosity coefficient sextra within a reasonable range.

The coefficient should be beyond zero and under by an a priori positive value

throughout the simulation to avoid accuracy and stability issues.

The limiting function L proposed by (Fernandez et al., 2018) is utilized to scale

the coefficient

L(sextra, s0, smax) = lmin(lmax(a× (sextra − s0))− smax) + smax, (5.16)

where

lmax(sextra) =
sextra

π
actan(b× sextra) +

sextra

2
− 1

π
actan(b) +

1

2
, (5.17)

lmin(sextra) = sextra − lmax(sextra). (5.18)

The shape of the limiting function is shown as Fig. 5.2. This limiting function

links curl ∇ × u linearly in the working region, which enables directly add extra

dissipation to the positions of strong shear stress. lmax(s) and lmin(s) are smooth

approximations of Max(s, 0) and Min(s, 0), which guarantee the calculation of par-

tial derivatives at turning points. a is the slope of the function. b adjusts the

curvature of the arc around the turning points. s0 is the position of the first turning

point, which is the cutoff of the viscosity coefficient. smax sets the upper bound for

scaled viscosity coefficient.

142

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

S
c
a
le

d

b

a

y=S
m ax

x=S
0

Figure 5.2: Sketch of limiting function L.

The viscosity coefficient should include the dimension of density

µE = ρL(sextra). (5.19)

Using the same form of Eq.(5.8), finally, the extra shear-stress based artificial

viscous flux is defined as

HE
i = Hi

(
µE, 0,U

)
. (5.20)

5.4 Numerical tests

5.4.1 Sod shock tube problem

Since in 1D, the forms of Laplacian artificial viscous flux and bulk-stress based

artificial viscous flux are very similar. Laplacian artificial viscosity performs well in

this case. We research what differences between Laplacian artificial viscosity and

bulk-stress based artificial viscosity change the performance through numerical tests

as follows.

143

In 1D, the form of Laplacian artificial viscous flux is

HL
i = µ̂L∇U = µ̂L


∂ρ
∂x

∂ρu
∂x

1
γ−1

∂p
∂x

+ 1
2
∂ρu2

∂x

 , (5.21)

while the form of bulk-stress based artificial viscous flux is

HB
i = Hi

(
0, µB,U

)
=


0

µ̂Bρ∂u
∂x

uµ̂Bρ∂u
∂x
− qB

x

 , (5.22)

We do the following modifications on the original form of bulk-stress based ar-

tificial viscosity: (a) adding the term ∂ρ
∂x

in continuity equation, (b) replacing the

velocity derivative ρ∂u
∂x

by ∂ρu
∂x

in momentum and energy equations, (c) replacing the

thermal term −qB
x by µ̂B

γ−1
∂p
∂x

in energy equation. Other modifications of combined

adding terms are also tested. Modification (a) overcomes the oscillations compared

with original bulk-stress based artificial viscosity. However, there seems too much

dissipation added near the shock. The result of modification (b) is not shown in

plots because the simulation broke down. The result of modification (c) shows little

artificial viscosity is added leading to large oscillations if replacing the thermal term

alone. Finally, we found the combined modification of adding ∂ρ
∂x

and replacing the

thermal term obviously improves the performance shown in Fig. 5.3 and Fig. 5.4.

The extra oscillations are smoothed at the positions of rarefaction fans and shock.

The final form of modified bulk-stress based artificial viscosity defined in Eq. (5.11)

also replace ρ∂u
∂x

by ∂ρu
∂x

. Even though in 1D, the form of modified bulk-stress based

artificial viscosity is now similar to that of Laplacian artificial viscosity, it is different

in 2D and 3D.

144

x

rh
o

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Ref

Bulk stress based Av

AddDensityTerm

ReplaceThermalTerm

AddDensity&ReplaceThermal

Modified Bulk stress based Av

Figure 5.3: Sod shock tube (ρ distribution).

x

rh
o

­0.4 ­0.2 0 0.2 0.4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Ref

Bulk stress based Av

AddDensityTerm

ReplaceThermalTerm

AddDensity&ReplaceThermal

Modified Bulk stress based Av

Figure 5.4: Sod shock tube (details in ρ distribution).

145

5.4.2 Shu-Osher problem

The Shu-Osher problem is a 1D simulation where a front shock moves within an

inviscid flow, generating frequent density fluctuations. Large gradients in smooth

regions lead the problem challenging for a high-order solver to describe the exact

solution. Despite to further comparing the shock-capturing performance, this bench-

mark is expected to demonstrate if the new shock-capturing model can deal with

oscillations accurately using high-order DG methods.

Consider the computational domain Ω = [−5, 5] partitioned using Ne = 200

elements. Even though the Shu-Osher problem is a 1D case, it is run as a 2D

simulation, where the y-direction boundaries are set as periodic. The simulation

is run to t = 1.8 s using a solver of a fourth-order Runge-Kutta time integration

scheme and a fourth-order DG scheme. The initial condition is set as

(ρ, u, p) =

(3.857143, 2.629369, 10.333333), − 5 ≤ x ≤ −4

(1 + 0.2 sin(5x), 0, 1), − 4 < x ≤ 5
(5.23)

The values of the primitive variables are also set as the initial values at the left-

side BC of x = −5. A pressure outflow is imposed at x = 5 where the pressure is

fixed and a Neumann BC is used for density.

All the artificial viscosity models can capture shocks rightly at positions near x=-

3, x=-2, x=-1. Between these shocks x=-2.5, x=-1.5, from Fig. 5.6, small oscillations

exist when using shear-stress based artificial viscosity and bulk-stress based artificial

viscosity. At these smooth positions, there should not be extra artificial viscosity

added. Therefore, the cause of these oscillations can also be improper amount

of artificial viscosity added at shocks. During the positions of frequent physical

oscillations x ∈ [0.5, 2], modified bulk-stress based artificial viscosity diffuses less

and describes the solution distribution more exactly compared with original bulk-

stress based artificial viscosity. It is even better than Laplacian artificial viscosity.

Because the simulations are actually run in a 2D computational region. The benefit

that the model of modified bulk-stress based artificial viscosity can describe shock

146

shape through adding less diffusion in later 2D cases.

x

rh
o

­4 ­2 0 2 4

1

1.5

2

2.5

3

3.5

4

4.5

Ref

Shear stress based Av

Bulk stress based Av

Laplacian Av

Modified bulk stress based Av

Figure 5.5: Shu-Osher problem (ρ distribution).

x

rh
o

­2 0 2

3

3.5

4

4.5

Ref

Shear stress based Av

Bulk stress based Av

Laplacian Av

Modified bulk stress based Av

Figure 5.6: Shu-Osher problem (details in ρ distribution).

147

5.4.3 2D Riemann problem

The 2D Riemann problem was firstly proposed in (Schulz-Rinne et al., 1993). It is

a square domain with an initial condition that comprises of four regions separated

by two shocks perpendicular to each other and parallel to the axes. During the

further evolution of shock interactions, nearly all the physical phenomena such as

shock reflections, vortex-shock interactions, the spiral formation can be observed.

Therefore, many researchers considered it as a verification test case, such as (Chang

et al., 1995; Zhang and Zheng, 1990) analyzed the configurations from theoretical

point of view and (Han et al., 2011; Rathan and Naga Raju, 2018) simulated it

numerically. We consider the 2D Riemann problem mentioned in (Chiavassa et al.,

2001), which has a modified geometry and is run longer time until t = 0.8s to study

physical behavior at later time. This case is also used to demonstrate why the extra

shear-stress based artificial viscosity introduced in Section. 5.3 is needed and how

we tune the parameters.

The computational region Ω = [0, 1] × [0, 1] is partitioned into [200 × 200] ele-

ments. The initial filed is set as

(ρ, u, v, p)



(1.5, 0, 0, 1.5), 0.8 < x < 1.0; 0.8 < y < 1.0

(0.5323, 1.206, 0.0, 0.3), 0.0 < x < 0.8; 0.8 < y < 1.0

(0.138, 1.206, 1.206, 0.029), 0.0 < x < 0.8; 0.0 < y < 0.8

(0.5323, 0.0, 1.206, 0.3), 0.8 < x < 1.0; 0.0 < y < 0.8

(5.24)

Since the exact solution is unknown, the referred results shown in Fig.5.7 is from

(Ha et al., 2013), using the fifth-order WENO-JS scheme and dense mesh [800 ×

800] elements. A well-developed scheme should simulate the roll-up vortexes near

the jet structure in the center due to the presence of Kelvin-Helmholtz instabilities

such as Fig.5.7d.

148

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.7: 2D Riemann problem: Reference density profiles at t = 0.8s
(a)WENO-JS, (b)WENO-M, (c)WENO-Z, (d)WENO-NS (Ha et al., 2013).

The simulations are run by a compressible Euler solver using a second-order

Runge-Kutta time integration scheme and a fourth-order DG scheme. Fig.5.8a shows

the result using Laplacian artificial viscosity. Compared with reference contour, even

though Laplacian artificial viscosity captures shock at the right positions and smooth

the oscillations around shocks, it also smooths most of the small-scale vortexes.

As shown in Fig. 5.8b, the numerical diffusion of the modified artificial viscosity

model cannot suppress the influence from shear layer interaction. The numerical

vortex explodes from the left bottom part, where shear stress interaction exists.

