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A B S T R A C T

The topic of this thesis is the study of techniques for the recording of user mo-
tions as accurately as possible, with the intent of saving a digital copy of this
knowledge. While other forms of expertise or creativity can be registered
with photos or audio/video recordings, physical actions cannot: assuming
that the user uses a tool, both the position and the applied force are needed
to effectively record the action. The user motion recording could be useful in
Countries with a big population gap between two generations, that will lead
in the coming decade to a shortage of workers: the saved copy can then be
used to train new operators or artificially reproduce the saved task, without
needed the presence of a person.

A technology being studied to save an operator task is the Motion Copy-
ing System, that is based on the Bilateral Control. Because of the need to
save both positions and forces, the user doesn’t directly interact with the en-
vironment, instead, two actuators are used to mirror the user actions. A first
actuator is used to operate on the environment, while the user interacts with
the second one: position and forces are mirrored between the two, so that
the user feels haptic feedback from the environment, improving the tactile
sensitivity. The main drawback of this solution is that the saved action is
rigid with respect to environmental changes. The saved position and force
refers to a specific environmental configuration: if the target position or me-
chanical properties vary, the saved motion isn’t compatible anymore and the
reproducing the task will yield position and force errors.

This work proposes to model each operator action as a motion primitive
that can be easily adapted to the environment changes, with the future ob-
jective of saving a generalized version of each action to a database, from
which a task can be algorithmically generated without the need of user in-
tervention. The experimental setup used in this thesis uses a basic 1-DOF
mechanical system, that although verifies the proposed solution, constitutes
the main limitation of this work.
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1 I N T R O D U C T I O N

1.1 global population ageing and future work-
ers shortage

The world-wide improvement of the life expectancy during the last one and
a half century and the declining fertility rates are well-established phenom-
ena, that result in a combined effect of progressive population aging. The
life expectancy in Asia, for example, doubled in less than 100 years (Fig-
ure 1), while the world-average fertility rate (number of children per woman)
halved during the last 65 years (Figure 2). This process is going to be even
more fast-paced for currently developing countries.

Ignoring the deep sociological effects caused by this phenomenon, many
questions arise about the ability of the industrial manufacturing of being
able to sustain the current level of production, when the present workforce
will retire and fewer and fewer workers will be available to fill the empty
positions. The industrial processes automation represents a solution to the
economy of scale production, where low-skilled workers (that are going to
be increasingly expensive) can be substituted by ad-hoc automatic machines
or production lines, with the benefits of relieving those workers from heavy,
boring or dangerous tasks. However, this solution overlooks the highly-
skilled low-volume activities typical, for example, of the artisan production.
A portion of these specific activities can be automated through the use of
robots that are more flexible than production lines with respect to the task
they are assigned to. Anthropomorphic 7 degrees-of-freedom robots can
mimic the actions accomplished by a human arm, like welding along a com-
plicated path. In the last several years, the introduction of collaborative
robots permits to safely mix operators and machines in the same workspace.

Even with the use of robots, some tasks are difficult to automate because
some degree of craftsmanship is required in the production process. This
usually involves some manual expertise that is accumulated during a long
time of practice and is not easily scalable in the production because new
employees need training, which takes time. With the aforementioned fu-
ture shortage of workers, the problem of keeping up with the production
and safeguarding the current employees’ knowledge is emerging. The video
recording of the task execution is usually not sufficient to reconstruct the full
action, because it lacks the force information exerted by the operator: the
system we are looking for should ideally be interposed between the operator
and the environment, while being transparent to the user, recording the forces
and movements associated with the task and then being able to re-enact the
recorded motion with the increased sensibility.
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Figure 1: Global life expectancy since 1770

ourworldindata.org/life-expectancy

Figure 2: Fertility rate since 1950

ourworldindata.org/fertility-rate
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1.2 motion copying system

A Motion Copying System (MCS) is based on a bilateral control system, that
is composed by a master and a slave actuators: the user interacts with the
first, while the second is located at the worksite. As the operator acts on the
master, the movement is replicated ad the slave side. To increase the user
sensibility, the bilateral control provides haptic feedback by mirroring the
applied forces: the force exerted by the user is applied to the environment
and the reaction force is mirrored back to the operator.

The Motion Copying System works by:

• during the operator action the system perform as a bilateral system,
but the master position, speed and force signals are recorded to a mo-
tion database;

• using the saved references as a virtual master the action can be repro-
duced whenever needed.

Figure 3: Motion Copying System principle operation

If the action is replayed when the environment conditions didn’t change
from the recording session the applied position and force match the opera-
tor’s, but if the conditions change, because the virtual master is "read-only",
the action will present position and force errors. Recording the position and
force signals is equivalent to memorizing the environment impedance (stiff-
ness and damping) so, if the actual impedance changes from the recording
time, there will be a mismatch between the recorded and the actual envi-
ronment conditions. As will be presented, the bilateral system feed by the
recorded coordinates is still stable, but this mismatch will cause a position
and force errors that compromises the precise task reproduction.

The simplest and most effective solution is to record a new version of the
task; this isn’t a long-term viable solution, because still needs the operator
intervention, even if not as frequently as before. The ideal goal is to "learn" a
generalized version of the task, that can be easily adapted to new operating
conditions.

The MCS is derived from a bilateral control system, that was originally
developed to realize a teleoperation devices, enabling the operator to inter-
act with the environment remotely. An important aspect of teleoperation
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systems is the degradation of the system stability as the communication de-
lay (lag) increases. The control theory behind such systems is extensively
studied and working apparatuses have been successfully realized and de-
ployed. These systems, originally developed for teleoperation, can be used
on a more local setting by scaling the operator movement and force ampli-
tude to lighten the workload, but still requires the presence of the user.

1.3 task modelling

In the literature several options are available to model a MCS task.

1.3.1 Neural Networks

Artificial Neural Networks (ANNs) are inspired by biological neural net-
works, composed by a collection of connected units (neurons) that reassem-
ble biological neurons: each connection transmit a signal from one unit to
the next ones. In general, each neuron output applies a non-linear function
to a weighted combination of other neurons outputs.

Figure 4: Basic ANN diagram

The training of the network is supervised: the connection weights (arrows
in Figure 4) are adjusted by back-propagating the errors of a training set.
This framework is very flexible and, by increasing the number of neurons (up
to hundreds of thousands) and using different network structures, it can be
adapted to many different tasks, from image recognition to natural language
processing. In the scientific literature several researches [1, 2] presented
different methods to apply ANNs to robot control. The main drawback of
this framework is the fundamental role of the resource intensive training
phase and the black-box nature of its functioning.

The use of neural networks to represent a motion copying system task was
initially disregarded, as the framework complexity and unknowable inner
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working are not appropriate to model a motion copying system task, for
example to simply asses the overall system stability.

1.3.2 Reinforcement Learning

The Reinforcement Learning (RL) is an area of machine learning that design
systems that autonomously interact with the environment to maximize a
cumulative reward. It differs from the supervised algorithms (e.g. ANNs)
because it doesn’t need a labeled dataset: instead, given a set of conditions
and a set of actions it can execute, it aims to find the sequence of actions that
yield the overall best solution, the one that maximizes the cumulative reward.
An example reinforcement learning robot control application is presented in
[3]. This framework is then not used to model an operator action, but to
generate new tasks from specific requirements: this could be useful to adapt
a saved action to a different setting.

1.3.3 Dynamic Movement Primitives

The Dynamic Movement Primitives were introduced as a framework for
robot control by [4]. The trajectory information for each robot DOF is stored
as a set of weights of N radial basis functions (RBFs) equally spaced along
the task duration. By increasing the number of RBF, N, a higher density
of RBF can model the task with more precision. The function that approxi-
mates the original trajectory by combining the RBF with the relative weights
is defined forcing term.

During the task execution the trajectory information can be scaled both in
the amplitudes and in the time dimension (to slow down or speed up the
task execution). The goal is defined as a scalar value that represent the final
state of a DOF at the task completion. The amplitude scaling is obtained by
multiplying the forcing term by the goal.

A transformation dynamic system translates the trajectory information to
the motor controller references. To do so a second-order dynamic system
with point attractor behavior, towards the task goal, is fed with the goal-
scaled forcing term.

In the thesis, the DMP framework is adapted to model a motion copy-
ing system task by including a second set of weights for each action DOF
referred to the force information.

A saved task can be adapted to new environmental conditions by adjust-
ing the position and force goals. This is done following an exploration run
to determine how the conditions changed from the original ones.

This DMP framework solution is chosen because

• require only one operator task execution to capture the necessary in-
formation

• has a simple structure, easily interpretable (contrary to neural net-
works)
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• the simple structure also influences the amount of computational power
needed to implement this solution;

• the task adaptation mechanism is rather simple, two "knobs" to con-
trol each motion copying system action position and forces and a time
parameter so control the execution speed, that means:

– the structure is rigid compared to other solutions

– very straightforward to design and implement new adaptation
strategies

The thesis is organized as follows:

• in the second chapter the Motion Copying System is firstly presented,
then the bilateral control theory is explained and applied to the me-
chanical system;

• in the third chapter a Kalman Filter is designed and tuned to estimate
the actuators speed and external forces, a extended friction model is
presented to avoid the discontinuity of the simple static and viscous
friction model

• in the forth chapter the DMP framework is explained, extended to the
bilateral control, several adaptation policies presented and tested; an
adaptation algorithm based on the Iterative Learning Control is dis-
cussed and tested.

• after the thesis conclusions, in the appendix A, the bilateral control
reference scaling properties are briefly presented and tested.
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2.1 introduction

In this chapter a Motion Copying System (MCS) will be presented, designed
and realized, both in simulation and on the experimental bench. The goal of
a MCS is to save an operator task by recording the position and applied force
of an user-controlled end-effector. To accomplish this, the MCS uses a Bilat-
eral Control system, that permits to an operator to indirectly perform a task
on the environment by interacting with a master robot, while another robot
performs the actual action, receiving force feedback from the environment
without the constraint for the operator of being in the same location.

This system allows the operator to work from a more comfortable or safer
location, decoupling the operator position from the location of the task ac-
tion.

As briefly introduced above, a further step is achieved by decoupling the
action recording time from the task reproduction time thanks to the Motion
Copying System, this way a task can be recorded and used when the opera-
tor is not available or to train other people.

A Motion Copying System (MCS, [5]) uses an existing bilateral control
system to save the operator task in the form of the master position and
applied force references, that can be used to "replay" the operator task at a
different time.

The ability to digitally save a human action might be valuable in different
situations. In the first place, it can be useful to preserve in a digital form
a specific motion that otherwise will be lost if the person who performs it
isn’t able to execute it anymore. Differently from traditional robot control,
the position reference alone is not enough to re-enact the original motion
executed by the operator.

If the action is repetitive or it needs to be performed at a particular time,
a possible solution to avoid the constant presence of an operator is to record
the action (or several) and "replay" it when necessary. Because this system
can copy and reproduce the operator actions it was introduced under the
Motion Copying System name [5].

2.2 bilateral control background

In the industrial environment, a common operator task is to perform a cer-
tain activity involving the interaction with the surroundings – using usually
a dedicated tool – that requires some degree of precision, for example han-
dling a fragile object, cutting or welding. In some cases these operations
need to be performed under challenging environmental conditions, such as
high temperatures near a furnace or in the proximity of hazardous materi-

21
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als. While many repetitive or dangerous tasks can be automated, there is a
subgroup where traditional robots cannot be employed because the applied
fine force sensibility of the operator is required.

The Bilateral Control was introduced from the necessity to spatially de-
couple the working apparatus from the operator: this objective is achieved
by letting the user control a tool replacement/surrogate (master side) that
mirrors the user input to the actual end-point (slave side). The innovative
feature of the bilateral control is the ability to provide environmental force
feedback (haptic feedback) between the master and slave system, with great
benefit from user operation sensibility, who can remotely feel the environ-
mental conditions and act accordingly, as if the user was operating in first
person. This feature requires:

• an active master side, capable of generating the environment reaction
force to the user;

• the ability to measure the applied forces to the master side by the user
and to slave by the environment reaction force.

Operator
Master
System

Bilateral
Controller

Slave
System Environment

Fm

Fs

[xm, F̂m] i∗m

[xs, F̂s] i∗s

Figure 5: Bilateral Control structure

To accomplish the second requirement, the most simple and immediate
solution is to use force sensors mounted on both master and slave systems.
Although possible, this would result in an added cost and, depending on the
sensor construction technology, have several limitations, mainly the available
sensor bandwidth and the presence of measurement bias. Instead, the total
external forces acting on each motor are estimated by a disturbance observer
(DOB); a DOB uses the motor model and current reference to estimate the
total disturbance acting on it. During the bilateral operation the user handles
the master robot while the controller mirrors positions and forces between
the two systems, digitally re-enacting the law of action-and-reaction as if the
two were mechanically linked.

