3,915 research outputs found

    Haptic feedback control designs in teleoperation systems for minimal invasive surgery

    Get PDF

    Bilateral Control with Task Learning and Adaptation to Environment

    Get PDF
    The Motion Copying System permits to save an operator task in terms of position and force references for the action reproduction whenever the operator isn't available or to train new users. This thesis analyzes the MCS design and limitations, the Bilateral Control System on which the MCS is based, and proposes a model to adapt the saved task to new environmental conditions

    Performance and stability of telemanipulators using bilateral impedance control

    Get PDF
    A new method of control for telemanipulators called bilateral impedance control is investigated. This new method differs from previous approaches in that interaction forces are used as the communication signals between the master and slave robots. The new control architecture has several advantages: (1) It allows the master robot and the slave robot to be stabilized independently without becoming involved in the overall system dynamics; (2) It permits the system designers to arbitrarily specify desired performance characteristics such as the force and position ratios between the master and slave; (3) The impedance at both ends of the telerobotic system can be modulated to suit the requirements of the task. The main goals of the research are to characterize the performance and stability of the new control architecture. The dynamics of the telerobotic system are described by a bond graph model that illustrates how energy is transformed, stored, and dissipated. Performance can be completely described by a set of three independent parameters. These parameters are fundamentally related to the structure of the H matrix that regulates the communication of force signals within the system. Stability is analyzed with two mathematical techniques: the Small Gain Theorem and the Multivariable Nyquist Criterion. The theoretical predictions for performance and stability are experimentally verified by implementing the new control architecture on a multidegree of freedom telemanipulator

    Bilateralno upravljanje zasnovano na zadacima za primjene u mikrosustavima

    Get PDF
    Design of a motion control system, convenient for a wide range of applications in industry, space, biology, medicine, particularly including more than one physics environment is very important. Well known control architectures like trajectory tracking, compliance control, interaction force control are scientific milestones which has common control task: to maintain d esired system configuration. In this concept, motion control system can be an unconstrained motion-performed interaction with neither environment nor any other system, or constrained motion-system in contact with environment and/or other systems. This paper provides the function based design approach to formulate control of constrained system particularly bilateral systems in micromanipulation applications. The control objective a imed to maintain desired functional relations between human and environment defining convenient tasks and their proper relations on master and slave motion systems. Preliminary results concerning position tracking, force control and transparency between master and slave systems are clearly demonstrated.Sinteza slijednog sustava prikladnog za široki raspon primjena u industriji, svemiru, biologiji, medicini te posebno za primjene koje obuhvaćaju više raličitih fizikalnih okruženja, vrlo je važna. Dobro poznate strukture upravljanja poput slijeđenja trajektorije, usklađenog upravljanja i upravljanja interakcijskom silom predstavljaju znanstvene prekretnice koje imaju zajednički upravljački cilj: održavanje željene konfiguracije sustava. U ovom konceptu, slijedni sustav može biti sustav bez ograničenja i bez interakcije s okolinom ili ostalim sustavima, odnosno može biti sustav s ograničenjima koji je spregnut s okolinom i/ili drugim sustavima. Ovaj članak opisuje funkcijski zasnovanu sintezu sustava upravljanja za sustav s ograničenjima, a posebno za bilateralne sustave u mikromanipulacijskim primjenama. Cilj upravljanja je održavanje željenih funkcionalnih relacija izmežu čovjeka i okoline definirajući prikladne zadaće i njihove odgovarajuće relacije za glavni i podređeni slijedni sustav. Preliminarni rezultati vezani uz upravljanje pozicijom, upravljanje silom te veza izmeđ u glavnog i podređ enog sustava su jasno prezentirani

    Online Recognition of Environment Properties by Using Bilateral Control

    Get PDF
    The topic of this thesis is identification of the mechanical impedance of an unknown environment. Through the use of bilateral control based on DOB and RFOB structures, position, speed and force information are gathered and analyzed while performing continuous contact with the environment. The nonlinear Hunt-Crossley model is preferred over the classic Kelvin-Voigt model. Particular attention is given to the precise recognition of contact and the detection of an occurring deformation.ope
    corecore