This is because the simulations are run by an inviscid solver. The shear interaction

region is only diffused by numerical dissipation. The modified bulk-stress based

artificial viscosity does not add any shear stress dissipation. It is challenging for the

model to diffuse the oscillations in this region.

149

(a) Laplacian artificial viscosity
(b) Modified bulk-stress based

artificial viscosity

Figure 5.8: 2D Riemann problem: ρ distribution.

Extra shear-stress based artificial viscosity is designed for a stability issue in such

situations when strong shear stresses exist. The parameters of the limiting function

Eq. 5.16 for extra artificial viscosity are tuned through this test. The parameters

of cutoff point s0 and the slope a play important roles. The former sets the criteria

when to add artificial viscosity and the latter determines the sensitivity to add

artificial viscosity.

First group’s results shown in Fig. 5.9a, Fig. 5.9b and Fig. 5.9c compare simula-

tions using limiting function: (a) a=1, (b) a=2, and (c) a=5. More and more scales

are diffused and when we run the case using a = 100, which is not shown here, the

simulation breaks out due to too much artificial viscosity being added. After a set

of tests, a = 2 is enough for most cases.

Comparing the results between Fig. 5.9b and Fig. 5.9d, the smaller criteria s0

will lead to larger region of artificial viscosity added. s0 = 0.1 is acceptable for most

cases because smaller criteria will lead to smooth many small-scale physical features

in interesting places.

150

(a) a = 1 and s0 = 0.1 (b) a = 2 and s0 = 0.1

(c) a = 5 and s0 = 0.1 (d) a = 2 and s0 = 0.05

Figure 5.9: 2D Riemann problem ρ distribution:
Tunable parameters’ influence.

Fig. 5.10b and Fig. 5.10c demonstrate the modified bulk artificial viscosity dis-

tribution and extra shear-stress based artificial viscosity distribution. The modified

bulk artificial viscosity works at the right place around shocks and the extra artificial

viscosity just works around the vorticity center. Comparing the curl distribution

shown in Fig. 5.10d, the addition of extra artificial viscosity does little influence

on the development of vortexes. The amount of extra artificial viscosity is also ig-

norable compared with that of modified bulk artificial viscosity, around 10 percent.

However, in conclusion, there is not a standard set of parameters for all tests. The

parameters a and s0 are easy to adjust in different problems.

151

(a) Density distribution (b) Artificial viscosity distribution

(c) Extra artificial viscosity (d) Curl distribution

Figure 5.10: 2D Riemann problem: Field distributions.

5.4.4 2D shock vortex interaction

The test is introduced by (Discacciati et al., 2020). It simulates a 2D inviscid

interaction between a strong vortex and a strong shock with complicated physical

phenomena occurring after the interaction. For example, the intensity of vorticity

is strengthened after flowing across the shock. The vortex is also split due to the

compression effect of the shock passage. This case is used to verify that a well-

designed shock-capturing scheme should diffuse rightly at the shock and has little

influence on interesting structures such as the vortical structures.

The computational domain Ω = [0, 2]×[0, 1] is partitioned into [80×40] elements.

Slip, adiabatic wall boundary conditions are applied on the top and bottom surfaces,

while the characteristics-based, non-reflecting boundary conditions are applied at

152

inflow and outflow. A counter-clockwise vortex is initially located upstream a normal

shock at xs = 0.5, and gradually advects through the shock. The initial flow field is

given by

v(r) = vα + u∞~ex, (5.25)

vα = um~eα ·



r

ra
, r ≤ ra

ra
r2
a − r2

b

(
r − r2

b

r

)
, ra ≤ r ≤ rb

0, rb ≤ r

(5.26)

T (r) =


T∞ −

∫ rb

r

1

ra

|vα(r′)|2

r′
dr′, r < rb

0, r ≥ rb

, (5.27)

ρ(r) = ρ∞

(
T (r)

T∞

) 1
γ−1

, (5.28)

p(r) = p∞

(
T (r)

T∞

) γ
γ−1

, (5.29)

where ra = 0.075, rb = 0.175, γ = 1.4, r denotes the distance from vortex center,

u∞, ρ∞, p∞ are inflow velocity magnitude, inflow density and inflow pressure. The

inflow Mach number is M∞ = 1.5. um = 0.6u∞ and x, α represent horizontal and

tangential direction.

The initial field is presented as Fig. 5.11

153

(a) Initial density distribution (b) Initial u magnitude distribution

(c) Initial v magnitude distribution (d) Initial z vorticity distribution

Figure 5.11: 2D shock vortex interaction: Initial field.

The simulations are run using a second-order Runge-Kutta time integration

scheme and a third-order DG scheme from t = 0s to t = 0.0413s after the vortex

flowing across the shock. This simulation is compared with a numerical reference

using a denser mesh [400× 200] and a sixth-order DG scheme.

Compared with the original bulk-stress based artificial viscosity, the simulation

using the modified edition has fewer oscillations even though the big-scale physical

structures are similar. The simulations using shear-stress based artificial viscosity

and bulk-stress based artificial viscosity experience the similar level oscillations.

The results of simulations using Laplacian artificial viscosity and modified bulk-

stress based artificial viscosity are more smooth. Therefore, here not all the results

are shown.

154

(a) Modified bulk-stress based artificial viscosity.

(b) Modified bulk-stress based artificial viscosity
with added shear-stress based artificial viscosity.

(c) Shear stress-based artificial viscosity.

Figure 5.12: 2D shock vortex interaction: Density distribution.

To see the differences between the performance of Laplacian artificial viscosity

and modified bulk-stress based artificial viscosity, we plot the vorticity magnitude

distribution. Compared with the initial vorticity Fig. 5.11d, it can be seen in the

following figures that the intensity of vorticity gets strengthened after flowing cross-

155

ing the shock. The case using modified bulk-stress based artificial viscosity adds less

diffusion and catches more small scales near the vorticity when comparing with the

result of the reference simulation in Fig. 5.13d. However, if adding extra shear-stress

based artificial viscosity, some small scales could be smoothed (shown in Fig. 5.13b).

However, using the tuned set of parameters a = 1 and s0 = 0.1, the result still

demonstrates more details than the result using Laplacian artificial viscosity.

(a) Modified bulk-stress based artificial viscosity.

(b) Modified bulk-stress based artificial viscosity
with added shear-stress based artificial viscosity.

Figure 5.13: 2D shock vortex interaction: Z vorticity.

156

(c) Laplacian artificial viscosity.

(d) Reference using dense mesh.

Figure 5.13: 2D shock vortex interaction: Z vorticity.

The artificial viscosity distributions are as follows: (a) Modified bulk case’ ar-

tificial viscosity (Fig. 5.14a), (b) Modified bulk with added artificial viscosity case’

artificial viscosity (Fig. 5.14b), (c) Modified bulk with added artificial viscosity case’

extra artificial viscosity (Fig. 5.14c), and (d) Laplacian case’s artificial viscosity

(Fig. 5.14d). Comparing Fig. 5.14a and Fig. 5.14b, the distribution of modified bulk

artificial viscosity are the same. It is important to conclude that the adding of extra

artificial viscosity is independent of the adding of modified bulk artificial viscosity.

Therefore, it is easy to adjust a reasonable amount of extra artificial viscosity if

simulations involve strong shear stress interactions.

157

(a) Modified bulk-stress based artificial viscosity.

(b) Modified bulk-stress based artificial viscosity
with added shear-stress based artificial viscosity.

(c) Modified bulk-stress based artificial viscosity with
added shear-stress based artificial viscosity.

Figure 5.14: 2D shock vortex interaction: Artificial viscosity distribution.

158

(d) Laplacian artificial viscosity.

Figure 5.14: 2D shock vortex interaction: Artificial viscosity distribution.

5.5 Discussion and conclusions

We propose a new shock-capturing strategy by combining some of the best features

of bulk-stress based, shear-stress based, and Laplacian artificial viscosities. The

modified bulk-stress based artificial viscosity plays the main role in shock-capturing

with an additional shear-stress based artificial viscosity to help stabilize situations

involving strong shear layers. This strategy provides accurate and sharp shock

profiles in 1D test cases like the Sod shock tube and Shu-Osher problems. The

numerical results in more complex multi-dimensional cases like 2D Riemann and

shock-vortex problems show an adequate amount of artificial viscosity is added near

shocks and relatively negligible dissipation is enforced on resolved vortical structures.

As a result, sharp shock profiles and more small-scale features can be simulated

compared with the results using other types of artificial viscosity.

The modified bulk artificial viscosity is the key component in our shock-capturing

strategy. It enables capture sharp shock profiles but has a negligible impact on

vortical structures. The extra shear-stress based artificial viscosity is not necessary

for most situations and it works independently of modified bulk artificial viscosity.

The amount of extra artificial viscosity only accounts for a small part (less than

10%) compared with modified bulk-stress based artificial viscosity.

159

Chapter 6

Conclusions and future work

Section 6.1 summarizes the contributions of this thesis and Section 6.2 discusses

some potential future work.