As the slave robot interacts with the environment, the external forces are
estimated and mirrored to the operator by driving the master robot accord-
ingly. The user can now act appropriately, based on the field experience
he already has; coupled with an video stream, this setup permits to the
operator to work as if he was operating on the slave environment himself.
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Moreover, because the position and force information is now handled by a
digital controller, it is possible to scale the position and forces between mas-
ter and slave, e.g. amplify the slave actuator force to lighten the forces the
operator need to exert or amplify the master position and speed to increase
the operator precision and sensibility. Applications of the bilateral control
can be multiple:

• for safety reasons and the secure handling of hazardous materials, for
example in chemical plants;

• so the operator can work from a more comfortable / ergonomic posi-
tion;

• because of the distance between the expert and the working place (i.e.
teleoperation),

• because the position and force signals can be scaled by the bilateral
controller it is possible to amplify the operator force or to improve the
operator precision

Until now the communication time delay between the two robots and the
bilateral controller was neglected: if the bilateral controller is directly con-
nected to both robots, generally the time delay can be ignored, because usu-
ally much smaller than the sampling period. However, if the communica-
tion between the two system happens over some network protocol (e.g. the
TCP/IP stack), the performance of the bilateral controller system degrades
as the time delay increases: the TCP/IP protocol packet delivery timing
is not deterministic, therefore the communication delay is not constant but
varies with the network congestion. The effects of the communication delay
can range from an inaccurate feedback signal up to the destabilization of
the bilateral system when the lag between master and slave interferes with
the control stability. In those cases the control robustness can be improved
with a time delay compensation: a possible solution is to implement a Com-
munication Disturbance Observer (CDOB [6]) to treat the time delay as an
external disturbance that will be compensated at the system input.
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2.3 bilateral control theory

The design of a bilateral system control structure, that have to achieve both
the position tracking and the force mirroring between the master and the
slave robot, is not a trivial task: the two control objectives have antagonistic
requirements. In fact the position tracking drives the two robots towards the
same direction to reduce the position error, while the force mirroring in the
opposite one to achieve the null resulting force. The first control objective,
the position and speed tracking, can be formulated as:

ep = xm − xs → 0

ev = ẋm − ẋs → 0

The second control objective is the force mirroring: the controller drives the
motors to obtain the external force balance between the master and slave
robots:

ef = Fm + Fs → 0

If the control objectives are achieved, the whole bilateral system acts like a
solid body of infinite stiffness: from the master side it is possible to have
perfect tactile feedback from the environment at the slave side as if the two
were mechanically linked.

The design of the bilateral control system is done in the modal space: given
the two bilateral system states (joint space) they can be decomposed into the
common and differential states of the modal space. The conversion from the
actuator joint space into the modal space is done using the Quarry matrix
Qn ∈ Rn×n [5], where the first row represents the common mode and the
other rows highlights each of the n− 1 differential modes:

Qn =
1

n



1 . . . 1 1 1 1 1

0 . . . 0 0 0 1 −1

0 . . . 0 0 2 −1 −1

0 . . . 0 3 −1 −1 −1

0 . . . 4 −1 −1 −1 −1
...

. . .
...

...
...

...
...

n− 1 . . . −1 −1 −1 −1 −1


The second-order quarry matrix is defined as

Q2 =
1

2

[
1 1

1 −1

]
Q−1
2 =

[
1 1

1 1

]
(1)

and it is used for the modal decomposition in the bilateral controller inputs,
to transform the joint space coordinates (that is each DOF actuators positions,
velocities, forces) into the modal space used for the control of the bilateral
system [

xc
xd

]
= Q2

[
xm
xs

]
(2)[

Fc
Fd

]
= Q2

[
Fm
Fs

]
(3)
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where the subscript ©c denotes the common mode of the bilateral system
and ©d the differential mode and, being Q2 non-singular, it is possible to
reconstruct the joint space coordinates with the inverse matrix Q−1

2 . The
control objectives in the new coordinates are:

xrefd = 0

ẋrefd = 0

Frefc = 0

The first two equations explicit the position and speed tracking between
the master and slave whereas the last equation imposes that the sum of
the master and slave-side forces is null to realize the law of action-reaction
between the two environments.

2.3.1 Acceleration-based Bilateral Controller

In the literature [8, 7] the control of the bilateral system is performed in
the acceleration dimension (ABC, Acceleration-based Bilateral Control) by
the combined action of two controllers: a proportional/derivative position
controller and a proportional force controller:

ẍrefd = −Cp(s) xd (4)

ẍrefc = −Cf(s) Fc (5)

with

Cp(s) = Kp +Kvs (6)

Cf(s) = Kf (7)

where Cp is the position controller, Cf the force controller and s the Laplace
operator. The outputs of the two controllers are acceleration references:

• the position controller drives the two systems towards the same direc-
tion (differential mode) to reduce the position error between master
and slave;

• the force controller drives the two systems in the same direction (com-
mon mode) to exert the same force on the environment and on the
operator.

The acceleration references in the modal space can be then transformed with
the inverse quarry matrix Q−1

2 back into the joint coordinate space:[
ẍrefm
ẍrefs

]
= Q−1

2

[
ẍrefc
ẍrefd

]
=

[
1 1

1 −1

] [
ẍrefc
ẍrefd

]
(8)

The specific bilateral control mechanical system used in this work is driven
by linear motors; the current references irefm , irefs can be calculated from the
acceleration references using the mass matrix and the nominal linear motor
force/current constant Kt,[

irefm
irefs

]
=

[
Mm/Kt,m 0

0 Ms/Kt,s

] [
ẍrefm
ẍrefs

]
(9)
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where Mm is the equivalent mass of the master robot and Ms of the slave
robot; Kt,m, Kt,s are the force/current constants of the linear motors. The
controller outputs are acceleration references that are converted to the cur-
rent references using the motor nominal parameters (mass Mn and the force
constant Kt,n): this further step is useful to maintain the controller design
symmetrical between master and slave when the master and slave actuators
differ, for example when the moving mass or Kt are different.

This control structure enables the position/speed or force scaling between
master and slave: this option is studied in Appendix A.

The experimental test bench in use consists of two master/slave mechan-
ical systems that have matching characteristics and therefore have the same
nominal parameters. If this condition is verified then Mm = Ms = Mn

is the nominal motor moving mass and Kt,M = Kt,S = Kt,n the nominal
force/current constant: [

irefm
irefs

]
=
Mn

Kt,n

[
ẍrefm
ẍrefs

]
(10)

While a properly designed position controller yields a stable system, the
force controller alone is not able to guarantee the system stability: a mis-
match in the environmental conditions between master and slave could gen-
erate an unstable behavior. Using a controller structure that includes the
mixed action of both position and force controls permits (after the proper
tuning) to benefit from the stable position tracking of the first and the force
mirroring of the second; the overall controller won’t have the same perfor-
mance in the single objective as each controller taken individually, but it is
able to achieve the bilateral operation with a high degree of functionality.
The prominence of the two controllers is chosen by the relative value of the
position/velocity controller and the force controller gains. Given that the
position controller gain values Kp, Kv are chosen:

• with Kf = 0 the system tracks the master and slave position, while the
force mirroring is not active;

• for "smaller" Kf values the force mirroring objective is secondary to the
position tracking;

• for "bigger" Kf values the force reproduction performance is improved
and the position tracking objective is subordinated to the force mirror-
ing.

2.3.2 Environment Impedance Reproduction

The relationship between master and slave positions and forces can described
by the hybrid parameters of the H matrix [9, 11, 10]. Accounting for the
movement directions: [

Fm
xm

]
=

[
H11 H12
H21 H22

] [
xs
−Fs

]
(11)

where x is the position, F the external force, the subscript indicates ©m the
master side, ©s the slave side. From the master-slave position and force
relations, the meaning of the Hij terms can be inferred:
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• H11 represents the impedance between the slave position and the mas-
ter force

• H12 the force scaling between master and slave systems

• H21 the position scaling between master/slave

• H22 the impedance between the master position and the slave force

Having defined the bilateral controller structure it is possible to study how
the environment impedance is reproduced at the master side. The environ-
ment (slave) mechanical impedance Zs is modeled as:

Zs =
Fs

xs
= Ks +Ds s (12)

where Ks is the stiffness and Ds the damping of the object in contact with
the slave robot end-effector. Combining (12) and (11) it is possible to derive
the expression for the reconstructed slave impedance at the master side:

Fm = (H11 −H12Zs)(H21 −H22Zs)
−1xm

=

(
−H12

H21 −H22Zs
Zs +

H11
H21 −H22Zs

)
xm = Zmxm (13)

Zm =
−H12

H21 −H22Zs
Zs +

H11
H21 −H22Zs

(14)

From the definition of Zm several observations can be made [9]. In the
first place, as it could be expected, the reproduced impedance depends on
the dynamics of the Hij terms, that is the bilateral controller structure and
tuning. In second place, if we define the transparency as the property of
exact impedance reconstruction Zm ≡ Zs, perfect transparency is achieved
if all the following conditions are met:

H11 = 0 ∧ H22 = 0 ∧ H21 = −H12

or equivalently if the matrix H is anti-diagonal. Some comments can be
made about the transparency property of the system:

• as the environment impedance decreases (Zs → 0), the transmitted
impedance becomes insensitive to Zs if H11 6= 0, since Zm depends
only on the ratio H11/H21;

• as the environment impedance increases (Zs → ∞), the transmitted
impedance becomes H12/H22, which is insensitive to Zs if H22 6= 0.

Rewriting the relationship between master force and position as

Fm = (PrZs + P0)Xm

Pr =
−H12

H21 −H22Zs

Po =
H11

H21 −H22Zs

permits to highlight the terms Pr as the reproducibility and Po as the oper-
ationality [8] properties of the bilateral control system:
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• the reproducibility is the ability of the bilateral system to faithful re-
produce the environment impedance at the master side

• the operationality is the property of the bilateral system to not require
an additional force at the master side in respect to the force needed at
the slave side.

When Pr = 1 and Po = 0 the bilateral system impedance replication is
transparent to the user and Zm ≡ Zs [9]; to obtain the ideal impedance
reproduction transparency the following H parameters values are required:[

H11 H12
H21 H22

]
=

[
0 −1

1 0

]
(15)

2.3.3 4 Channels Bilateral Control

The hybrid matrix parameters Hij can be resolved using the 4ch bilateral
control schema introduced by [9] and supplemented with the external dis-
turbances compensation by [8] Figure 6, where p indicates high-frequency
disturbance that falls outside the disturbance estimation and compensation
bandwidth. From the comparison of the 4 channel bilateral control schema
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+

+
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−
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Figure 6: 4ch Bilateral Control diagram, [8]

and the proposed bilateral controller subsection 2.3.1 we get:

C1 = −C4 = Cm = Cs = Cp(s) (16)

C2 = C3 = C5 = C6 = Cf(f) (17)
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The hybrid matrix parameters can now be obtained by resolving the relation-
ships between xm, xs, Fm, Fs.

H11 =
Fm

xs
=
C1C4 + (s2 +Cm)(s2 +Cs)

C1C6 +C3(s2 +Cm)
=

s2

Cf(s)
(18)

H12 =
Fm

−Fs
= −

C1C2 +C5(s
2 +Cm)

C1C6 +C3(s2 +Cm)
= −1 (19)

H21 =
xm

xs
= −

C3C4 +C6(s
2 +Cs)

C1C6 +C3(s2 +Cm)
= 1 (20)

H22 =
xm

−Fs
= −

C2C3 −C5C6
C1C6 +C3(s2 +Cm)

= 0 (21)

The hybrid matrix H of the considered bilateral controller is then:

H =

[
H11 H12
H21 H22

]
=

[
s2Cf(s)

−1 −1

1 0

]
=

[
s2/Kf −1

1 0

]
(22)

from which we can derive that the proposed bilateral control system satisfies
the reproducibility condition

Pr =
−H12

H21 −H22Zs
= 1 (23)

the environmental impedance is then reproduced at the master side. On
the other hand, the operationality is influenced by the design of the force
controller, that is the choice of Kf, as reported below:

Po =
H11

H21 −H22Zs
=
s2

Kf
(24)

The higher the Kf gain, the lower the operationality Po value, meaning that
the operator needs to apply a smaller additional force to operate the bilateral
system in respect to the first-person operation. As it will be derived, the sta-
bility of the overall bilateral controller is reduced as the value of KF increases:
the perfect operationality and system stability are conflicting goals.
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2.4 experimental setup

2.4.1 Introduction

The experimental setup is composed of two linear motors driven by two
servo-drivers, while the control software runs as a real-time kernel module
on a general purpose Linux OS computer. Two PCI I/O boards (a D/A
converter and a counter board) permit to the real-time control software to
read the motors position from the encoders and set the current reference to
the servo-drivers. The schematic representation of the experimental setup is
presented in Figure 7.
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RT Application
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Figure 7: Experimental setup schematic representation.

The use of Permanent Magnet Linear Synchronous Motors (PMLSM) for
the generation of the movement offers several advantages over linear motion
mechanisms such as ball screws coupled with a rotary motor or rack-and-
pinion actuators: in the first place the absence of a mechanical transmission
improves the dynamic performances of the motor and removes any kind
of backlash, improving the positioning accuracy, an important aspect con-
sidering that the system it will be directly handled by an operator. Other
advantages include simpler construction, high force density and higher re-
liability because the only parts in contact and subject to wear are the linear
bearings. The disadvantages of using PM linear synchronous motors are
the high cost of the motor due to the large amount of rare-earth permanent
magnet material used for the PM mover construction and the pronounced
force ripple. The force ripple is caused by both the end effect and the cogging
torque. The cogging torque is caused by the magnetic interaction between
the stator slots and the permanent magnets; the end effect is caused by the
discontinuity of the magnetic circuit near both ends of the motor that de-
creases the thrust, increasing power consumption and degrading the motor
performances.

2.4.2 Real-Time Controller

A computer running CentOS Linux is used as hardware-in-the-loop for rapid
prototyping of the system controller and for the data saving and post pro-
cessing. The control software is written in the C programming language us-
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ing the Real-Time Application Interface library (RTAI) to observe the control
timing constraints: the RTAI library permits to run the controller application
as a Real-Time kernel module. Data buffers are used to share data between
the RT and non-RT processes, like loading motor position reference and sav-
ing the motor speed and current; the data post-processing is done primarily
using Python scripts and the the NumPy library. The RTAI real-time kernel
scheduler has been configured to achieve a control frequency of f = 10 kHz.
In order to guarantee the timing constrains set by the real-time Linux subsys-
tem scheduler, the real-time application cannot perform disk access or other
"slow" I/O operations, except for the PCI bus read/write. Dedicated RTAI
buffers, similar to UNIX pipes, are set up for the communication between
the RT controller and the non-RT application logic.

2.4.3 Linear Motor and Position Encoder

A photo of the experimental setup linear motor is shown in Figure 8: the
motor body is fixed in place while the PM mover can slide back and forth
thanks to the linear ball slides, model THK LS 1077. The linear encoder is
integral with the aluminum body that holds all the component in place. The
exact same setup is duplicated creating a matching master/slave systems
pair. The model of the linear motors is Nippon Pulse S160Q and the main
parameters are reported from the datasheet in Table 1. The motor travel is
limited by the travel of the linear bearing, that is 100mm.

Encoder

Linear Motor

PM Mover

Linear Bearings

Figure 8: Experimental setup: linear motor and position encoder.

Table 1: Nippon Pulse S160Q Linear Motor main parameters.

Specification Value

Continuous Force 20 N

Continuous Current 0.62 A

Max Force 81 N

Max Current 2.5 A

Force Constant Kf 33.0 N/A

Windings Resistance 43 Ω

Windings Inductance 16 mH

Motor Travel 163 mm
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position encoder The motor positions are obtained by two Renishaw
RGH24Y15A30A incremental encoders: they use a highly reflective gold plated
tape (sticked to the linear motor mover) to measure the motor position con-
tactless. The output of each encoder is composed by two digital signals
with a 50% duty-cycle, phase shifted by 90◦ and with a period of 4µm: by
checking the logic level of the two signals and counting the total amount of
steps since the controller start-up, the motor position can be obtained with
a resolution of 1µm. The encoders are not absolute, so the motors need to
be homed after every controller reset; the homing procedure is done man-
ually by zeroing the encoder count when the motor are positioned to the
mechanical stop. The main characteristics of the encoders are reported in
Table 2.

Table 2: Renishaw RGH24Y15A30A position encoder specification.

Specification Value

Supply Voltage 5 V

Max Current Consumption 120 mA

Resolution 1 µm

Max Speed 8 m/s

2.4.4 Servo-Driver

Each linear motor is driven by a servo-driver SVFM1 produced by Servoland,
with main characteristics reported in Table 3. The motor current reference
for the servo-driver is an analog signal generated by the PCI DAC board.
The driver apply the proper voltage to the motor windings to mantain the
current proportional to the analog reference. The maximum current output
of the servo-driver is 2A, which is lower than the motor maximum current
rating (2.5A) so no additional limitations have been set on the servo driver.
The servo-drivers act like pass-through for the encoder signals, which are
then sent to the counter board and back to the PC through the PCI bus.

Table 3: Servoland SVFM1 servo-driver main characteristics.

Specification Value

Supply Voltage 110 V

Max Output Voltage 84 V

Max Output Current 2.0 A

Transconductance Gain 0.2 A/V

Reference Range ±10 V

2.4.5 Multifunction PCI I/O board

The I/O boards function as the interface between the two servo-drivers and
the computer, enabling the real-time control program to set the servo-drivers
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Figure 9: SVFM1 Servo Driver

current reference and to read the motors position from the encoders. Their
main characteristics are presented in Table 4.

Table 4: Multifunction PCI I/O boards specifications

Board Type Specification Value

PCI-6201 Counter Board
Input Range [0; 5] V

Channels 4

Resolution 24 bit

Max Input Freq. 2 MHz

PCI-3340 DAC
Output Range [−10; 10] V

Channels 8

Resolution 16 bit

Conversion Time 20 µs

D/A Converter

Given that the output range of the DAC board matches the current reference
input range of the servo driver (±10V), the voltage needed to set the servo-
driver current reference is simply the current reference divided by the servo
transconductance gain:

urefcur = Kv i
ref =

iref

0.2
= 5 · iref (25)

Counter Board

As presented earlier, each encoder output consists of two digital signals that
toggle their logic level every time the motor travels 2µm and, because the
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two signals are phase-shifted by 90◦, the movement direction is also known.
To translate the logic signals from the encoders into the motors positions a
counter board is used, specifically the PCI 6201 made by Interface. The max-
imum input signal commutation frequency of the counter board is 2MHz,
that translates into a maximum velocity of

vmax = 2µm · 2MHz = 4m/s (26)

above which the board is going to miss some encoder steps, causing a posi-
tion miscalculation. Another characteristic of the counter board that could
interfere with the system functioning is the number of counter bits (23 plus
the sign bit), which limits the maximum measurable distance before the
counter overflows to:

dmax = 223 · 1µm = ±8.4 m (27)

Neither of these two limitations impact the experimental setup, where the
motor travel is limited to 10 cm and, with the hypothesis that the master
system is controlled by hand, the speeds involved are significantly lower
than vmax. This last assumption is supported by [12], where it is presented
that for the tested subjects (N = 40) the hand movement peak-velocity never
exceeds 3m/s and it is usually around 2m/s for young healthy adults. The
maximum observed velocity in the tests performed doesn’t however exceed
0.3m/s. If any of these conditions should not meet new testing criteria the
encoders precision can be lowered, increasing the maximum speed vmax
and the maximum distance dmax before the counter board overflow.

2.5 mechanical system model

The first step for designing the control system is to have a mechanical system
model. A simplified model of the system is presented in Figure 10.

H0 Kt
1

Ms+B

Environment

1
s

i∗k i
+

ẋ x
+

+
+ v

Tx̂

Encoder Sampling

Figure 10: Motor System Model

From the point of view of the bilateral controller, the only controllable mo-
tor input is the current reference i∗k that is converted by the DAC board to
the voltage urefcur (25) and sent to the servo-driver. From the controller stand-
point, the D/A converter acts like a zero-order holder H0. The servo-driver
then applies an input voltage to the motor windings in order to generate the
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reference current. From previous motor usage, an used derivative (speed)
gain is K†v = 0.7As/m: the motor mechanical time constant is then

τm =
Mn

B+K†vKt
' Mn

K
†
vKt
' 26ms (28)

Given that the linear motor electrical time constant

τel =
L

R
=
16mH

43Ω
= 0.372ms (29)

is two orders of magnitude smaller than the mechanical one, the servo-driver
current/force dynamics is neglected in the design of the controller. Instead,
the static relation

Fk ' Kt · ik ' Kt · i∗k (30)

is used, where i∗k is the current reference at the k-th step. The servo driver is
then modeled as a zero-order holder with a time-delay equal to the sampling
time T :

H0 =
1− e−sT

sT
(31)

The actual motor is modeled as a first-order system with mass M and vis-
cous friction B, ignoring for the moment non-idealities such as the static
friction.

Position Encoder – Controller Communication

The PCI counter board count each step that the Renishaw encoders register.
The result, multiplied by the encoder resolution q, represent the quantized
motor position relative to the the starting point, that is the motor position at
the system startup.
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2.6 mechanical system identification

In this section is described the procedure for the identification of the main
mechanical system parameters: motors moving mass, static and Coulomb
friction, thrust constant.

2.6.1 Motor Mass and Force Constant

The motor mass is measured by vertically aligning the motor axis over a scale
and weighting the mover mass. The nominal mass for both linear motors is
0.6 kg, while from the measurements:

m1 = 0.575± 0.005 kg
m2 = 0.580± 0.005 kg

With the motor still in the vertical configuration and now knowing the mover
mass it is possible to estimate the actual force constant Kt by measuring the
current needed to balance the weight of the motor. For this test a simple pro-
portional position controller is used with Kp = 1while the position reference
is varied along the motor travel. The steady-state currents iss needed for bal-
ancing the weight of the motor mover for N = 8 different motor positions
have been recorded. All the samples fall into the following range

iss ∈ [0.162; 0.199] A (32)

From the steady state current references the force–current relation can be
obtained as

K̂t =
mg

iss
=
0.58 · 9.81
iss

= 31.8± 3.3 N/A (33)

The uncertainty range of the K̂t estimation includes the nominal value Kt,n =

33N/A, with the maximum relative error of 10.3%. The nominal value (33)
is greater than the estimates average (31.8) by about the 3%: this could be
explained by the low samples count or by the inevitable presence of mechan-
ical friction that helps to hold the motor (even if the motor weight force is
not acting on the linear bearings). The force constant fluctuations are caused
by the permanent magnet position in respect to the stator windings, that
varies with the mover position, and by the cogging torque that affects the
PM linear motors.

2.6.2 Friction Estimation

The (crude) estimation of the mechanical system friction is necessary to de-
termine the environment reaction force for the bilateral force control from
the total estimated external disturbance. For the estimation of the friction
a constant speed trajectory is used as the motor reference while recording
the motor current: because no external forces are applied to the motor and
the inertia term is null (ẍm = 0), the force and thus the current necessary
to follow the reference is solely imputable to the mechanical friction. Given
the linear motor limited travel (about 10 cm) the position reference used
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is a symmetric trapezoidal trajectory: by changing the movement duration
while keeping the travel length constant is possible to obtain runs at differ-
ent speeds. The friction is modeled as the sum of the static friction term Fst
and the Coulomb friction B:

F = Fst sign(ẋ) +B ẋ (34)

An example of the position and speed references for vref = ± 6 cm/s is
presented in Figure 11 as well as the friction force calculated as the nominal
force constant Kt,n multiplied by the current reference. For each velocity run
the friction force is calculated as the mean of the force during the movement
(orange line) only when the velocity is constant (the error is within 5% of the
reference value, light red background).

Figure 11: Fricton estimation – Position error, speed and force (current) during a
test run with vref = ± 30mm/s. For the friction estimation only the
samples withing 5% of the steady-state speed are considered (red back-
ground).
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first mechanical system The test procedure is executed for different
speed references: the collected speed–friction force data are summarized in
Figure 13b. From the linear interpolation of the collected samples:

B+ = 3.67 Ns/m

B− = 3.82 Ns/m

F+st = 0.32 N

F−st = 0.21 N

where the suffix©+ refers to positive speeds and©− to negative ones.

second mechanical system The process is repeated for the second me-
chanical system (slave). The results are reported in Figure 13a.

friction results The results for the two systems and the two conditions
are synthesized in Table 5. Given the similar results between the conditions
a common model is proposed with average values for the viscous (3.7Ns/m)
and static (0.25N) friction.

Table 5: Friction estimation data

System Conditions Viscous Friction [Ns/m] Static Friction [Ns/m]

Master Positive speed 3.67 0.32

Master Negative speed 3.82 0.21

Slave Positive speed 3.77 0.24

Slave Negative speed 3.69 0.25

Average 3.73 0.255

2.7 the disturbance observer

What characterize a bilateral control system from other control strategies is
the shared force feedback between the master system and the slave, that pro-
vides improved tactile sensibility to the operator: it is therefore necessary
to measure or estimate the force acting on each motor to mirror it at the
other end of the bilateral system. The use of force sensors to measure the
external forces applied to the robots constitutes an additional component
added to the total cost of the system and its overall reliability. Among all
the available technologies for the realization of force sensors, piezoelectric
load sensors have sufficiently high bandwidths (> 100Hz) for the bilateral
control readiness, but, besides being expensive, they are prone to substan-
tial measurement drift under light loads, requiring some sort of calibration
procedure. Instead of using an actual load sensor, the bilateral control sys-
tem makes use of the Disturbance Observer (DOB). A disturbance observer
employs the motor model in conjunction with the current reference and the
motor velocity to estimate the total external disturbance acting on the motor,
disturbance that could be introduced by the operator, the reaction force of
the environment or other motor non-idealities not present in the model.
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Figure 12: Friction estimation data interpolation – Positive (red) and negative (blue)
velocities.

(a) Master mechanical system

(b) Slave mechanical system
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Figure 14: External disturbances acting on the motor.