6.1 Conclusions

This thesis focuses on developing a solver for simulating unsteady compressible flows

efficiently and accurately within the framework of Nektar++. The developed solver

chooses to employ spectral/hp element methods, specially DG methods, for spa-

tial discretization and implicit schemes, such as BDF/DIRK methods, for temporal

discretization. High-order DG methods can satisfy the accuracy requirement in

high-fidelity compressible simulations, and implicit schemes can potentially achieve

better efficiency since the time step is not constrained by the CFL stability condi-

tion as explicit schemes. The nonlinear system after discretization is solved by the

Jacobian-free Newton-Krylov (JFNK) method. This method combines the use of

a Newton-type nonlinear solver and a Krylov linear solver. The Jacobian matrix-

vector products are approximated in a finite difference way to save storage. To im-

prove the efficiency, a block relaxed Jacobi (BRJ) preconditioner is designed. This

preconditioner is partially matrix-free implementation with a hybrid calculation of

analytical and numerical Jacobian in consideration of the storage requirement and

160

computational cost. After the implementation, the problem of too many user-defined

parameters within the implicit solver is studied. Lastly, to extend the application of

the developed solver to high-speed flow simulations, a novel shock-capturing strategy

is proposed.

The main contributions of this thesis are summarized in the following aspects:

1. An efficient implicit compressible flow solver is developed within Nektar++.

The robustness and efficiency have been tested in various steady/unsteady

compressible flow simulations. In the efficiency comparison test with an ex-

plicit solver in 2D flow past a circular cylinder, the speedup of the implicit

solver is approximately 64 at an unsteady state of Re = 1200 while it is up to

100 even 1000 at a steady state of Re = 40.

2. A systematic framework of adaptive strategies is proposed to overcome the

additional problem that too many user-defined parameters within the implicit

solver. A novel adaptive time-stepping strategy is proposed based on the ob-

servation that in a fixed mesh simulation, when the total error is dominated by

the spatial error, the further decreasing of temporal error through decreasing

the time step cannot help increase the accuracy but only slow down the solver.

An adaptive Newton tolerance is designed based on the assumption that the

iterative error should not overlap the temporal error to guarantee temporal

accuracy. The freezing strategy of updating preconditioner based on GMRES

convergence state is tested more efficient and less problem-dependent. The effi-

ciency of the adaptive solver has been verified in a number of steady/unsteady,

resolved/unresolved cases, such as the 2D isentropic vortex, 2D steady-state

flat plate boundary layer flow, 2D flow past a circular cylinder, Taylor-Green

vortex, and turbulent flow over a circular cylinder. In all the tests, the ef-

ficiency of the adaptive solver is close to the most efficient one with a little

overhead due to the extra cost to do error estimates. The development of this

adaptive solver avoids repeated tests of tunning parameters and provides an

efficient solver for users with an accurate result.

161

3. A novel shock-capturing strategy is designed to help dissipate oscillations at

shocks but have less dissipation in smooth regions. The majority of this strat-

egy considers the density’s influence and modifies the original bulk-stress based

artificial viscosity through adding extra density-related terms. The new shock-

capturing model describes more accurate and sharp shock profiles, shown as

the results of Sod shock tube, Shu-Osher problems, but has less dissipation in

smooth regions shown as the results in shock-vortex interaction problem.

6.2 Future work

There are still many interesting aspects that can improve the performance of the

current solver. We will focus on the following topics in future work

1. A more efficient hp-multigrid solver: From the spectral analysis of p-multigrid

preconditioner, we found the spectral properties of the p-multigrid precondi-

tioner are quite similar to that of its smoother. For example, if direct using

a BJac preconditioner or using BJac as the smoother for a p-multigrid pre-

conditioner, the condition number and eigenvalue distributions of the precon-

ditioned matrices are quite similar. That means the efficiency of an efficient

p-multigrid preconditioner is promising to be optimized better than directly

using its smoother for preconditioning, because some smoothing iterations are

at the lower level. However, the efficiency is expected to be improved more

obviously if combined with the use of h-multigrid. The smoothing of low-

frequency errors using p-multigrid is only restricted to local elements while

h-multigrid will help smooth the errors in the whole computational region.

2. A partially-updated preconditioner: Now the update of the preconditioner

based on the GMRES convergence state avoids the frequent reconstruction of

the preconditioner during a smoothly evolved flow field. However, the whole

preconditioner is needed to be updated, which is still time-consuming. If

the block preconditioner is only updated at those blocks where the flow field

162

evolves dramatically, the efficiency can be further improved.

3. A more robust shock-capturing strategy: The choice of characteristic length

to scale the artificial viscosity is worth studying. Since a complex simulation

involves different physical scales, different characteristic lengths for different

scales’ physical phenomena can help add a more suitable amount of artificial

viscosity.

4. A combined application of p-type adaptivity, the proposed time-stepping adap-

tivity, and the novel shock-capturing strategy: The distributions of local adap-

tive time steps can work as an indicator of under-resolved regions. The ac-

curacy can be selectively increased in the regions of highly vorticity gradients

through p-adaptivity while the regions of sharp discontinuities can be dissi-

pated through the proposed shock-capturing strategy.

163

Bibliography

Alexander, R. (1977). Diagonally implicit Runge-Kutta methods for stiff ODEs.

SIAM Journal on Numerical Analysis, 14(6):1006–1021.

Aliabadi, S., Tu, S., and Watts, M. (2004). An alternative to limiter in discontinous

Galerrkin finite element method for simulation of compressible flows. In 42nd

AIAA Aerospace Sciences Meeting and Exhibit, page 76.

Alzaeili, J. S. and Mazaheri, K. (2006). Bulk viscosity damping for accelerating

convergence of compressible viscous flow solvers. In ECCOMAS CFD 2006:

Proceedings of the European Conference on Computational Fluid Dynamics,

Egmond aan Zee, The Netherlands, September 5-8, 2006. Delft University of Tech-

nology; European Community on Computational Methods .

An, H.-B., Wen, J., and Feng, T. (2011). On finite difference approximation of a

matrix-vector product in the Jacobian-free Newton-Krylov method. Journal of

Computational and Applied Mathematics, 236(6):1399–1409.

Arévalo, C., Söderlind, G., Hadjimichael, Y., and Fekete, I. (2021). Local error

estimation and step size control in adaptive linear multistep methods. Numerical

Algorithms, pages 537–563.

Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. (2002). Unified analysis of

discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical

Analysis, 39(5):1749–1779.

164

Ashby, S., Brown, P., Dorr, M., and Hindmarsh, A. (1995). A linear algebraic

analysis of diffusion synthetic acceleration for the Boltzmann transport equation.

SIAM Journal on Numerical Analysis, 32(1):128–178.

Barter, G. and Darmofal, D. (2007). Shock capturing with higher-order, PDE-based

artificial viscosity. In 18th AIAA Computational Fluid Dynamics Conference,

page 3823.

Barter, G. E. and Darmofal, D. L. (2010). Shock capturing with PDE-based artificial

viscosity for DGFEM: Part I. formulation. Journal of Computational Physics,

229(5):1810–1827.

Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., and Massa, F.

(2016). On the development of an implicit high-order discontinuous Galerkin

method for DNS and implicit LES of turbulent flows. European Journal of

Mechanics-B/Fluids, 55:367–379.

Bassi, F., Crivellini, A., Rebay, S., and Savini, M. (2005). Discontinuous Galerkin

solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equa-

tions. Computers & Fluids, 34(4-5):507–540.

Bassi, F. and Rebay, S. (1997a). A high-order accurate discontinuous finite element

method for the numerical solution of the compressible Navier–Stokes equations.

Journal of Computational Physics, 131(2):267–279.

Bassi, F. and Rebay, S. (1997b). High-order accurate discontinuous finite element

solution of the 2D Euler equations. Journal of Computational Physics, 138(2):251–

285.

Bassi, F. and Rebay, S. (2000). A high order discontinuous Galerkin method for

compressible turbulent flows. In Discontinuous Galerkin Methods, pages 77–88.

Springer.

165

Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., and Savini, M. (1997). A high-order

accurate discontinuous finite element method for inviscid and viscous turboma-

chinery flows. In Proceedings of the 2nd European Conference on Turbomachinery

Fluid Dynamics and Thermodynamics, pages 99–109. Antwerpen, Belgium.

Bastian, P., Müller, E. H., Müthing, S., and Piatkowski, M. (2019). Matrix-free

multigrid block-preconditioners for higher order discontinuous Galerkin discreti-

sations. Journal of Computational Physics, 394:417–439.

Benzi, M. (2002). Preconditioning techniques for large linear systems: A survey.

Journal of Computational Physics, 182(2):418–477.

Berezin, I. and Zhidkov, N. (1962). Computational methods. Metody vychislenii, 2.

Bijl, H., Carpenter, M. H., Vatsa, V. N., and Kennedy, C. A. (2002). Implicit

time integration schemes for the unsteady compressible Navier-Stokes equations:

Laminar flow. Journal of Computational Physics, 179(1):313–329.

Birken, P. (2013). Numerical Methods for the Unsteady Compressible Navier-Stokes

Equations. PhD thesis, Kassel, Universität, FB 10, Mathematik und Naturwis-

senschaften, Institut für Mathematik.

Birken, P., Gassner, G., Haas, M., and Munz, C.-D. (2013). Preconditioning for

modal discontinuous Galerkin methods for unsteady 3D Navie-Stokes equations.

Journal of Computational Physics, 240:20–35.

Birken, P., Tebbens, J. D., and Meister (2008). Preconditioner updates applied to

CFD model problems. Applied Numerical Mathematics, 58(11):1628–1641.

Blom, D. S., Birken, P., Bijl, H., Kessels, F., Meister, A., and van Zuijlen, A. H.