In Figure 14 the external disturbance acting on the motor is illustrated:
Fdis can be estimated by subtracting the nominal inertia term Mnẍ from
the motor thrust, calculated from the current reference i∗ and the nominal
force-current constant Kt,n:

F̂∗dis = Kt,ni
∗ −Mnẍ (35)

The acceleration signal is obtained by deriving twice the position signal: the
derivation of a quantized signal introduces noise that corrupts the acceler-
ation estimate and so the external force estimate. Because the estimated
disturbance is used later for the compensation of the non-idealities and by
the force controller, the noisy signal enters the control loop. Therefore the
quantization noise could generate the actuator ringing caused by the high-
frequency control noise: to cope with this problem a low-pass filter with
bandwidth gdob is introduced:

F̂dis =
gdob

gdob + s
F̂∗dis (36)

It is possible to avoid the derivation of the speed signal rearranging the
operations:

F̂dis =
gdob

gdob + s

[
Kt,ni

∗ −Mns
2x
]

=
gdob

gdob + s

[
Kt,ni

∗ −Mns
2x± gdobMnsx

]
=

gdob
gdob + s

[Kt,ni
∗ + gdobMnsx−Mnsx (s+ gdob)]

=
gdob

gdob + s
[Kt,ni

∗ + gdobMnẋ] − gdobMnẋ

The disturbance estimate is used by the force controller to implement the
haptic feedback between the master and the slave systems, but also for the
feed-forward compensation of the external disturbances. Thanks to the DOB,
from the perspective of the controller the motor perform as a nominal one,
with mass Mn and force/current constant Kt,n, at least those with frequen-
cies sufficiently lower than the DOB bandwidth. The presence of the DOB
justifies the absence of an integral action in the position controller, because
the constant or slowly-varying disturbances are estimated and compensated
for. In Figure 15 is presented the DOB block schema for a single motor/DOF.
The nominal motor model is composed by a constant force/current relation-
ship, while the viscous friction is included into the environment impedance
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Zenv; other external disturbances, such as static friction or mechanical non-
idealities, are included into Fext

Fdis = Zenv x+ Fext

Current Sat
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Kt,n gdobMn

gdobMn

gdob
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t,n
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+ +
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+ +
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Disturbance Observer

Figure 15: Disturbance Observer control schema – compensation of system non-
idealities

Current Reference Saturation

An important control design aspect is the presence of a current reference
saturation block in the control scheme: as we saw in Table 3 the servo-driver
has a maximum current limit of 2A, that will cap the current reference when-
ever it exceeds this value. Other that a software fail-safe, the saturation block
ensures that the DOB input is the same as the actual motor, otherwise in pres-
ence of a current saturation by the servo-driver the estimated external force
could diverge, because the observer input differs from the actual one.

2.7.1 Model Non-Idealities Compensation

By supplementing the controller current reference i∗ with the current associ-
ated to the estimated disturbance idis,

idis =
F̂dis
Kt,n

(37)

from perspective of the bilateral controller the mechanical system performs
as the nominal one (Kt,n,Mn, null friction). In fact, with the hypothesis that
the DOB bandwidth is larger than the disturbances’, the estimated distur-
bance value is

F̂dis =
[
Fdis + (M−Mn)s

2x+ (Kt,n −Kt) i
] gdob
s+ gdob

(38)
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that is the external disturbance, the errors between actual and nominal mass
and force constant. Whereas the mechanical system is characterized by

x =
1

Ms2

[
Kt

(
i+

F̂dis
Kt,n

)
− Fdis

]
(39)

after the simplifications, the compensation of the model non-idealities yields

x =
1

Mns2

[
Kt,n i+ F̂dis

s

s+ gdob

]
(40)

The mechanical system now perform like a nominal one, with mass Mn,
no friction and nominal force/current constant, with the addition of the
high-frequencies components of Fdis that fall outside of the DOB estimation
bandwidth.

2.7.2 Speed derivative

In the DOB formulation (Figure 15) it is assumed that the motor speed ẋ is
directly measurable. The motor velocity is actually obtained by deriving the
position that, as saw in section 2.5, is corrupted by the quantization noise. To
attenuate the high frequency noise the velocity derivative is filtered by a first-
order low-pass filter with bandwidth gs, but it introduces a phase delay. In
this particular setup, the fine position encoder precision and high sampling
frequency permit to keep the filter bandwidth sufficiently high. Following
the same rationale used in the disturbance observer derivation, the speed ẋ
of each linear motor is calculated as a filtered derivative of the position:

ẋ =
sgs

gs + s
x (41)

to avoid the direct derivation of the position signal, it is implemented as

˙̂x =
gs

gs/s+ 1
x

which represent a numerically more robust solution.

2.7.3 Software Implementation

The described filtered speed derivative and disturbance observer are imple-
mented in C as follows.
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Listing 1: C implementation of the velocity and DOB estimators.

1 /* Motor nominal mass [kg] */

2 #define M (0.6)

3 /* DOB LPF freq. [rad/s] */

4 #define G_DOB (600)

5 /* Speed derivative LPF freq. [rad/s] */

6 #define G_S (600)

7 /* Nominal force constant [N/A] */

8 #define KT (33)

9

10 /* Motor structure */

11 struct joint {

12 double x; /* position */

13 double dx; /* velocity */

14 double f_dob; /* estimated disturbance force */

15 double f_cmd; /* force command (= i*Kt) */

16

17 /* var for velocity integration */

18 double int_dx;

19 /* var for dob integration */

20 double int_dob;

21 };

22 struct joint jm, js;

23

24 /* velocity estimation */

25 void velocity_update(struct joint *j) {

26 j->int_dx += j->dx*T;

27 j->dx = (j->x - j->int_dx)*G_S;

28 }

29

30 /* disturbance observer */

31 void dob_update(struct joint *j) {

32 j->f_dob = j->int_dob - j->dx*M*G_DOB;

33 j->int_dob +=

34 ((j->f_cmd + j->dx*M*G_DOB) - j->int_dob) * G_DIS*T;

35 }

36

37 /* [...] in the control loop */

38 jm.x = read_pos(chm);

39 velocity_update(&jm);

40 dob_update(&jm);

41

42 /* Control logic [...] */

43

44 /* Write current reference to DAC -> servo */

45 write_out(jm);
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2.7.4 DOB bandwidth

The choice of the speed pseudo-derivative and the DOB bandwidths gs, gdob
is not straightforward:

• higher bandwidths have faster dynamic responses, but the output is
more corrupted by the high-frequency noise

• lower bandwidths produce cleaner output signals, but the limited band-
width attenuates both the noise and the high frequency transients

In Figure 16 is presented the speed estimations of the same motor trajectory
with different bandwidths gs during a constant speed ramp. For this time-
limited example the data is saved at the controller sampling frequency T =

0.1ms to better study the DOB performance. As gs decreases:

• the estimated speed overshoot is damped and appears later in time

• the signal is less corrupted by the quantization noise

Because fast speed and disturbance estimations are important for a respon-
sive bilateral control system, it is chosen a bandwidth of 600 rad/s for both,
which trades some noise for faster dynamics.

Figure 16: Speed estimation using different pseudo-derivative bandwidths.

2.7.5 Disturbance Observer Robustness

The DOB robustness can be assessed by studying the system transfer func-
tion with non nominal motor parameters. Using Figure 15, the relationship
between motor speed and current is

ẋ(s)

i∗(s)
=

Kt,n(s+ gdob)

Mns
(
MKtn
MnKt

s+ g+ BKtn
MnKt

) =
Kt,n(s+ gdob)

Mns (αs+ g ′)
(42)
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that is the nominal model Kt,n/Mn multiplied by a zero and pole pair. Said
pair behaves like a phase lead network for

α =
MKtn

MnKt
6 1 ∧ B > 0

If these conditions are not respected, the zero-pole pair introduces a phase
delay that decreases the outer control loop stability margin: a condition we
would like to avoid. While the viscous friction B is always greater than
zero, the other condition is guaranteed by using, for the DOB design, the
nominal mass 0.6 kg (while the actual mass is 0.58 kg) and the nominal motor
force/current constant 33N/A. For pure fortuity:

α =
0.58 kg
0.6 kg

· 33N/A
31.8N/A

= 1.003

The nominal DOB parameters were not changed.
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2.8 bilateral controller implementation

In Figure 17 the overall control block diagram for the Bilateral Control sys-
tem is presented. The position controller output (the acceleration reference
ẍc) and the force controller output (ẍd) are combined to obtain the accelera-
tion references for the master and slave systems (ẍm, ẍs) that are converter to
current references with the nominal mass Mn and force constant Kt,n. The
current references are then supplemented with the estimated disturbances
compensation current before the current saturation block (limit set to 2A).
The current reference is then applied to the linear motor by the servo driver,
which dynamics is ignored in the block diagram, producing a force that
moves the motor. The motor movement is read by the position encoder and
it is used to estimate the motor speed. The speed, combined with the current
reference, is then used to estimate the motor equivalent external force Fdist.
The master and slave positions, speeds and external forces are the inputs for
the bilateral controller.

2.8.1 Communication Delay

From the perspective of the control signals, the bilateral controller (the hardware-
in-the-loop industrial computer used in this work) receives the position sig-
nals from the master and slave mechanical system encoders and generate
the control current references for the servo-drivers. The described setup
communication delay between the 3 components is negligible compared to
the control period T because the servo-drivers and the encoders (for which
the servo-driver acts like a pass-through) communicate directly with the bi-
lateral controller through the high-speed PCI bus. In other contexts where
the communication delay isn’t negligible the robustness of the system must
be asserted. Several solution has been tested to compensate for the com-
munication delay, for example the use of a CDOB [6], a Communication
Disturbance Observer, that treats the communication delay as a disturbance
interfering with the system, that is estimated by the CDOB and compensated
by a feedforward action.
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s

i∗ m
+

i∗ s
+

−

F
d
is
t

m −

F
d
is
t

s

x
m x
s

+ +

ẋ
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2.9 bilateral controller design

At this point the mechanical system model main parameters are known and
the external disturbances are estimated by the disturbance observer. As pre-
sented before, thanks to the modal decomposition, the design of the bilateral
controller can be split into the design of the position controller (differential
mode) and the force controller (common mode).

2.9.1 Position Controller Design

Before proceeding with the position controller design, it is appropriate to
consider how it’s integrated into the bilateral control. The first consideration
is that the motor acceleration and current reference can be used interchange-
ably as they are directly related by the nominal mass and force constant:

i∗ =
Mn

Kt,n
ẍ∗

The position controller inputs are the position and speed errors between
master and slave; the output is the current/acceleration reference that will be
added to (subtracted to) the force controller output to drive the master side
(slave side). This way both mechanical systems contribute to the reduction of
the position and speed errors by moving towards each other. Therefore the
position controller can be designed considering only one mechanical system,
given a position/speed reference.

Position LQR Controller

The design of the position controller is based on the Optimal Linear Quadratic
Regulator theory: from the state-space model of the mechanical system and
a quadratic cost function, the synthesized controller minimizes the specified
control cost during a finite or infinite time horizon. The space-state model
is derived from the mechanical model presented in Figure 10: the state vari-
ables are the motor position x and speed ẋ, the only controllable system
input is the motor current i∗ and the only measurable output the motor
position:

x =

[
x

ẋ

]
ẋ(t) = F x(t) +G u(t)

y(t) =
[
1 0

]
x(t) = x(t)

with

F =

[
0 1

0 −B/Mn

]
G =

[
0

Kt,n/Mn

]
With the hypothesis that the external disturbances like static and viscous
friction, non-constant force/current relation Kt, non-nominal mass M 6=Mn

and other mechanical non-idealities are compensated by the DOB, it is set
B = 0 for the design of the position control. Because the controller operates
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between discrete time intervals, the first step is to obtain the equivalent state-
space discrete-time system. From the Systems Theory, the state of a dynamic
system evolves from the instant tk like

x(t) = eF(t−tk)x(tk) +
∫t
tk

eF(t−τ)Gu(τ) dτ (43)

After the time T = tk+1 − tk, equal to the sampling time, during which it
is supposed that the input is kept constant by the DAC holder, the state
evolves to

x(tk+1) = eFTx(tk) +
∫T
0

eFτG dτ u(τ) (44)

Finally, the equivalent discrete model looked for:

x[k+ 1] = Φ x[k] + Γ u[k] and Φ = eFT , Γ =

∫T
0

eFτG dτ (45)

whereΦ ∈ Rn×n and Γ ∈ Rn×m. If we consider an infinite time horizon, the
control goal of the linear quadratic controller is to find the input sequence
u(·) that minimize the quadratic loss function

J(x0,u) =
∞∑
k=0

xT [k]Qx[k] + uT [k]Ru[k] (46)

where Q ∈ Rn×n (weights on the state) is a symmetric and semi-definite
positive square matrix and R ∈ Rm×m (weights on the input usage) a square,
symmetric and definite positive matrix. From the linear quadratic optimal
control on infinite time horizon theory, given that Q is positive semi-definite
and so it can always be decomposed into Q = CTC, and M is the symmetric
semi-definite positive solution of the Algebraic Riccati Equation (ARE (47))

M = Q+ΦTMΦ−ΦTMΓ
[
R+ ΓTMΓ

]−1
ΓTMΦ (47)

the optimal control input that minimizes the loss index J(x0,u) is

u[k] = −
[
R+ ΓTMΓ

]−1
ΓTMΦ x[k] = −K x[k] (48)

From the LQR theory said state feedback is stable i.f.f.[
zI−Φ

C

]
has full rank ∀ z ∈ C, |z| > 1 (49)

From the (48) the system optimal input is a time-invariant state feedback,
calculable in MATLAB as

K = dlqr(Φ, Γ , Q, R)

LQR Weights Choice

After entering the motor mass (0.58 kg), force nominal constant (33N/A) and
B = 0Ns/m, the equivalent discrete matrices of the test bench mechanical
system is

Φ =

[
1 10−4

0 1

]
Γ =

[
2.85 · 10−7
5.69 · 10−3

]
(50)
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We can partition the weight matrices as follows:

Q =

[
q1 0

0 q2

]
, q1, q2 ∈ R

and from the condition (49) we see that q1 6= 0, otherwise the rank of (49)
drop to 1 for z = 1; the other condition is that R is definite positive that,
because R is has dimension 1, translate to R > 0.