(2016). A comparison of Rosenbrock and ESDIRK methods combined with it-

erative solvers for unsteady compressible flows. Advances in Computational

Mathematics, 42(6):1401–1426.

166

Bolemann, T., Beck, A., Flad, D., Frank, H., Mayer, V., and Munz, C.-D. (2015).

High-order discontinuous Galerkin schemes for large-eddy simulations of moderate

Reynolds number flows. In IDIHOM: Industrialization of high-order methods-a

top-down approach, pages 435–456. Springer.

Bonfiglioli, A. and Paciorri, R. (2014). Convergence analysis of shock-capturing and

shock-fitting solutions on unstructured grids. AIAA Journal, 52(7):1404–1416.

Braess, D. (1982). The convergence rate of a multigrid method with Gauss-Seidel re-

laxation for the Poisson equation. In Multigrid methods, pages 368–386. Springer.

Brandt, A. (1977). Multi-level adaptive solutions to boundary-value problems.

Mathematics of Computation, 31(138):333–390.

Brandt, A. (1982). Guide to multigrid development. In Multigrid methods, pages

220–312. Springer.

Brezzi, F., Manzini, G., Marini, D., Pietra, P., and Russo, A. (1999). Discontinuous

finite elements for diffusion problems. Atti Convegno in onore di F. Brioschi

(Milano 1997), Istituto Lombardo, Accademia di Scienze e Lettere, 1999:197–217.

Brown, P. N. and Saad, Y. (1990). Hybrid Krylov methods for nonlinear systems of

equations. SIAM Journal on Scientific and Statistical Computing, 11(3):450–481.

Bu, S., Jung, W., and Kim, P. (2016). An error embedded Runge-Kutta method for

initial value problems. Kyungpook Mathematical Journal, 56(2):311–327.

Bücker, H. M., Pollul, B., and Rasch, A. (2009). On cfl evolution strategies for

implicit upwind methods in linearized euler equations. International Journal for

Numerical Methods in Fluids, 59(1):1–18.

Bucker, H. M., Pollul, B., and Rasch, A. (2009). On CFL evolution strategies for

implicit upwind methods in linearized Euler equations. International Journal for

Numerical Methods in Fluids, 59(1):1–18.

167

Burrage, K. and Erhel, J. (1998). On the performance of various adaptive precon-

ditioned GMRES strategies. Numer. Linear Algebra Appl., 5(2):101–121.

Burrage, K. and Petzold, L. (1990). On order reduction for Runge–Kutta methods

applied to differential/algebraic systems and to stiff systems of ODEs. SIAM

journal on numerical analysis, 27(2):447–456.

Butcher, J. C. (1964). Implicit Runge-Kutta processes. Mathematics of

Computation, 18(85):50–64.

Butcher, J. C. (2016). Numerical methods for ordinary differential equations. Wiley,

third edition.

Butcher, J. C. and Diamantakis, M. (1998). DESIRE: diagonally extended singly

implicit Runge–Kutta effective order methods. Numerical Algorithms, 17(1):121–

145.

Campbell, S. L., Ipsen, I. C. F., Kelley, C. T., and Meyer, C. D. (1996). GMRES

and the minimal polynomial. BIT Numerical Mathematics, 36(4):664–675.

Cantwell, C., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De

Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., Jordi, B., Xu, H., Mo-

hamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R., and Sherwin,

S. (2015). Nektar++: An open-source spectral/hp element framework. Computer

Physics Communications, 192:205–219.

Canuto, C., editor (2006). Spectral methods: fundamentals in single domains.

Springer-Verlag.

Cassinelli, A., Montomoli, F., Adami, P., and Sherwin, S. J. (2018). High fidelity

spectral/hp element methods for turbomachinery. In Turbo Expo: Power for

Land, Sea, and Air, volume 51012, page V02CT42A020. American Society of

Mechanical Engineers.

168

Chan, T. F. and Jackson, K. R. (1984). Nonlinearly preconditioned Krylov sub-

space methods for discrete Newton algorithms. SIAM Journal on Scientific and

Statistical Computing, 5(3):533–542.

Chang, T., Chen, G.-Q., and Yang, S. (1995). On the 2D Riemann problem for

the compressible Euler equations I. Interaction of shocks and rarefaction waves.

Discrete & Continuous Dynamical Systems, 1(4):555.

Chapman, A., Saad, Y., and Wigton, L. (2000). High-order ILU preconditioners for

CFD problems. International Journal for Numerical Methods in Fluids, 33(6):767–

788.

Cherednichenko, S., Frey, C., and Ashcroft, G. (2012). On the application of the Dis-

continuous Galerkin method to turbomachinery flows. In 6th European Congress

on Computational Methods in Applied Sciences and Engineering, pages 2359–

2375.

Chiavassa, G., Donat, R., and Marquina, A. (2001). Fine-mesh numerical simula-

tions for 2D Riemann problems with a multilevel scheme. In Hyperbolic problems:

theory, numerics, applications, pages 247–256. Springer.

Chudanov, V., Aksenova, A., Goreinov, S., Makarevich, A., and Pervichko, V.

(2014). Validation of a new method for solving of CFD problems in nuclear engi-

neering using petascale HPC. In International Conference on Nuclear Engineering,

volume 45943, page V004T10A009. American Society of Mechanical Engineers.

Cockburn, B. (1998). An introduction to the discontinuous Galerkin method

for convection-dominated problems. In Advanced numerical approximation of

nonlinear hyperbolic equations, pages 150–268. Springer.

Cockburn, B. and Dawson, C. (1999). Some extensions of the local discontinu-

ous Galerkin method for convection-diffusion equations in multidimensions. The

Mathematics of Finite Elements and Applications.

169

Cockburn, B., Hou, S., and Shu, C.-W. (1990). The Runge-Kutta local projec-

tion discontinuous Galerkin finite element method for conservation laws. IV. The

multidimensional case. Mathematics of Computation, 54(190):545–581.

Cockburn, B., Lin, S.-Y., and Shu, C.-W. (1989). TVB Runge-Kutta local pro-

jection discontinuous Galerkin finite element method for conservation laws III:

One-dimensional systems. Journal of Computational Physics, 84(1):90–113.

Cockburn, B. and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontin-

uous Galerkin finite element method for conservation laws. II. General framework.

Mathematics of Computation, 52(186):411–435.

Cockburn, B. and Shu, C.-W. (1991). The Runge-Kutta local projection-

discontinuous-Galerkin finite element method for scalar conservation laws.

ESAIM: Mathematical Modelling and Numerical Analysis, 25(3):337–361.

Cockburn, B. and Shu, C.-W. (1998a). The local discontinuous Galerkin method

for time-dependent convection-diffusion systems. SIAM Journal on Numerical

Analysis, 35(6):2440–2463.

Cockburn, B. and Shu, C.-W. (1998b). The Runge-Kutta discontinuous Galerkin

method for conservation laws V: multidimensional systems. Journal of

Computational Physics, 141(2):199–224.

Cockburn, B. and Shu, C.-W. (2001). Runge–Kutta discontinuous Galerkin methods

for convection-dominated problems. Journal of Scientific Computing, 16(3):173–

261.

Cook, A. W. (2013). Effects of heat conduction on artificial viscosity methods for

shock capturing. Journal of Computational Physics, 255:48–52.

Cook, A. W. and Cabot, W. H. (2005). Hyperviscosity for shock-turbulence inter-

actions. Journal of Computational Physics, 203(2):379–385.

Datta, B. N. (2010). Numerical linear algebra and applications. SIAM, 2nd edition.

170

De Laborderie, J., Duchaine, F., Gicquel, L., Vermorel, O., Wang, G., and Moreau,

S. (2018). Numerical analysis of a high-order unstructured overset grid method for

compressible LES of turbomachinery. Journal of Computational Physics, 363:371–

398.

De Wiart, C. C., Hillewaert, K., Duponcheel, M., and Winckelmans, G. (2014).

Assessment of a discontinuous Galerkin method for the simulation of vortical

flows at high Reynolds number. International Journal for Numerical Methods in

Fluids, 74(7):469–493.

DeCougny, H. L., Devine, K. D., Flaherty, J. E., Loy, R., Özturan, C., and Shep-

hard, M. S. (1994). Load balancing for the parallel adaptive solution of partial

differential equations. Applied Numerical Mathematics, 16(1-2):157–182.

Dennis Jr, J. E. and Schnabel, R. B. (1996). Numerical methods for unconstrained

optimization and nonlinear equations. SIAM.

Diosady, L. and Darmofal, D. (2007). Discontinuous Galerkin solutions of the

Navier-Stokes equations using linear multigrid preconditioning. In 18th AIAA

Computational Fluid Dynamics Conference, page 3942.

Diosady, L. T. and Darmofal, D. L. (2009). Preconditioning methods for discontinu-

ous Galerkin solutions of the Navier–Stokes equations. Journal of Computational

Physics, 228(11):3917–3935.

Discacciati, N., Hesthaven, J. S., and Ray, D. (2020). Controlling oscillations in high-

order discontinuous Galerkin schemes using artificial viscosity tuned by neural

networks. Journal of Computational Physics, page 109304.

Doleǰśı, V. and Feistauer, M. (2015). Discontinuous Galerkin Method, volume 48 of

Springer. Springer International Publishing.

Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., and

171

Poinsot, T. (1999). Large-eddy simulation of the shock/turbulence interaction.

Journal of Computational Physics, 152(2):517–549.

Edalatpour, V., Hezari, D., and Khojasteh Salkuyeh, D. (2015). Accelerated general-

ized SOR method for a class of complex systems of linear equations. Mathematical

Communications, 20(1):37–52.

Eisenstat, S. and Walker, H. (1996). Choosing the forcing terms in an inexact

Newton method. SIAM Journal on Scientific Computing, 17(1):16–32.

Evans, D. J. (1968). The use of preconditioning in iterative methods for solving linear

equations with symmetric positive definite matrices. IMA Journal of Applied

Mathematics, 4(3):295–314.

Feistauer, M., Feistauer, M., Felcman, J., and Straškraba, I. (2003). Mathematical

and computational methods for compressible flow. Oxford University Press.

Fernandez, P., Nguyen, C., and Peraire, J. (2018). A physics-based shock captur-

ing method for unsteady laminar and turbulent flows. In 2018 AIAA Aerospace

Sciences Meeting, Kissimmee, Florida. American Institute of Aeronautics and As-

tronautics.

Fernandez, P., Nguyen, N., and Peraire, J. (1994). Physics capturing of discontin-

uous Galerkin methods for under-resolved turbulence simulations. J. Comput.

Phys., In preparation for submission.

Ferracina, L. and Spijker, M. (2008). Strong stability of singly-diagonally-implicit

Runge–Kutta methods. Applied Numerical Mathematics, 58(11):1675–1686.

Ferrand, R., Galtier, S., Sahraoui, F., and Federrath, C. (2020). Compressible tur-

bulence in the interstellar medium: new insights from a high-resolution supersonic

turbulence simulation. The Astrophysical Journal, 904(2):160.

Gautier, R., Biau, D., and Lamballais, E. (2013). A reference solution of the flow

over a circular cylinder at Re=40. Computers & Fluids, 75:103–111.

172

Ghai, A., Lu, C., and Jiao, X. (2019). A comparison of preconditioned Krylov

subspace methods for largescale nonsymmetric linear systems. Numerical Linear

Algebra with Applications, 26(1):e2215.

Gholami, A., Malhotra, D., Sundar, H., and Biros, G. (2016). FFT, FMM, or

multigrid? A comparative study of state-of-the-art Poisson solvers for uniform

and nonuniform grids in the unit cube. SIAM Journal on Scientific Computing,

38(3):C280–C306.

Glowinski, R., Keller, H., and Reinhart, L. (1985). Continuation-conjugate gradient

methods for the least squares solution of nonlinear boundary value problems.

SIAM Journal on Scientific and Statistical Computing, 6(4):793–832.

Greenbaum, A. (1997). Iterative methods for solving linear systems. Frontiers in

applied mathematics. SIAM.

Grinstein, F. F., Margolin, L. G., and Rider, W. J. (2007). Implicit Large Eddy

Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.

Guermond, J.-L., Pasquetti, R., and Popov, B. (2011). Entropy viscosity method

for nonlinear conservation laws. Journal of Computational Physics, 230(11):4248–

4267.

Gustafsson, K. (1991). Control theoretic techniques for stepsize selection in explicit

Runge-Kutta methods. ACM Transactions on Mathematical Software (TOMS),

17(4):533–554.

Gustafsson, K. (1992). Control of error and convergence in ODE solvers. PhD thesis,

Lund University.

Gustafsson, K. (1994). Control-theoretic techniques for stepsize selection in implicit

Runge-Kutta methods. ACM Transactions on Mathematical Software (TOMS),

20(4):496–517.

173

Ha, Y., Ho Kim, C., Ju Lee, Y., and Yoon, J. (2013). An improved weighted

essentially non-oscillatory scheme with a new smoothness indicator. Journal of

Computational Physics, 232(1):68–86.

Han, E., Li, J., and Tang, H. (2011). Accuracy of the adaptive GRP scheme

and the simulation of 2D Riemann problems for compressible Euler equations.

Communications in Computational Physics, 10(3):577–609.

Hartmann, R. (2013). Higher-order and adaptive discontinuous Galerkin methods

with shock-capturing applied to transonic turbulent delta wing flow. International

Journal for Numerical Methods in Fluids, 72(8):883–894.

Hartmann, R. and Houston, P. (2002). Adaptive discontinuous Galerkin finite el-

ement methods for the compressible Euler equations. Journal of Computational

Physics, 183(2):508–532.

Hartmann, R. and Houston, P. (2006a). Symmetric interior penalty DG methods for

the compressible Navier–Stokes equations I: Method formulation. International

Journal of Numerical Analysis & Modeling, 1(2):1–20.

Hartmann, R. and Houston, P. (2006b). Symmetric interior penalty DG methods

for the compressible Navier–Stokes equations II: Goal–oriented a posteriori error

estimation. International Journal of Numerical Analysis & Modeling, 3(2):141–

162.

Higueras, I. and Roldán, T. (2018). Order barrier for low-storage DIRK methods

with positive weights. Journal of Scientific Computing, 75(1):395–404.

Hillewaert, K. (2013). Development of the discontinuous Galerkin method for

high-resolution, large scale CFD and acoustics in industrial geometries. PhD

Thesis, Univ. Louvain.

Hirsch, C., Hillewaert, K., Hartmann, R., Couaillier, V., Boussuge, J.-F., Chalot,

174

F., Bosniakov, S., and Haase, W. (2021). TILDA: Towards industrial LES/DNS

in aeronautics. Applied Science, 148(21):10202.

Hogben, L. (2006). Handbook of linear algebra. CRC press.

Holst, K. R., Glasby, R. S., and Bond, R. B. (2020). On the effect of temporal error

in high-order simulations of unsteady flows. Journal of Computational Physics,

402:108989.

Houston, P. (1999). Discontinuous Galerkin FEMs for CFD: A posteriori error

estimation and adaptivity. University of Nottingham, page 202.

huu Cong, N. (1993). A-stable diagonally implicit Runge-Kutta-Nyström methods

for parallel computers. Numerical Algorithms, 4(2):263–281.

I l’in, V. (2021). Iterative preconditioned methods in Krylov spaces: Trends

of the 21st century. Computational Mathematics and Mathematical Physics,

61(11):1750–1775.

Ipsen, I. C. and Meyer, C. D. (1998). The idea behind Krylov methods. The

American Mathematical Monthly, 105(10):889–899.

Jameson, A. (2017). Origins and further development of the jameson–schmidt–turkel

scheme. AIAA Journal, 55(5):1487–1510.

Jameson, A. and Mavriplis, D. (1986). Finite volume solution of the two-dimensional

Euler equations on a regular triangular mesh. AIAA Journal, 24(4):611–618.

Johnsen, E., Larsson, J., Bhagatwala, A. V., Cabot, W. H., Moin, P., Olson, B. J.,

Rawat, P. S., Shankar, S. K., Sjögreen, B., Yee, H. C., et al. (2010). Assessment

of high-resolution methods for numerical simulations of compressible turbulence

with shock waves. Journal of Computational Physics, 229(4):1213–1237.

Jörgensen, J. B., Kristensen, M. R., and Thomsen, P. G. (2018). A family of ESDIRK

integration methods. arXiv:1803.01613.

175

Kalkote, N., Assam, A., and Eswaran, V. (2019). Acceleration of later convergence

in a density-based solver using adaptive time stepping. AIAA Journal, 57(1):352–

364.

Karniadakis, G. and Sherwin, S. (2013). Spectral/hp element methods for

computational fluid dynamics. Oxford University Press.

Ke, C., Ablowitz, M., Olver, P., Davis, S., Iserles, A., Ockendon, J., and Hinch,

E. (2005). Matrix preconditioning techniques and applications. Mathematical

Physics and Mathematics.

Kelley, C. T. (1995). Iterative methods for linear and nonlinear equations. SIAM.

Kelley, C. T. (2003). Solving nonlinear equations with Newton’s method. SIAM.

Kennedy, C. and Carpenter, M. (2016). Diagonally implicit Runge-Kutta methods

for ordinary differential equations. A Review. NASA Report. Langley research

center. Hampton VA, 23681:162.

Kennedy, C. A. and Carpenter, M. H. (2019). Diagonally implicit Runge-Kutta

methods for stiff ODEs. Applied Numerical Mathematics, 146:221–244.

Kennedy, C. A., Carpenter, M. H., and Lewis, R. M. (2000). Low-storage, explicit

Runge–Kutta schemes for the compressible Navier–Stokes equations. Applied

Numerical Mathematics, 35(3):177–219.

Kincaid, D., Kincaid, D. R., and Cheney, E. W. (2009). Numerical analysis:

mathematics of scientific computing, volume 2. American Mathematical Soc.

Klöckner, A., Warburton, T., and Hesthaven, J. S. (2011). Viscous shock capturing

in a time-explicit discontinuous Galerkin method. Mathematical Modelling of

Natural Phenomena, 6(3):57–83.

Knoll, D. A. and Keyes, D. E. (2004). Jacobian-free Newton-Krylov methods:

A survey of approaches and applications. Journal of Computational Physics,

193(2):357–397.

176

Kovac, J. and Strang, G. (2005). The fundamentals and advantages of multi-grid

techniques. SIAM Journal on Numerical Analysis, 101(1):12–126.

Krivodonova, L. (2007). Limiters for high-order discontinuous Galerkin methods.

Journal of Computational Physics, 226(1):879–896.

Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., and Flaherty, J. E. (2004).