2.9.2 Simulation Tuning and Results

The tuning of the position LQ controller (that is the choice of q1, q2 and R) is
done initially in simulation, using the discrete-time motor model (Φ, Γ ), by
evaluating the system response to a step-variation of the position reference.
The controller tuning starts from the initial values q1 = q2 = R = 1, Test A.
The system response in Figure 18 shows a non-satisfactory dynamics, with
the 1 cm step response rise time of more than 2 s. Two factors limit the sys-
tem dynamics: the R weight on the current reference (limiting the amount of
current used) and the Q2 weight on the speed error (limiting the maximum
moving speed). The first corrective action taken was the lightening of the
input (current) weight R in Test B (R = 0.1) and Test C (R = 0.01). The sys-
tem rise time, overshoot and eigenvalues λ1,2 = eig

[
F−GK

]
are reported in

Table 6; the improvements were negligible, reducing the rise time by a mere
4ms, as confirmed by the unchanged slower eigenvalue 0.9990.

The next line of action is to change the weights on the state, q1, q2. First,
the position error weight is increased to q1 = 10, Test D: the resulting con-
troller improves the system dynamics, reducing the rise-time more than
3 times at 0.7 s. Further improvements are achieved lightening the speed
weight q2:

• with q2 = 0.1 the rise-time is now 220ms;

• to guarantee the control stability the (49) imposes q1 6= 0, but no condi-
tions are given for q2, that is now set to zero. With q2 = 0 the rise-time
is further reduced to 52ms, but the system eigenvalues are now com-
plex conjugates: the step response generates an overshoot of more than
4%;

• with q2 = 0.01 the system eigenvalues are still complex conjugates, but
the overshoot is now smaller than 0.1%;

• with q2 = 0.02 the system eigenvalues are purely real, there is no
overshoot and the rise-time is 0.101 s;

The system step responses are reported in Figure 19. The best compromise
is offered by Test G and Test H controllers, that achieve a fast step response
with a null or negligible overshoot.

From these tests the speed weight q2 appears to be the main discriminant
regulating the step response behavior. The final choice is postponed until
the experimental results confirm the behavior seen in the simulation.
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Table 6: LQR Position Controller – MATLAB Simulation

Test Q1 Q2 R K λ1,2 Tr [s] Overshoot

A 1 1 1 [0.976 0.888] [0.9990 0.9470] 2.211 -
B 1 1 0.1 [2.911 2.819] [0.9990 0.8428] 2.198 -
C 1 1 0.01 [7.674 7.581] [0.9990 0.5859] 2.197 -

D 10 1 0.01 [24.240 7.613] [0.9971 0.5863] 0.695 -
E 10 0.1 0.01 [28.978 2.968] [0.9906 0.8433] 0.220 -
F 10 0 0.01 [30.799 0.963] [0.9710± 0.0283i] 0.052 4.2 %
G 10 0.01 0.01 [30.476 1.327] [0.9614± 0.0103i] 0.077 < 0.1 %
H 10 0.02 0.01 [30.225 1.609] [0.9772 0.9304] 0.101 -



52 motion copying system

Figure 18: LQR position controller step response simulation varying the R weight.

Figure 19: LQR position controller step response simulation varying the Q weight
matrix, R = 0.01.
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2.9.3 Experimental Tuning and Results

The same LQR weight configurations are then used to test the experimental
setup system: the step responses are presented in Figure 20 for the choice
of the input weight R and Figure 21 for the choice of q1, q2, weights on the
state; the rise-times and overshoots are reported in Table 7.

The experimental system is tested using the same weights configurations
of the simulation. For the choice of the R weight, the obtained results are
very similar to the simulation ones Figure 18, supporting the model of the
motor used for the controller design and simulation. Regarding the choice
of q1, q2, compared to the simulation, the experimental runs present a more
pronounced response overshoot for q2 = 0, 0.01, Test F,G, that goes respec-
tively from the 4.2% to the 5.8% and from <0.1% to the 0.5%, Figure 21.

For this reason the choice of the state weight matrix falls back to q1 =

10, q2 = 0.02: these weights guarantee that the response to step reference is
still fast (tr = 128ms) while avoiding any overshooting.

Table 7: LQR Position Controller – Experimental Bench

Test Q1 Q2 R K Tr [s] Overshoot

A 1 1 1 [0.976 0.888] 2.086 -
B 1 1 0.1 [2.911 2.819] 2.087 -
C 1 1 0.01 [7.674 7.581] 2.046 -

D 10 1 0.01 [24.240 7.613] 0.789 -
E 10 0.1 0.01 [28.978 2.968] 0.261 -
F 10 0 0.01 [30.799 0.963] 0.076 5.8 %
G 10 0.01 0.01 [30.476 1.327] 0.107 0.5 %
H 10 0.02 0.01 [30.225 1.609] 0.128 -
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Figure 20: LQR position controller step response varying the R weight.

Figure 21: LQR position controller step response varying the Q weight matrix, R =

0.01.
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2.9.4 Force Controller Design and Stability Analysis

As the name implies, the force controller objective is to mirror the (estimated)
forces between the master and slave systems to obtain the overall bilateral
forces balance, thus providing haptic feedback between the environment
and the operator, with the already discussed user sensibility benefits. Be-
cause the master and slave environment configurations differs, a standalone
force controller would yield an unstable system and so it is always coupled
with a position controller to achieve a stable configuration and to obtain the
position tracking.

As briefly presented in the initial section, the design of the force controller
– that is the choice of Kf – is a tradeoff between the system stability and
the faithful force reproduction, in particular a better operationality Po. By
increasing the force gain Kf, the force controller has more influence over the
position one, monopolizing the system behavior.

Bilateral Controller Model

The bilateral controller can be described as[
s2xrefm
s2xrefs

]
= Q−1

[
Cp(xm − xs)

Cf(F̂
dis
m + F̂diss )

]
(51)

where Q−1 is the inverse Quarry matrix, Cp, Cf the position and force con-
trollers. With the disturbance compensation provided by the DOB, the me-
chanical motor can be modeled as the nominal one plus the disturbances
outside the estimation bandwidth gdob

x =
1

Mns2

{
Kt,n i+ F̂dis

s

s+ gdob

}
(52)

The stability of the bilateral controller can be assessed by studying the stabil-
ity margin of the loop transfer function between the motor and environment
positions like presented in [13]. The external disturbance is modeled as

Fl = Z
env(x− xenv) + Fext +∆F (53)

where

• Zenv = K+Ds is the environment impedance;

• xenv the environment edge position;

• Fext the sum of external forces not dependent on the position;

• ∆F the DOB force estimation error.

and the bilateral control master Fdism and slave Fdiss disturbances can be ex-
pressed as

Fdism =
Ktn,m

Ktm

{
Zenvm (xm − xenvm ) + Fextm +∆Fm +∆M ′ms

2xm
}

(54)

Fdiss =
Ktn,s

Kts

{
Zenvs (xs − x

env
s ) + Fexts +∆Fs +∆M

′
ss
2xs
}

(55)
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where ∆M ′ denote the mass modeling error

∆M ′ =M−
Ktn

Kt
Mn (56)

The control block diagram of the bilateral controller considering the environ-
mental impedance and modeling errors is then presented in Figure 22 where
4 transfer functions are highlighted:

• Gmm is the t.f. between master disturbance and master motor position,

• Gss is the t.f. between slave disturbance and slave motor position,

• Gms is the t.f. between master disturbance and slave motor position,

• Gsm is the t.f. between slave disturbance and master motor position.

Figure 22: Bilateral controller block diagram considering environmental impedance
and modelling errors [13].

Using Figure 22 [13] we can interpret the bilateral controller as having
as input x, as output xenv and as gain the environment impedance. The
stability of the system can be assessed by "opening" the loop and analyzing
the loop transfer function, that can be obtained from Figure 22:

Gloop = −Gmm(Zenvm +∆M ′ms
2)

−Gss(Z
env
s +∆M ′ss

2)

+ (GmmGss −GmsGsm)(Zenvm +∆M ′ms
2)(Zenvs +∆M ′ss

2) (57)
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Figure 23: Equivalent bilateral controller block diagram.

The complete control loop is presented in Figure 23, withMsum =Mmn+

Msn and Glpf
Glpf(s) =

gs

s+ gs

gdob
s+ gdob

from it we can obtain:

Gmm = −
Ktn,m

Msums2 Kt,m

{
KfGlpf + (1−Glpf)

(
1+

s2

s2 +Cp

)}
(58)

Gss = −
Ktn,s

Msums2 Kt,s

{
KfGlpf + (1−Glpf)

(
1+

s2

s2 +Cp

)}
(59)

Gms = −
Ktn,m

Msums2 Kt,m

{
KfGlpf + (1−Glpf)

(
1+

Cp

s2 +Cp

)}
(60)

Gsm = −
Ktn,s

Msums2 Kt,s

{
KfGlpf + (1−Glpf)

(
1+

Cp

s2 +Cp

)}
(61)

Using the values in Table 8 for the calculation of Gmm, Gss, Gms, Gsm
and then Gloop with the (57), it is possible to study the system stability by
studying the open-loop transfer function Gloop stability margin. The stabil-
ity margin is determined in MATLAB using the function margin for different
values of Kf. The relationship between the force controller gain Kf and the
stability margin is reported in Figure 24, in presence of different environ-
ment conditions between master and slave side. As previously anticipated,
the choice of the force controller gain is a tradeoff between the system stabil-
ity and better operatibility, defined as

operatibility Po =
s2

Kf

A conservative choice is Kf = 2m/Ns2, that offers a stability margin of
81.6 deg.
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Table 8: Force control stability analysis conditions

Symbol Description Value

Mm,n Master nominal mass 0.6 kg
Ms,n Slave nominal mass 0.6 kg
Mm Master mass 0.580 kg
Ms Slave mass 0.575 kg

Ktm,n Master nominal force constant 33N/A

Kts,n Slave nominal force constant 33N/A

Ktm Master force constant 31.8N/A
Kts Slave force constant 31.8N/A
gs Cutoff frequency of pseudo derivative 600 rad/s

gs Cutoff frequency of DOB 600 rad/s

Km Virtual master stiffness coefficient 800N/m

Ks Virtual slave stiffness coefficient 2000N/m

Dm Virtual master damping coefficient 200Ns/m

Ds Virtual slave damping coefficient 100Ns/m
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Figure 24: Bilateral control open loop transfer function phase margin for different
values of Kf.
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2.10 bilateral control testing

Once the bilateral controller was designed, the configuration was tested both
in simulation and on the experimental setup.

2.10.1 Bilateral Control Simulation

The simulation of the bilateral system is performed using two identical mo-
tor models for the master and slave systems, both obtained from the dis-
cretization with T = 0.1ms of the continuous motor model presented in
Figure 10. The bilateral controller architecture is the same as the one pre-
sented in section 2.3, with the position controller obtained from the LQR
design and the force controller gain Kf = 2. The operator interaction is
emulated by a 10N constant external force on the master motor during
1 s 6 t 6 6 s, Figure 25. A obstacle having impedance K = 400N/m and
damping D = 50Ns/m is placed 10 cm away from the home position. Fi-
nally the motor friction is simulated as a static Fst = 0.25N term and the
viscous friction coefficient B = 3.7Ns/m, the same values estimated for the
experimental setup.

The two systems evolution is presented in Figure 25: after the external
force is applied to the master, the bilateral controller accelerates the two mo-
tors to obtain the external force balance while mirroring the motor positions.
The motors speed up and, as the viscous friction increases, the acceleration
is slowed down. When the slave motor comes into contact with the target
object a force spike (caused by the target damping) slows down the systems
that reach the equilibrium at

∆xs =
Fm

K
=

10N

400N/m
= 0.025m

The limited Disturbance Observer bandwidth (600 rad/s) smooths the es-
timated force spike. After the external force acting on the master motor is
removed, t > 6 s, the environment stiffness pushes the slave (and the master)
back to the contact point.
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Figure 25: Bilateral control system simulation – Interaction with the environment

2.10.2 Bilateral Control Experimental Validation

For the experimental validation, the bilateral controller is implemented as a
real-time C program, running on the hardware-in-the-loop computer. The
operator handles the master side while the slave motor interacts with the en-
vironment, which consists of a metal object and a soft sponge. In Figure 26

the position of the two systems is presented as well as the estimated exter-
nal disturbances; the position of the two obstacles are represented as a gray
box (hard material) that is then swapped for a orange one (soft material)
in the second part of the experiment. From the operator point of view, the
interaction with the environment feels natural, as if the two systems were
mechanically linked, realizing the transparency property between the per-
ceived environment impedance and the actual impedance at the slave side.
The force signals contain high-frequency noise that enters the control loop
from the double position derivative. A simple metric to evaluate the bilat-
eral system performance is the maximum absolute position error between
the two systems

max |ep| = max |xm − xp| = 0.11mm

that validate the design process choices.
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2.11 motion copying system implementation

In this section it is described how the motion copying system is implemented
in the experimental test bench. The MCS operation is divided into two
phases, Figure 27:

1. Motion Saving during the operator motion the position, velocity and
estimated applied force

[
xm, ẋm, F̂m

]
are saved to a motion database;

2. Motion Loading the saved task can be reproduced using the master
position, velocity and force signals as a virtual master in the bilateral
controller.

Figure 27: Bilateral Control Motion Saving Loading [5]

From the programming standpoint the motion copying system code is
constituted of two parts:

• a real-time component that, during the bilateral control operation, sends
the master position, speed and estimated force to a RTAI data buffer;

• a non-RT component that, once the bilateral operation is concluded,
saves the sample from the data buffer to disk.

The high-frequency control loop execution (10 kHz) generates a substantial
amount of data, that would quickly saturate the data buffer if saved entirely,
limiting the maximum task duration. Saving the all the data sample would
also be superfluous, because the operator movements don’t need such high
frequency sampling to be completely described. The operator hand move-
ments properties will analyzed in Equation 4.2.

For the presented reasons, the original master references are downsam-
pled before being sent to the data buffer, in particular they are decimated
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reducing the sampling rate to 1 kHz. Attention must be payed in the choice
of the real-time application buffer STACK allocation space: the saved posi-
tion, speed and force are in fact saved in the controller stack until the action
recording ends, avoiding the delays introduced by the I/O operations. The
struct used to save the master reference is composed by 3 double fields
(xm, ẋm, Fm), for a total of

3 sizeof(double) = 24 sizeof(char) = 24 byte/sample

given the fact that double precision floating-point numbers have an alloca-
tion size of 4 bytes. The master reference samples are saved every 1ms,
producing a data stream of 24 kB/s. For the experimental tests the allocated
stack space is 4MB, that ensures a runtime of

t =
4 · 1024
24

' 170 s

To avoid the risk of a stack overflow, the data saving loop ends automatically
after having recorded 120k data samples (equivalent to 2min). The down-
sampling ratio 10:1 between controller loop frequency and data recording
frequency can be changed to better address the trade-off between the task
reproduction precision and data allocation size.

2.11.1 Signal Interpolation

During the task reproduction, we need to generate the position, speed and
force signals for the bilateral controller (10 kHz) from the saved (downsam-
pled) task samples. The first crude implementation used the same saved
sample for 10 control steps: this solution introduces position, speed and
force step reference discontinuities that, even if it could be acceptable for
this particular configuration given the high sample rate, is not ideal. To ob-
tain a more robust solution in the case of different downsampling ratios (e.g.
1:20, 1:50):

• a third order polynomial interpolation between position/speed sam-
ples is used to guarantee the velocity signal continuity;

• a first order (linear) interpolation is used for the force signal.

Denoting with tk the k-th saved sample time (fk = 1 kHz) and with j the
control step (fj = 10 kHz),

xm(tj) = a3(tj − tk)
3 + a2(tj − tk)

2 + a1(tj − tk) + a0 (62)

Fm(tj) = b1(tj − tk) + b0 (63)

where the coefficients a0, a1, a2, a3 and b0, b1 are chosen to ensure posi-
tion, velocity and force continuity:
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xm(tk) = a0

xm(tk+1) =
a3

f3k
+
a2

f2k
+
a1
fk

+ a0

ẋm(tk) = a1

ẋm(tk+1) =
3 a3

f2k
+
2 a2
fk

+ a1

Fm(tk) = b0

Fm(tk+1) = b0 +
b1
fk

The main requirement and limiting factor of the MCS is that it is assumed
that the environment remains unchanged between the saving and the load-
ing phase. If this is not the case there will be a mismatch between the saved
impedance (maser position force trajectories) and the actual environment
impedance; the system behavior under a impedance mismatch is analyzed
in the next section.

2.12 mcs task reproduction in presence of
environmental changes

In the case of a mismatch between the saved position and force relationship
and the actual environment impedance the bilateral controller doesn’t per-
fectly reproduce the saved motion. In fact, the MCS motion reproduction
(virtual) master system is "read-only", so the position and force controllers
compete for the achievement of conflicting goals: the position controller tries
to reduce the position/speed error while the force controller drives the mo-
tors to minimize the mismatch between the saved force and the actual envi-
ronment reaction force.

x0 xs xl

Fs

Ks

Ds

F1

F

Kl

Dl

F2

Saved

Loaded

Figure 28: Motion copying system with different environment impedances.
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The described situation is represented in Figure 28, where x0 is the tar-
get edge position before the contact, xs the saved master position, xl the
end-effector during the motion reproduction. The saved master side force
reference Fs is equal to the environment reaction force during the bilateral
control conditions

−Fs = F1 = Ks(xs − x0) +Dsẋs

During the reproduction phase the environment (Kl, Dl) has changed and
the reaction force is now

Fl = F2 = Kl(xl − x0) +Dlẋl

During the motion reproduction, from the force equilibrium Fs = F2 between
motor thrust and environmental reaction force

Mn

[
Kp(xs − xl) +Kv(ẋs − ẋl) +Kf(F̂s + F̂l)

]
= F2 (64)

replacing the load values (Kl, Dl) and the definitions of Fs, Fl

xl = xs +∆x

ẋl = ẋs +∆ẋ

Kl = Ks +∆K

Dl = Ds +∆D

we obtain the force equilibrium condition (66):

Mn[−Kp∆x−Kv∆ẋ+Kf(Kl∆x+Dl∆ẋ+∆Kxl

+∆Dlẋl +∆K∆x+∆Dl∆ẋ)] = Kl(xl − x0) +Dlẋl (65)

ignoring the ∆K∆x and ∆Dl∆ẋ terms

Mn[−Kp∆x−Kv∆ẋ+Kf(Kl∆x+Dl∆ẋ+∆Kxl

+∆Dlẋl)] ≈ Kl(xl − x0) +Dlẋl (66)

From the (66) is clear that, as it could easily be expected, the resulting motion
reproduction accuracy depends on the particular design of the position and
force controllers, as well as the environment changes (∆K, ∆D). During the
static equilibrium (ẋs = ẋl = 0) the condition simplifies to:

Mn[−Kp∆x+Kf(Kl∆x+∆Kxl +∆K∆x)] ≈ Kl(xl − x0) (67)

so the reproduced task precision is subjected to many factors of both the
bilateral controller (Kp, Kv, Kf) and the environment (Ks−Kl, Ds−Dl, xs−
xl).

2.13 mcs task reproduction stability

In the last section we saw that the motion copying system behavior during
the task reproduction depends on the environment impedance and the bi-
lateral controller design: there are no guarantees that the motion copying
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Figure 29: Motion Copying System equivalent control schematic.

system is stable under environment changes. In [5] the MCS stability is
analyzed studying the pole positions of the transfer function between the
saved task force and the actual one under different environment parameter
variations.

The same method is applied to the studied MCS; the control block dia-
gram is presented in Figure 29.The DOB equivalent force estimation is mod-
eled as a simple first-order low-pass filter of bandwidth gdob. With the help
of MATLAB, the transfer function from the loaded and saved force can be
derived:

G(s) =
Fl
Fs

=
a4s

4 + a3s
3 + a2s

2 + a1s+ a0
b5s5 + b4s4 + b3s3 + b2s2 + b1s+ b0

(68)

where

a0 = −Klβg
2
dis

a1 = −Kl
(
2βgdis +αg

2
dis

)
−Dl

(
βg2dis

)
a2 = −Kl (β+ 2αgdis) −Dl

(
2βgdis +αg

2
dis

)
a3 = −Klα−Dl (β+ 2αgdis)

a4 = −Dlα

b0 = Ksηgdis

b1 = Ks (δgdis + η+ εgdis) +Dsηgdis

b2 = Ks (δ+ γgdis + ε) +Ds (δgdis + η+ εgdis)

b3 = Ks (γ+ 2gdis) +Ds (δ+ γgdis + ε)

b4 = 2Ks +Ds (γ+ 2gdis)

b5 = 2Ds

α = KfDs +Kv

β = KfKs +Kp

γ =
2Dl
M

+Kv + 2gdis

δ = KfgdisDl +Kp

ε = Kvgdis +
2Kl
M

η = (KfKl +Kp)gdis
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with Kp, Kv the proportional and derivative gains of the position controller,
Kf of the force controller, Kt = 33N/A the nominal force/current constant,
Mn = 0.6 kg the nominal motor mover mass, gdob = 600 rad/s the cut-off
frequency of the DOB low-pass filter. The stability of the control system
during the motion reproduction can be assessed studying the transfer func-
tion G(s) (68) [5]. In particular the transfer function poles are calculated for
different configurations of Ks, Kl, Dl. The introduced simplifications (ideal
speed derivation, constant nominal parameters) are valid for movements
and motor dynamics completely captured by the DOB bandwidth, where
the DOB disturbance rejection is maximum and the controller system acts as
the nominal one.

2.13.1 Soft Target Stability

In this simulation it is hypothesized that the environment conditions during
the bilateral task recording were Ks = 300N/m, Ds = 50Ns/m, while dur-
ing the reproduction the target stiffness is varied between Kl ∈ [0, 105]N/m
and the damping between Dl ∈ [0, 103] Ns/m. The position evolution of
the system poles is reported respectively in Figure 30 and Figure 31.
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Figure 30: System poles with Ks = 300N/m, Ds = 50Ns/m – Kl ∈ [0, 105] N/m

Figure 31: System poles with Ks = 300N/m, Ds = 50Ns/m – Dl ∈ [0, 103] Ns/m
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stiffness variations The position of the 5 system poles is analyzed as
a function of the environment stiffness, that is varied between Kl = 0 →
105 N/m:

• two poles in p1 = −600 rad/s and p2 = −6 rad/s are invariant to Kl
changes and are highlighted with a dark "◦" in the root locus;

• a pole transition from p3 = −689 rad/s to −545 rad/s;

• two poles, starting from p4 = −109 rad/s and p5 = −3.6 rad/s be-
come complex-conjugate for Kl ' 1990N/m, then approaching p3,4 =

−128± 306i rad/s.

damping variations The position of the 5 system poles is analyzed as
a function of the environment damping, that is varied between Dl = 0 →
103 Ns/m:

• two poles in p1 = −600 rad/s and p2 = −6 rad/s are invariant to Kf
changes and are highlighted with a dark "◦" in the root locus,

• two complex-conjugates poles is p3,4 = −15.2± 22.8i rad/s transition
to p3 = −300.7 rad/s and p4 = −0.7 rad/s, becoming purely real for
Dl = 33Ns/m,

• the last pole transition from p5 = −599 rad/s to −2052 rad/s.

2.13.2 Stiff Target Stability

In this simulation it is hypothesized that the environment conditions during
the bilateral task recording were Ks = 104 N/m, Ds = 50Ns/m, while dur-
ing the reproduction the target stiffness is varied between Kl ∈ [0, 105]N/m
and the damping between Dl ∈ [0, 103] Ns/m. The position evolution of
the system poles is reported respectively in Figure 32 and Figure 33.
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Figure 32: System poles with Ks = 104 N/m, Ds = 50Ns/m – Kl ∈ [0, 105] N/m

Figure 33: System poles with Ks = 104 N/m, Ds = 50Ns/m – Dl ∈ [0, 103] Ns/m
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stiffness variations By varying the environment stiffness the position
of the 5 system poles is analyzed; as Kl goes from 0 to 105 N/m:

• two poles in p1 = −600 rad/s and p2 = −200 rad/s are invariant to Kl
changes and are highlighted with a dark "◦" in the root locus;

• a pole transition from p3 = −689 rad/s to −545 rad/s;

• two poles, starting from p4 = −109 rad/s and p5 = −3.6 rad/s, be-
come complex-conjugate for Kf ≈ 1990N/m, approaching −128 ±
306i rad/s for Kl → 106 N/m.

damping variations By varying the environment damping the position
of the 5 system poles is analyzed; as Dl goes from 0 to 103 Ns/m:

• two poles in p1 = −600 rad/s and p2 = −333.3 rad/s are invariant to
Dl changes and are highlighted with a dark "◦" in the root locus,

• two complex-conjugate poles in p3,4 = 69.4 ± 343i rad/s transition
to p3 = −111 rad/s and p4 = −275 rad/s as Dl increases, becoming
purely real with Dl = 597Ns/m

• the last pole p5 transition from −599 rad/s to −2052 rad/s.