Shock detection and limiting with discontinuous Galerkin methods for hyperbolic

conservation laws. Applied Numerical Mathematics, 48(3-4):323–338.

Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., Van der Ven, H., and Sorensen,

K. (2010). ADIGMA–A European Initiative on the Development of Adaptive

Higher-Order Variational Methods for Aerospace Applications: Results of a

Collaborative Research Project Funded by the European Union, 2006-2009, vol-

ume 113. Springer.

Kvrn, A. (2004). Singly diagonally implicit Runge–Kutta methods with an explicit

first stage. BIT Numerical Mathematics, 44(3):489–502.

Landmann, B., Kessler, M., Wagner, S., and Krämer, E. (2008). A parallel, high-

order discontinuous Galerkin code for laminar and turbulent flows. Computers &

Fluids, 37(4):427–438.

Larsen, E. W. (1982). Unconditionally stable diffusion-synthetic acceleration meth-

ods for the slab geometry discrete ordinates equations. Part I: Theory. Nuclear

Science and Engineering, 82(1):47–63.

Larsson, J., Lele, S., and Moin, P. (2007). Effect of numerical dissipation on the

predicted spectra for compressible turbulence. Annual Research Briefs, pages

47–57.

Lesaint, P. and Raviart, P.-A. (1974). On a finite element method for solving the neu-

tron transport equation. Publications mathématiques et informatique de Rennes,

32(S4):1–40.

177

LeVeque, R. J. (1992). Numerical methods for conservation laws, volume 132.

Springer.

Li, R. and Saad, Y. (2013). GPU-accelerated preconditioned iterative linear solvers.

The Journal of Supercomputing, 63(2):443–466.

Lian, C., Xia, G., and Merkle, C. L. (2009). Solution-limited time stepping to

enhance reliability in CFD applications. Journal of Computational Physics,

228:4836–4857.

Liepmann, H. W. and Roshko, A. (2001). Elements of gasdynamics. Courier Cor-

poration.

Lo, S.-C., Blaisdell, G., and Lyrintzis, A. (2010). High-order shock capturing

schemes for turbulence calculations. International Journal for Numerical Methods

in Fluids, 62(5):473–498.

Lomtev, I., Quillen, C., and Karniadakis, G. (1998). Spectral/hp methods for viscous

compressible flows on unstructured 2D meshes. Journal of Computational Physics,

144(2):325–357.

Loppi, N., Witherden, F., Jameson, A., and Vincent, P. (2019). Locally adaptive

pseudo-time stepping for high-order flux reconstruction. Journal of Computational

Physics, 399:108913.

Luo, H., Baum, J. D., and Löhner, R. (2006). A p-multigrid discontinuous Galerkin

method for the Euler equations on unstructured grids. Journal of Computational

Physics, 211(2):767–783.

Magolu monga Made, M., Beauwens, R., and Warzée, G. (2000). Precondition-

ing of discrete Helmholtz operators perturbed by a diagonal complex matrix.

Communications in Numerical Methods in Engineering, 16(11):801–817.

178

Mani, A., Larsson, J., and Moin, P. (2009). Suitability of artificial bulk viscosity for

large-eddy simulation of turbulent flows with shocks. Journal of Computational

Physics, 228(19):7368–7374.

Marty, J., Lantos, N., Michel, B., and Bonneau, V. (2015). LES and hybrid

RANS/LES simulations of turbomachinery flows using high order methods. In

Turbo Expo: Power for Land, Sea, and Air, volume 56659, page V02CT44A003.

American Society of Mechanical Engineers.

Masatsuka, K. (2013). I do Like CFD, vol. 1, volume 1. Lulu.com.

Mavriplis, D. J. (1998). Multigrid strategies for viscous flow solvers on anisotropic

unstructured meshes. Journal of Computational Physics, 145(1):141–165.

Mazaheri, K. and Roe, P. L. (2003). Bulk viscosity damping for accelerating con-

vergence of low Mach number Euler solvers. International journal for numerical

methods in fluids, 41(6):633–652.

Meisrimel, P. and Birken, P. (2020). Goal oriented time adaptivity using local error

estimates. Algorithms, 13(5):113.

Melson, N. D., Atkins, H. L., and Sanetrik, M. D. (1993). Time-accurate Navier-

Stokes calculations with multigrid acceleration. In The Sixth Copper Mountain

Conference on Multigrid Methods, Part 2.

Mengaldo, G. (2015). Discontinuous spectral/hp element methods: development,

analysis and applications to compressible flows. PhD thesis, Imperial college

London.

Moro, D., Nguyen, N. C., and Peraire, J. (2016). Dilation-based shock capturing

for high-order methods. International Journal for Numerical Methods in Fluids,

82(7):398–416.

179

Nachtigal, N. M., Reddy, S. C., and Trefethen, L. N. (1992). How fast are nonsym-

metric matrix iterations? SIAM Journal on Matrix Analysis and Applications,

13(3):778–795.

Nguyen, C. and Peraire, J. (2011). An adaptive shock-capturing HDG method for

compressible flows. In 20th AIAA Computational Fluid Dynamics Conference,

page 3060.

Nguyen, N. C., Peraire, J., and Cockburn, B. (2009). An implicit high-order hy-

bridizable discontinuous Galerkin method for nonlinear convection–diffusion equa-

tions. Journal of Computational Physics, 228(23):8841–8855.

Nigro, A., Ghidoni, A., Rebay, S., and Bassi, F. (2014). Modified extended BDF

scheme for the discontinuous Galerkin solution of unsteady compressible flows.

International Journal for Numerical Methods in Fluids, 76(9):549–574.

Noventa, G., Massa, F., Bassi, F., Colombo, A., Franchina, N., and Ghidoni, A.

(2016). A high-order discontinuous Galerkin solver for unsteady incompressible

turbulent flows. Computers & Fluids, 139:248–260.

Noventa, G., Massa, F., Rebay, S., Bassi, F., and Ghidoni, A. (2020). Robust-

ness and efficiency of an implicit time-adaptive discontinuous Galerkin solver for

unsteady flows. Computers & Fluids, 204:104529.

Oberkampf, W. L. and Roy, C. J. (2010). Verification and validation in scientific

computing. Cambridge University Press.

Olson, B. J. and Lele, S. K. (2013). Directional artificial fluid properties for com-

pressible large-eddy simulation. Journal of Computational Physics, 246:207–220.

Owren, B. and Zennaro, M. (1992). Derivation of efficient, continuous, explicit

Runge–Kutta methods. SIAM Journal on Scientific and Statistical Computing,

13(6):1488–1501.

180

Pan, Y., Yan, Z.-G., Peiró, J., and Sherwin, S. J. (2021). Development of a balanced

adaptive time-stepping strategy based on an implicit JFNK-DG compressible flow

solver. Communications on Applied Mathematics and Computation, pages 1–30.

Parnaudeau, P., Carlier, J., Heitz, D., and Lamballais, E. (2008). Experimental and

numerical studies of the flow over a circular cylinder at Reynolds number 3900.

Physics of Fluids, 20(8):085101.

Patera, A. T. (1984). A spectral element method for fluid dynamics: laminar flow

in a channel expansion. Journal of Computational Physics, 54(3):468–488.

Peraire, J. and Persson, P.-O. (2008). The compact discontinuous Galerkin (CDG)

method for elliptic problems. SIAM Journal on Scientific Computing, 30(4):1806–

1824.

Persson, P.-O. (2009). Scalable parallel Newton-Krylov solvers for discontinuous

Galerkin discretizations. In 47th AIAA Aerospace Sciences Meeting including

The New Horizons Forum and Aerospace Exposition, page 606.

Persson, P.-O. and Peraire, J. (2006a). An efficient low memory implicit DG algo-

rithm for time dependent problems. In 44th AIAA Aerospace Sciences Meeting

and Exhibit, page 113.

Persson, P.-O. and Peraire, J. (2006b). Sub-cell shock capturing for discontinuous

Galerkin methods. In 44th AIAA Aerospace Sciences Meeting and Exhibit.

Persson, P.-O. and Peraire, J. (2008). Newton-GMRES preconditioning for discon-

tinuous Galerkin discretizations of the Navier-Stokes equations. SIAM Journal on

Scientific Computing, 30(6):2709–2733.

Peterson, J. W., Lindsay, A. D., and Kong, F. (2018). Overview of the incompressible

Navier–Stokes simulation capabilities in the MOOSE framework. Advances in

Engineering Software, 119:68–92.

181

Prothero, A. and Robinson, A. (1974). On the stability and accuracy of one-step

methods for solving stiff systems of ordinary differential equations. Mathematics

of Computation, 28(125):145–162.

Qiu, W. and Shi, K. (2016). An HDG method for convection diffusion equation.

Journal of Scientific Computing, 66(1):346–357.

Ramshaw, J. and Mousseau, V. (1990). Accelerated artificial compressibility method

for steady-state incompressible flow calculations. Computers & Fluids, 18(4):361–

367.

Rathan, S. and Naga Raju, G. (2018). A modified fifth-order WENO scheme

for hyperbolic conservation laws. Computers & Mathematics with Applications,

75(5):1531–1549.

Rawat, P. and Zhong, X. (2011). Direct numerical simulations of turbulent flow in-

teractions with strong shocks using shock-fitting method. In 49th AIAA Aerospace

Sciences Meeting including the New Horizons Forum and Aerospace Exposition,

page 649.