2.13.3 Final Comments

From the system pole loci in response to the environmental condition changes,
the analyzed motion copying system presents always a stable behavior: the
real part of every transfer function pole is strictly negative, yielding a BIBO
stable system. This result guarantees that, in the case of a mismatch be-
tween the original environmental conditions (during the operator recording)
and the conditions during the task reproduction, the overall system is stable,
with the downside of an imprecise task reproduction.
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2.14 motion copying system testing

In this chapter the motion copying system was introduced and its behavior
in the presence of environmental changes was analyzed. In the following
section we proceed to test the system, both in simulation and on the experi-
mental bench.

2.14.1 Simulation Testing

The same environment used for the bilateral control is now used for the mo-
tion copying system simulation. The master position, speed and estimated
force from the bilateral control simulation (Figure 25) are used as virtual
master reference; the results are presented in Figure 34. The control system
achieve position tracking and force mirroring (the maximum error between
the virtual master reference and the end-effector motion is 0.54mm), suc-
cessfully reproducing the bilateral control task.

Figure 34: Motion copying system simulation testing

2.14.2 Experimental Testing

The experimental validation of the motion copying system is performed by
saving an operator action, the interaction of the end-effector with a sponge
at a distance of about 3 cm from the home position, and then reproducing
said action. In Figure 35 the results are presented.



2.14 motion copying system testing 73

Figure 35: Motion copying system experimental testing – Task reproduction with
original environment.

2.14.3 Testing with Environmental Changes

The same MCS task is reproduced when the original target was replace with
a stiffer and a softer one, Figure 36 and Figure 37. As predicted the overall
system behavior is stable, but because the environment impedance doesn’t
match the saved position/force reference are present positioning and ap-
plied force errors. In particular with the softer target there is a position
overshoot and a force under-activation, instead with the stiffer target there
is a position undershoot and a force over-activation.
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Figure 36: Motion copying system experimental testing – Task reproduction with
softer environment.

Figure 37: Motion copying system experimental testing – Task reproduction with
stiffer environment.



3 D I S T U R B A N C E A N D S P E E D
E S T I M AT I O N

3.1 introduction

The bilateral controller architecture makes use of a Disturbance Observer
(DOB) to estimate the total external disturbances acting on each motor, that,
besides the external forces resultant, includes all the non-idealities such as
friction and non-nominal mass and force constant. The DOB estimation
bandwidth is selected by trial-and-error: a trade off is chosen between large
bandwidths, that capture faster dynamics but are more corrupted by the
quantization errors, or lower bandwidths, that present smoother estimates
but attenuate the high-frequency components. The objective of this chapter
is to find an optimal configuration of the DOB that offers the best tradeoff
between estimation bandwidth and noise rejection.

The tool used to tune the observer is the Kalman filter.

3.2 dob equivalent state-space model

The first step is to obtain a state-space representation of the DOB [14]: the
external disturbance is modeled as an additional state variable, Fdist. The
state vector of the system is then x = [x, ẋ, Fdist]T , i.e. the motor position,
speed and the total external disturbance force, while the the only input is
the motor current reference u = iref and the only measurable output is the
quantized motor position x

ẋ(t) = F x(t) +G u(t) (69)

y(t) = H x(t) (70)

where

F =

0 1 0

0 0 1/M

0 0 0

 G =

 0

Kt/M

0

 H =
[
1 0 0

]
and the system observability can be checked by verifying if the observability
matrix has full rank, which it does:

rank O = rank

 H

HF

HF2

 = rank

1 0 0

0 1 0

0 0 1/M

 = 3 (71)

The state observer structure is the one of a predictor-corrector:

ˆ̇x(t) = F x̂(t) +G u(t) + L {y(t) −Hx(t)} with L =

l1l2
l3

 (72)

75
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The force disturbance estimation dynamics can be made explicit in the trans-
fer function form:

F̂dist(s) =
[
0 0 1

]{
(sI− F+ LH)−1 [GU(s) + LY(s)]

}
=
[
KtU(s) − s

2MY(s)
] −l3
Ms3 + l1Ms2 + l2Ms− l3

(73)

that is the filtered disturbance obtained by subtracting the motor inertia force
from the (nominal) motor force Ktu = Kti

ref: modeling the disturbance in
the state space as an unobservable input yields a structure equivalent to the
DOB’s, where the choice of the observer gain L is equivalent to the choice of
the DOB filtered derivative bandwidths gs, gdob, but now several tools can
be used to guide this choice.

3.3 optimal estimation

Consider a state-space process model perturbed by process and output noises:with output noise we mean
the errors that prevent

from measuring the true
state, for example the
encoder quantization

with process noise the
equivalent noise that acts
on the continuous system

state, including the
modeling errors

with the hypothesis that these noises probability distributions are known,
the Kalman filter is an optimal state observer in the sense that it minimizes
the mean squared error on the state estimation or, from the probability
point of view, the filter output maximizes the x̂ joint probability distribution.
Three random noises are introduced, 2 model uncertainty noisesw1, w2 and
the measurement noise v:

• w1 acts in parallel to the system input and includes all the noises in-
terfering with the motor control and driving, e.g. the limited DAC
resolution quantization noise;

• the motor external disturbance is modeled as a random walk fed by
the random distribution w2

• the motor position is corrupted by the sampling quantization error v

All three noises are hypothesized to

• have a probability distribution with zero mean E[n] = 0 and variance
σ2;

• be stationary (their probability distribution doesn’t change over time);

• be ergodic (the statistical average converges to the time average);

• have null autocorrelation and correlation

Rw(τ) = E[w(t)w
T (t+ τ)] = 0 ∀τ 6= 0

Rv(τ) = E[v(t)v
T (t+ τ)] = 0 ∀τ 6= 0

E[w(t)vT (t)] = 0 ∀τ 6= 0

• the covariance matrices of the noises are known

E[w1(k)w
T
1 (k)] = Q1,k E[w2(k)w

T
2 (k)] = Q2,k E[v(k)vT (k)] = Rk
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The state-space motor model that includes the introduced stochastic noises
is:

ẋ(t) = Fx(t) +G [u(t) +w1(t)] +
[
0 0 1

]T
w2(t)

y(t) = Hy(t) + v(t)

where w1 acts in parallel to the input u and w2 directly on the force distur-
bance random walk. A block representation is shown in Figure 38.

H0 Kt

1
s

w1 w2

1
Ms2

State Observer

i∗k x

+

T

i∗
+ +
+ +

+ v(t)

x̂k

Figure 38: Motor model with the output and process noises and the State Observer

Temporary ignoring the introduced noises and following the same dis-
cretization used in the LQR controller design, the continuous time matrices
(F,G) are converted to the discrete time ones (Φ, Γ). The observer has a
predictor-corrector structure:

x̂[k|k− 1] = Φx̂[k− 1|k− 1] + Γu(k− 1)

x̂[k|k] = x̂[k|k− 1] + L[k](y[k] −Hx̂[k|k− 1])

in the first equation (temporal update) the state of the k-nth step is esti-
mated using the previous step k− 1 state estimate and the current system
input, in the second one (measurement update) the estimation is corrected
by weighting the innovation v[k] = y[k] −Hx̂[k|k− 1] with the L[k] matrix.

3.3.1 Weighted Least Squares

Consider a linear application where the output y is corrupted by the zero-
mean noise v

y = Hx+ v (74)

where y ∈ Rp is the output measurements vector, x ∈ Rn the unknown
vector, v ∈ Rp noise vector. With p > n the system is overdetermined: the
number of measurement samples is greater than the state dimension. The
objective of the algorithm is to find the x that minimizes the quadratic cost
J, weighted by the diagonal weight matrix W ∈ Rp×p:

J =
1

2
vTWv
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The convex optimization problem is straightforward:

∂J

∂x
= (y−Hx)TW(−H) = 0

HTWHx = HTWy

x̂ = (HTWH)−1HTWy (75)

If the noise v covariance matrix is known

E[vvT ] = R = σ2I

a direct choice for W is R−1: this way the low noise output errors are
weighted more than the ones coming from the more noisy outputs. The
covariance error matrix of x̂ is P (using the (74)):

P = E[(x̂− x)(x̂− x)T ]

= E[(HTWH)−1HTWvvTWH(HTWH)−1]

= (HTR−1H)−1

that appears in the estimation (75).

3.3.2 Recursive Algorithm

As presented, the weighted least squares algorithm increases the vector di-
mension p at each step k. The computational load can be lightened by im-
plementing the algorithm recursively:[

yo
yn

]
=

[
Ho
Hn

]
x+

[
vo
vn

]
where the first line include the old samples, the second the new ones. The
weighted estimation becomes:

[
Ho
Hn

]T [
R−1o

R−1n

] [
Ho
Hn

]
x̂ =

[
Ho
Hn

]T [
R−1o

R−1n

] [
yo
yn

]
the new state estimation x̂ = x̂o + ∆x̂ is obtained by the old one and the
incremental contribution by the new samples ∆x̂. Using the fact that (75)

(HToR
−1
o Ho)x̂o = HToR

−1
o yo

we obtain

x̂ = x̂o + PnH
T
nR

−1
n (yn −Hnx̂o) (76)

Pn = [P−1o +HTnR
−1
n Hn]

−1 (77)

where Po is the state covariance matrix at the time step k − 1 and Pn the
updated matrix at time k.
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3.3.3 Kalman Filter Derivation

Like in the recursive Least Squares algorithm, where P[k]HTR−1n weights the
corrective action of the innovation on the state estimate, in the predictor–
corrector observer the L[k] matrix have a similar role in correcting the state
estimate using new information that is the innovation (difference between ac-
tual and predicted system output). The main difference between the two al-
gorithms is that the observer state is time-changing, while the Least Squares
the unknown vector is not. To integrate the state evolution into the algo-
rithm, it is introduced the state estimation covariance matrix M[k] before the
measurement update:

M[k+ 1] = E
[
(x̂[k+ 1|k] − x[k+ 1])(x̂[k+ 1|k] − x[k+ 1])T

]
= E

[
Φ(x̂[k|k] − x[k])(x̂[k|k] − x[k])TΦT + Γ1w1[k]wT1 [k]Γ

T
1 + Γ2w2[k]w

T
2 [k]Γ

T
2

]
= ΦP[k]ΦT +Qw (78)

where Qw = Qw1 +Qw2 = Γ1Rw1Γ
T
1 + Γ2Rw2Γ

T
2 is the covariance model

error matrix. To obtain P[k] we can apply the matrix inversion lemma to the
(77):

P[k] = [M−1[k] +HTR−1v H]−1

=M[k] −M[k]HT (Rv +HM[k]HT )−1HM[k] (79)

The predictor-corrector Kalman filter is then:

1. during the time step k the next step state x̂(k+ 1) and its covariance
matrix M(k+ 1) are estimated,{

x̂[k+ 1|k] = Φx̂[k|k] + Γu[k]

M[k+ 1] = ΦP[k]ΦT +Qw

2. when the y(k+ 1) sample is available, the covariance matrix P(k+ 1)
is calculated from M(k+ 1) and the incremental correction to the state
estimate is performed using the innovation and L[k]
P[k+ 1] =M[k+ 1] −M[k+ 1]HT (Rv +HM[k+ 1]HT )−1HM[k+ 1]

L[k+ 1] = P[k+ 1]HTR−1v

x̂[k+ 1|k+ 1] = x̂[k+ 1|k] + L[k+ 1] (y[k+ 1] −Hx̂[k+ 1|k])

Dualism Between Optimal Control and Estimation

For the hypothesis of the stationary noise probability distribution the matri-
ces Rv, Qw are time-invariant: it is then possible to study their steady-state
evolution separately from the observer:{

P∞ =M∞ −M∞HT (HM∞HT + Rv)−1HM∞
M∞ = ΦP∞ΦT +Qw

where we can recognize a problem dual to the optimal control one:
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Optimal Control Optimal Estimation

Φ ΦT

Γ HT

M P

Q Qw
R Rv

We can obtain a time-invariant feedback matrix L by ignoring the (P,M)

evolution and consider its regime value by solving the following equation:

P∞ = ΦP∞ΦT +Qw −ΦP∞HT (HP∞HT + Rv)−1HP∞ΦT
where we can identify an ARE (Algebraic Riccati Equation) in the variable
P∞. Like it was done for the optimal controller, the ARE is solved and the
innovation gain L calculated directly in MATLAB with the dlqr command

L = dlqr
(
ΦT , HT , Qw, Rv

)T
(80)

3.4 filter tuning

The tuning of the Kalman filter consists in finding Rv,Qw, that express
respectively the uncertainty on the system output measurements and the
model noise to obtain the observer gain L with the (80).