Reed, W. H. and Hill, T. R. (1973). Triangular mesh methods for the neutron

transport equation. Technical report, Los Alamos Scientific Lab., N. Mex.(USA).

Rinaldi, E., Pecnik, R., and Colonna, P. (2014). Exact Jacobians for implicit

Navier–Stokes simulations of equilibrium real gas flows. Journal of Computational

Physics, 270:459–477.

Rivière, B., Wheeler, M. F., and Girault, V. (1999). Improved energy estimates

for interior penalty, constrained and discontinuous Galerkin methods for elliptic

problems. part i. Computational Geosciences, 3(3):337–360.

Rivière, B., Wheeler, M. F., and Girault, V. (2001). A priori error estimates for

finite element methods based on discontinuous approximation spaces for elliptic

problems. SIAM Journal on Numerical Analysis, 39(3):902–931.

182

Rivire, B. (2008). Discontinuous Galerkin methods for solving elliptic and parabolic

Equations: Theory and implementation. SIAM.

Roy, C. J. (2005). Review of code and solution verification procedures for compu-

tational simulation. Journal of Computational Physics, 205(1):131–156.

Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.

Saad, Y. and Schultz, M. H. (1986). Gmres: A generalized minimal residual algo-

rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and

Statistical Computing, 7(3):856–869.

Sato, Y., Hino, T., and Ohashi, K. (2013). Parallelization of an unstructured Navier–

Stokes solver using a multi-color ordering method for OpenMP. Computers &

Fluids, 88:496–509.

Schulz-Rinne, C. W., Collins, J. P., and Glaz, H. M. (1993). Numerical solution

of the Riemann problem for two dimensional gas dynamics. SIAM Journal on

Scientific Computing, 14(6):1394–1414.

Sevilla, R. and Huerta, A. (2018). HDG-NEFEM with degree adaptivity for Stokes

flows. Journal of Scientific Computing, 77(3):1953–1980.

Shampine, L. F. (2005). Error estimation and control for ODEs. Journal of Scientific

Computing, 25(1).

Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and

Mavriplis, D. (2014). CFD vision 2030 study: a path to revolutionary computa-

tional aerosciences. NASA/CR, 1(218):178.

Smith, B. F., Bjorstad, P. E., Gropp, W. D., and Pasciak, J. E. (1998). Domain de-

composition: Parallel multilevel methods for elliptic partial differential equations.

SIAM Review, 40(1):169–170.

183

Söderlind, G. (2002). Automatic control and adaptive time-stepping. Numerical

Algorithms, 31(1):281–310.

Sóderlind, G. (2002). Automatic control and adaptive time-stepping. Numerical

Algorithms, 31(1):281–310.

Sóderlind, G. and Wang, L. (2006). Adaptive time-stepping and computational

stability. Journal of Computational and Applied Mathematics, 185(2):225–243.

Sun, S. (2003). Discontinuous Galerkin methods for reactive transport in porous

media. The University of Texas at Austin.

Titley-Peloquin, D., Pestana, J., and Wathen, A. J. (2014). GMRES convergence

bounds that depend on the right-hand-side vector. IMA Journal of Numerical

Analysis, 34(2):462–479.

Tonicello, N., Lodato, G., and Vervisch, L. (2020). Entropy preserving low dissipa-

tive shock capturing with wave-characteristic based sensor for high-order methods.

Computers & Fluids, 197:104357.

Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics: A

practical introduction. Springer, 3rd edition.

Toselli, A. and Widlund, O. B. (2005). Domain decomposition methods–algorithms

and theory. Springer.

Trefethen, L. N. and Bau III, D. (1997). Numerical linear algebra, volume 50. SIAM.

Trefethen, L. N. and Embree, M. (2005). Spectra and pseudospectra: the behavior

of nonnormal matrices and operators. Princeton University Press.

Trottenberg, U., Oosterlee, C. W., and Schuller, A. (2000). Multigrid. Elsevier.

Turner, K. and Walker, H. (1992). Efficient high accuracy solutions with GM-

RES(m). SIAM Journal on Scientific and Statistical Computing, 13(3):815–825.

184

Tyacke, J., Vadlamani, N., Trojak, W., Watson, R., Ma, Y., and Tucker, P. (2019).

Turbomachinery simulation challenges and the future. Progress in Aerospace

Sciences, 110:100554.

Ur Rehman, M., Vuik, C., and Segal, G. (2008). Preconditioners for the

steady incompressible Navier-Stokes problem. International Journal of Applied

Mathematics, 38(4):1–10.

van Buuren René (1999). Time integration methods for compressible flow. Computer

Science.

Van Leer, B., Lo, M., and van Raalte, M. (2007). A discontinuous Galerkin method

for diffusion based on recovery. In 18th AIAA computational fluid dynamics

conference, page 4083.

Vanden, K. J. and Orkwis, P. D. (1996). Comparison of numerical and analytical

Jacobians. AIAA Journal, 34(6):1125–1129.

Vandenhoeck, R. and Lani, A. (2019). Implicit high-order flux reconstruction solver

for high-speed compressible flows. Computer Physics Communications, 242:1–24.

Vanderstraeten, D. (2001). An expert system to control the CFL number of im-

plicit upwind methods. In Toro, E. F., editor, Godunov Methods: Theory and

Applications, pages 977–984. Springer US.

VonNeumann, J. and Richtmyer, R. D. (1950). A method for the numerical calcu-

lation of hydrodynamic shocks. Journal of Applied Physics, 21(3):232–237.

Walker, H. F. (1988). Implementation of the GMRES method using Householder

transformations. SIAM Journal on Scientific and Statistical Computing, 9(1):152–

163.

Wang, Z. and Rahmani, S. (2021). Implicit large eddy simulation of the NASA

CRM high-lift configuration near stall. Computers & Fluids, 220:104887.

185

Wang, Z. J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck,

H., Hartmann, R., Hillewaert, K., Huynh, H. T., et al. (2013). High-order CFD

methods: current status and perspective. International Journal for Numerical

Methods in Fluids, 72(8):811–845.

Wathen, A. J. (2015). Preconditioning. Acta Numerica, 24:329–376.

Wesseling, P. (1995). Introduction to multigrid methods. Technical report, CASE

HAMPTON VA.

Witherden, F. D., Farrington, A. M., and Vincent, P. E. (2014). PyFR: An

open source framework for solving advection–diffusion type problems on stream-

ing architectures using the flux reconstruction approach. Computer Physics

Communications, 185(11):3028–3040.

Yan, Z.-G., Pan, Y., Castiglioni, G., Hillewaert, K., Peiró, J., Moxey, D., and Sher-

win, S. J. (2020). Nektar++: design and implementation of an implicit, spec-

tral/hp element, compressible flow solver using a Jacobian-free Newton Krylov ap-

proach. Computers & Mathematics with Applications, page S0898122120301073.

Yang, U. M. (2006). Parallel algebraic multigrid methods high performance pre-

conditioners. In Bruaset, A. M. and Tveito, A., editors, Numerical Solution of

Partial Differential Equations on Parallel Computers, Lecture Notes in Computa-

tional Science and Engineering, pages 209–236, Berlin, Heidelberg. Springer.

Yildirim, A., Kenway, G. K. W., Mader, C. A., and Martins, J. R. R. A. (2019).

A Jacobian-free approximate Newton-Krylov startup strategy for RANS simula-

tions. Journal of Computational Physics, 397:108741.

Yu, J. and Hesthaven, J. S. (2017). A comparative study of shock capturing models

for the discontinuous Galerkin method. Technical report, Elsevier.

Yu, J., Yan, C., and Jiang, Z. (2018). Revisit of dilation-based shock capturing for

186

discontinuous Galerkin methods. Applied Mathematics and Mechanics, 39(3):379–

394.

Zaporozhets, O., Tokarev, V., and Attenborough, K. (2019). Aircraft Noise:

Assessment, prediction and control. CRC Press.

Zhang, T. and Zheng, Y. X. (1990). Conjecture on the structure of solutions of the

Riemann problem for two-dimensional gas dynamics systems. SIAM Journal on

Mathematical Analysis, 21(3):593–630.

187

Appendix A: GMRES algorithm

The algorithm of GMRES(M) is as follows

r = b−Ax0 for a given initial guess x0

Step 1: Arnoldi process to calculate orthogonal vectors

for i = 1, 2, . . . do

w0 = r/‖r‖

for j = 1, 2, . . . ,M do

v = Awi

for k = 1, 2, . . . , j do

hk,j = wT
k v, v = v − hk,jwk

end for

hj+1,j = ‖v‖, wj+1 = v/hj+1,j

Step 2: QR factorization to seek for y to minimize residual

r1,j = h1,j

for k = 2, 3, . . . , j do

γ = ck−1rk−1,j + sk−1hk,j

rk,j = −sk−1rk−1,j + ck−1hk,j

rk−1,j = γ

end for

δ =
√
r2
j,j + h2

j+1,j, cj = rj,j/δ, sj = hj+1,j/δ

rj,j = cjrj,j + sjhj+1,j

b̂j+1 = −sj b̂j, b̂j = cj b̂j

η = ‖b̂j+1‖

188

if η ≤ τGMRES then

N = j, converged

else

N = M

end if

end for

Step 3: backward method to calculate y

yN = b̂N/rN,N

for k = N − 1, . . . , 1 do

yk = (b̂k −
∑N

j=k+1 rk,jyj)/rk,k

end for

xnew = x0 +
∑N

j=1 yjwj, r = b−Axnew

If η ≤ τGMRES, Quit

end for

189

Appendix B: Butcher array of

ESDIRK

The coefficients of ESDIRK schemes adopted in this paper can be expressed in the

form of the general Butcher tableau shown in Table. 6.1 Kvrn (2004), where S and

R = S+ 1 are the number of stages for the main scheme and the embedded scheme.

The coefficients of the matrix A are sufficient to define the whole Butcher tableau

since ci =
∑S+1

j=1 aij, bi = aSi, and b̂i = aRi. The last two relations indicate that the

main and the embedded schemes are both stiffly accurate. The diagonal coefficients

are given by a11 = 0 and aii = α; i = 2, . . . , S + 1. The coefficients of the matrix

A for the ESDIRK2, ESDIRK3 and ESDIRK4 schemes are presented in Tab. 6.4,

Tab. 6.2 and Tab. 6.3, respectively.

c A
bT

b̂T
=

0 0 0 0
c2 a21 α 0 0
c3 a31 a32 α 0 . . . 0
...

...
...

.
...

cS aS1 aS2 α 0
cR aR1 aR2 α

b1 bS 0

b̂1 b̂R

Table 6.1: General form of the Butcher tableau of the embedded ESDIRK. Here R
is shorthand for R = S + 1.

190

A
=

0
0

0
0

0.
29

28
93

21
88

00
00

0
0.

29
28

93
21

88
00

00
00

0
0

0.
35

35
53

39
05

67
52

3
0.

35
35

53
39

06
32

47
7

0.
29

28
93

21
88

00
00

0
0

0.
21

54
82

20
31

22
50

8
0.

68
68

86
72

39
13

53
9

-0
.1

95
26

21
45

83
60

47
0.

29
28

93
21

88
00

00
0

T
ab

le
6.

2:
B

u
tc

h
er

ar
ra

y
of

em
b

ed
d
ed

E
S
D

IR
K

3
w

it
h
S

+
1

=
5.

A
=

0
0

0
0

0
0.

43
58

66
52

15
08

46
0.

43
58

66
52

15
08

46
0

0
0

0.
14

07
37

77
47

24
71

-0
.1

08
36

55
51

38
13

2
0.

43
58

66
52

15
08

46
0

0
0.

10
23

99
40

06
19

91
-0

.3
76

87
84

52
25

55
6

0.
83

86
12

53
01

27
19

0.
43

58
66

52
15

08
46

0
0.

15
70

24
89

78
60

32
0.

11
73

30
44

13
70

44
0.

61
66

78
03

03
92

12
-0

.3
26

89
98

91
13

13
4

0.
43

58
66

52
15

08
46

T
ab

le
6.

3:
B

u
tc

h
er

ar
ra

y
of

em
b

ed
d
ed

E
S
D

IR
K

4
w

it
h
S

+
1

=
7.

A
=

0
0

0
0

0
0

0
0.

27
00

00
00

00
00

00
00

0
0.

27
00

00
00

00
00

00
00

0
0

0
0

0
0

0.
13

50
00

00
00

00
00

00
0

0.
87

26
53

71
80

43
59

68
6

0.
27

00
00

00
00

00
00

00
0

0
0

0
0

0.
24

81
42

11
23

44
47

32
2

0.
13

28
20

88
52

28
59

32
2

-0
.0

38
86

68
66

58
91

77
71

0.
27

00
00

00
00

00
00

00
0

0
0

0
0.

25
49

44
79

82
21

50
47

1
0.

13
10

61
96

42
23

47
20

0
-0

.0
45

22
09

39
30

23
57

08
0.

03
38

91
21

68
20

51
64

2
0.

27
00

00
00

00
00

00
00

0
0

0
0.

17
54

99
75

52
31

82
94

1
0

-0
.0

16
41

72
59

31
49

23
83

3.
59

35
71

75
29

00
10

62
5

-3
.0

22
65

42
48

81
70

11
82

0.
27

00
00

00
00

00
00

00
0

0
0.

15
84

76
12

64
36

70
41

0
0

-0
.0

73
84

70
37

32
09

49
83

5.
26

05
67

76
39

76
34

89
3

-4
.8

39
46

94
77

58
40

75
00

0.
22

42
72

62
44

91
97

18
0

0.
27

0

T
ab

le
6.

4:
B

u
tc

h
er

ar
ra

y
of

em
b

ed
d
ed

E
S
D

IR
K

2
w

it
h
S

+
1

=
4.

191

Appendix C: Lid-driven flow

(Re = 100)

The converged density and velocity distributions of Re = 100 are shown as Fig. 6.1

and Fig. 6.2, which are extracted when the residual Lδ(U) is reduced by a factor of

10−9.

Figure 6.1: Lid-driven cavity flow (Re = 100): Density distribution.

192

Figure 6.2: Lid-driven cavity flow (Re = 100): Velocity distribution.

This the eigenvalue analysis is bases on the converged field and then run extra

one time step ∆t = 0.0002 using the backward Euler time-integration scheme and

P = 4 order DG scheme. The eigenvalue distributions of the Jacobian matrix before

preconditioning and after different methods of preconditioning are shown as Fig. 6.3

and Fig. 6.4.

0 50 100 150 200 250 300 350 400

Real

-200

-150

-100

-50

0

50

100

150

200

Im
a

g

Eigenvalue Distribution

Figure 6.3: Lid-driven cavity flow (Re = 100):
Eigenvalue distributions of unpreconditioned Jacobian matrix.

193

0 0.5 1 1.5 2 2.5

Real

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Im
a

g

BJac(5)

PM(Level3, TotJac=5)

BGS(5)

PM(Level3, TotGS=5)

BILU

Figure 6.4: Lid-driven cavity flow (Re = 100):
Eigenvalue distributions comparisons of different preconditioned Jacobian matrix.

Table 6.5 lists the total GMRES within one time step and the condition number

after different types of preconditioning.

Preconditioner type GMRES iteration number Condition number
Unpreconditioned × 2.83× 1012

BJac(3) 265 2.57× 109

BJac(5) 187 1.78× 109

PM-level2 (TotBJac=3) 296 2.93× 109

PM-level3 (TotBJac=5) 206 1.81× 109

BGS(3) 145 2.18× 109

BGS(5) 109 8.71× 108

PM-level2 (TotBGS=3) 167 2.22× 109

PM-level3 (TotBGS=5) 119 8.88× 108

BILU 147 2.49× 108

Table 6.5: Lid-driven flow(Re=100):
Comparison of performance of preconditioned Jacobian matrices

(PM denotes p-multigrid).

194

	Declaration of originality
	Copyright declaration
	Acknowledgements
	Abstract
	List of Work
	Introduction
	Why an implicit high-order solver?
	Spectral/hp element methods
	Development of DG methods
	Applications of DG in compressible flow simulations
	Shock-capturing methods

	Implicit time integration methods
	Implicit time integration schemes
	Jacobian-free Newton-Krylov method

	Challenges of developing an efficient implicit solver
	An efficient preconditioner
	Complex parameter choices
	An effective shock-capturing strategy

	Objectives
	Outline

	Implicit spectral/hp element solver
	Governing equations
	Discontinuous Galerkin formulations
	Implicit time integration methods
	Newton-type nonlinear solver
	Analysis of error estimates
	Krylov linear solver
	Implementation in Nektar++ framework
	Verification of the implementations
	Advection: 2D isentropic vortex convection
	Diffusion: 2D Couette flow
	Time integration: 2D flow past a circular cylinder

	Preconditioners for linear solvers
	Eigenspectral analysis of preconditioners
	Block spliting preconditioner
	Block ILU preconditioner
	p-multigrid preconditioner
	Spectral analysis of preconditioned matrices for a Lid-driven cavity flow

	Efficient implementation of block relaxed Jacobi preconditioner
	Block relaxed Jacobi preconditioner
	Efficiency comparison between explicit and implicit solvers: 2D flow over a circular cylinder

	Choices of parameters for a reliable implicit solver
	Error-based adaptive time step
	Discussion of the new adaptive time-stepping strategy
	2D isentropic vortex convection
	2D steady-state flat plate boundary layer flow
	Taylor-Green vortex
	Turbulent flow over a circular cylinder at Re = 3 900
	Summary of parameters in the simulations

	Error-based adaptive Newton tolerance
	2D isentropic vortex convection
	2D flow past a circular cylinder

	Accuracy of Jacobian matrix approximation
	2D steady-state flat plate boundary layer flow
	Turbulent flow over a circular cylinder at Re = 3 900

	Control of freezing number of preconditioner
	Taylor Green vortex

	Discussion and conclusions

	An improved shock-capturing strategy for high-order DG compressible flow simulations
	High-order DG methods with artificial viscosity shock-capturing
	Discontinuity sensor
	Artificial viscous flux

	Development of a modified bulk-stress based artificial viscosity
	Appraisal of different artificial viscosity forms
	Modified bulk-stress based artificial viscosity

	Extra shear-stress based artificial viscosity
	Numerical tests
	Sod shock tube problem
	Shu-Osher problem
	2D Riemann problem
	2D shock vortex interaction

	Discussion and conclusions

	Conclusions and future work
	Conclusions
	Future work

	Appendix A: GMRES algorithm
	Appendix B: Butcher array of ESDIRK
	Appendix C: Lid-driven flow (Re=100)