3.4.1 Measurement Noise Covariance Rv

The evaluation of the measurement covariance Rv is done assuming that the
measurement noise is caused entirely by the position encoder quantization,
a random uniform distribution between [−q/2; q/2], q = 10−6 m:

Rv = σ
2 =

q2

12
= 8.33 · 10−14 m2

3.4.2 Process Noise Covariance Qw

Contrary to the measurement one, the process noise effects on the system
cannot be directly determined as it acts on the continuous portion of the
system, varying throughout one sample period. The generic process noise
w(t) effects on the continuous model

ẋ(t) = Fx(t) +Gw(t)

can be integrated to obtain the following discrete model

x(k+ 1) = Φx[k] +

∫T
0

eFηGw(η) dη

Using the definition of M (78) we obtain the process noise covariance matrix
Qw:

Qw =

∫T
0

∫T
0

eFσGE
[
w(σ)wT (η)

]
GTeF

Tηdσdη (81)
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from the hypothesis that the noise is white, the correlation is not null only
when η = σ

E
[
w(σ)wT (η)

]
= Rw = σ2wδ(η− σ)

where Rw is the power spectral density of the continuous white noise. Using
the sampling property of the Dirac delta:

Qw = σ2w

∫T
0

∫T
0

eFσGGTeF
Tηdσdη = σ2wW0→T (82)

where W0→T is the controllability Gramian. The Qw term consist then of the
w noise variance σ2w multiplied by the Gramian.

The presented motor system model includes two process noises: w1 acting
in parallel to the input and w2 feeding the external disturbance random
walk. Both their Gramians are calculated hereafter, where α = −B/Mn, β =

Ktn/Mn:

W1,0→T =

∫T
0

∫T
0

eFσGGTeF
Tηdσdη

=

 T3/3β2 T2/2β2 + T3/3αβ2 0

T2/2β2 + T3/3αβ2 β2T +α2β2T3/3+ 2αβ2T2/2 0

0 0 0

 (83)

W2,0→T =

∫T
0

∫T
0

eFσ

00
1

 [0 0 1
]
eF
Tηdσdη

=

0 0 0

0 β2T3/3 βT2/2

0 βT2/2 T

 (84)

In the previous section the duality between the optimal LQR control theory
and the Kalman filter derivation was highlighted. Like the LQ controller
performance depends exclusively on the ratio between the state and input
weights and not their absolute value, the Kalman filter performance depends
on the ratio between Rv and Qw. The L matrix adjust the state estimation af-
ter the measure, based on how accurate the process model (Qw) is in respect
to the output noise (Rv). To tune the filter we can set Rv to the calculated
(fixed) value and adjust Qw until a satisfactory tuning is reached, exactly
like it was done for the LQR controller. Without loss of generality we can
impose σ2w = 1 and introduce a multiplicative factor ρ to scale the individual
process noises covariances. The complete process noise covariance matrix is
then

Qw = Qw1 +Qw2 = ρ1W1,0→T + ρ2W2,0→T

where ρ1, ρ2 are two "knobs" used to properly tune the filter.

3.4.3 Bartlett Whiteness Test

The Bartlett whiteness test in based on the idea of adjusting Qw until the
observer innovation v = y−Hx̂ has a uniform spectrum (a property of the
white noise), meaning that the Kalman filter is able to extract all informa-
tion from the measurements and the model. The innovation whiteness is
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measured by integrating over the frequencies the absolute value of the in-
novation spectrum: the obtained diagram, normalized between 0 and 1, is
called cumulative periodogram. If the innovation is a white noise signal,
it has constant spectrum and therefore its integral should be a straight line
between (0, 0) and (Ω/2, 1); if the experimental cumulative periodogram:

• is above the ideal one, the Kalman filter has a high-pass behavior and
the Qw needs to be lowered to weight more the state estimation;

• is below the ideal one, the Kalman filter has a low-pass behavior and
the Qw needs to be increased to weight more the measurements.

The value of Qw is given from the combination of w1 and w2 effects; the
first is associated to faster dynamics and so it influences more the high-
frequency area of the periodogram, while w2 is going to influence mainly
the low-frequency one, because filtered by the integral action of the ran-
dom walk. The two "knobs" are adjusted until the experimental cumulative
periodogram is as close as possible to the ideal one, starting with ρ2 and
afterwards with ρ1.

After the first batch of trials (Figure 39) the values of ρ2 that better approx-
imate the ideal behavior are 0.1 and 0.01. In the second batch the choice is
further refined: the final configuration is (ρ1, ρ2) = (0.1, 0.02).

Figure 39: Cumulative periodograms for different choices of ρ2.
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Figure 40: Cumulative periodograms for different choices of ρ1.

3.4.4 Disturbance Observer Performance

Using the same position controller configuration and disturbance compensa-
tion, the Kalman filter performance is compared to the DOB’s by evaluating
the step response and the constant speed behavior of the system.

Step Response

The system step response behavior is analyzed in different configurations:

• without the external disturbance compensation;

• compensation of the disturbances estimated by the DOB at different
bandwidths;

• compensation of the disturbances estimated by the Kalman filter and
using the estimated speed in the speed controller;

The results are presented in Figure 41: the collected data doesn’t highlight
any difference in the position path between the Kalman filter and the others
DOB configurations, while the configuration without the disturbance com-
pensation has a slower rise-time and present steady state error caused by the
static friction and the absence of the integral action. As the DOB bandwidth
increases, the estimated disturbance presents a more impulsive appearance,
while the KF’s is intermediate between the 300 rad/s and 600 rad/s DOBs,
indicating that the equivalent KF bandwidth should be intermediate.
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Figure 41: System step response with and without disturbance compensation.

Position Ramp Response

Another insight of the different observers performance can be obtained by
choosing as reference a position ramp (constant speed) at 6 cm/s. The results
– position error and estimated disturbance force – are shown in Figure 42. As
before, the first comment is the huge performance improvement brought by
the disturbance compensation, that drastically reduce the position error dur-
ing the movement. Again, the KF position error performance is intermediate
between the DOBs, but this should not surprise, given that we have shown
how the two observers structure is equivalent. The KF configuration should
however minimize the estimation error and, at first impression, the KF esti-
mate appears "cleaner" than the higher bandwidth DOB configurations.

A zoomed-in version of Figure 42 in presented in Figure 43, where the
position error during steady-state (constant speed) can be better analyzed.
The KF position error is smaller than the 900 rad/s and 600 rad/s DOBs,
and very similar to the 300 rad/s. These results prove that increasing the
DOB bandwidth improves the system performance up to a certain point: by
keep increasing it, the estimation becomes more corrupted by the noise.

From the noise reduction perspective these are great results, but the lim-
ited observer bandwidth could affect the perceived responsiveness of the
bilateral system, that with the low-bandwidth DOB feels "sluggish" and not
natural.
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Figure 42: System constant speed with and without disturbance compensation.

Figure 43: System constant speed with disturbance compensation, particular.
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Disturbance Analysis

In all the observer configurations in Figure 42 the estimated external force
present a periodic impulsive disturbance, in particular in the three DOB runs
these spikes are almost perfectly synchronized. For example, in one run the
spikes happen at t = {0.172, 0.340, 0.505, 0.671, 0.836} s, with a period of

Ts =
0.836− 0.172

4
= 0.167 s

from other tests this phenomenon period appears to be speed-related (the
slower the motor, the more sparse the spikes); the motor speed reference is
60mm/s, obtaining:

Ds = 60mm/s · 0.167 s = 10.02mm

We are looking at an impulsive disturbance that acts periodically every time
the motor travels 1 cm. From the motor datasheet we know that the total
stator length is 14 cm and contain 12 windings, each one 1 cm long, leading
to the prospect of a cause-effect relation between the two facts. Is is hypoth-
esized that, when the mover permanent magnets are in a specific position
compared to the motor windings, the current/thrust relation degrades sig-
nificantly and, from the observer standpoint, is equivalent to an impulsive
external force.

3.5 extended friction model

A sinusoidal position/speed reference (f = 1, 2, 3 Hz, A = 1 cm) is used
to test the Kalman filter performance. The motor travel was free from any
obstacles, therefore the estimated disturbance is imputable to non-nominal
values of the thrust constant and mass (M 6= Mn, Kt 6= Ktn), and to the
motor friction.

It is hypothesized that the disturbance is caused entirely by the mechanical system
static and viscous friction.

For example hypothesizing that ∆M = Mn −M = 0.02 kg (4 times the
scale precision) and the maximum acceleration 0.01 · (2πf)2 = 3.55m/s2 the
inertia term would be:

(∆M) · (max ẍ) = (0.02)(3.55) ≈ 0.07N

while with Ktn −Kt = 33− 31.8 = 1.2N/A

Ktn −Kt
Ktn

·M · (max ẍ) ≈ 0.08N

The motor friction can be estimated from the motor speed using the stat-
ic/viscous friction model (M1)

F = Bẋ+ Fst sign ẋ

The results (speed, estimated disturbance and predicted friction and the dif-
ference between the two) are reported in Figure 45 for f = 1Hz, Figure 46 for
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2Hz and Figure 47 for 3Hz. Because the friction model has a discontinuity
in ẋ = 0, the estimated friction has a step variation of two times the static fric-
tion when the speed changes sign, while the measured force doesn’t present
this behavior, but instead has a more smooth transition.

The friction model can be extended (M2) to remove the discontinuity by
introducing a viscous component of slope K limited between ±Fst, as shown
in Figure 44. The value K = 10 is chosen by trial-and-error, adjusting it until
the friction model better approximates the experimental waveforms in the 3

cases.
The extended model improves the friction estimation in all the configu-

ration, but the best results are obtained at the low speeds, where the error
between estimated and predicted friction is the smallest.

Ffr = Bẋ+ sign(ẋ) ·max [K · abs(ẋ); Fst] (85)

ẋ

F

Fst

−Fst

B
B +K

Figure 44: Extended friction model.
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Figure 45: Speed, estimated friction and measured force, error between the two for
f = 1Hz

Figure 46: Speed, estimated friction and measured force, error between the two for
f = 2Hz
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Figure 47: Speed, estimated friction and measured force, error between the two for
f = 3Hz





4 B I L AT E R A L C O N T R O L TA S K
I M I TAT I O N

4.1 introduction

The bilateral motion copying system described previously permits to save
an operator action master references (xm, ẋm, Fm) to a motion database
and reproduce the same action whenever it is needed: the system permits
to decouple spatially (thanks to the bilateral control) and temporally (thanks
to the motion database) a task execution from the operator. The motion
copying system stability was studied by varying the environmental condi-
tions during the task reproduction phase: the bilateral controller behavior is
stable even when the environment impedance doesn’t match the one used
for the task recording, but the reproduced task presents position and force
errors. The main drawback of this approach is, in fact, that the saved motion
is rigid with respect to environmental changes: for example if the task target
position/dimensions or its material (and therefore the stiffness) are changed
the saved position and force trajectories don’t match with the actual environ-
ment impedance, causing an error in the reproduction of the position/force.
To cope with these limitations, in this chapter a solution for the imitation
of the task is investigated, in particular the following requirements for a
suitable task learning algorithms are considered:

• the algorithm should be implementable in the existing controller sys-
tem

• the algorithm should permit to adapt a saved task to environmental
changes, for example the variation of target shape/material/position

• should require as few as training sessions from the operator as possible

• the generated task output should resemble to what an operator would
do in the new operating conditions

4.2 the dynamic movement primitives framework

The Dynamic Movement Primitive (DMP) [15] was introduced as a frame-
work for humanoid robot control and trajectory planning, inspired by the
motor pattern generators studies in neurobiology, emulating how biological
neural circuits generate the motion signals. The DMP output y, used as the
virtual master for the bilateral controller, is generated by a dynamic system
with known stability properties and point attraction behavior to mimic the
operator action. The use of a dynamic system as the trajectory generator
permits to have fine control over the properties of the output reference sig-
nal. The DMP dynamic system is modulated by a non-linear forcing term
h needed to memorize/model a specific operator task. A DMP model is

91
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used to learn the trajectories associated with a specific operator action; in
the case of a bilateral control task, for each system degree of freedom, both
the position and the force reference signals need to be included. For the 1-
DOF mechanical test bench the system reference is composed by the bilateral
master-side position xm and force Fm references. A particular action/DMP
model is characterized by:

• tD is the action duration

• τ > 0 is the action time scaling, that can be used to slow down or speed
up the task reproduction speed;

• gp = xm(tD) is the action scaling factor, it permits to scale the position
reference to adapt the saved task to environmental changes;

• gf is the force scaling factor, it permits to scale the force reference to
adapt the saved task to the action target changes;

• a vector of N weights [w0, . . . ,wN−1] associated to N radial basis func-
tions to store each action trajectory.

The original [15] DMP model has been improved and simplified in [16]: each
component of the dynamic movement primitive framework is presented be-
low.

Canonical system

The canonical system is an autonomous system which output is used as a
phase or as a clock by the other DMP components during the task reproduc-
tion. Both 1-time discrete and rhythmic movement can be generated by the
canonical system to match the task type:

Single ż = −
1

τ tD
z (86)

Rhythmic ż = τ ω (87)

where ω is the angular speed that control the task reproduction speed and
tD is the action duration (in seconds). In the present work only non-repetitive
task are considered, but the same framework used has been verified for both
[15, 17]. The canonical system evolution is then:

z(t) = exp
[
−

t

τ tD

]
(88)

The DMP task trajectories are modeled using the time coordinate z that de-
couples the task reproduction time from the control system time. By using
a common canonical system z:

• the time scaling of a task is obtained by simply changing the coefficient
τ

• it is ensured that the force and position signals of one or more DOF
are synchronized under τ changes
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Dynamic System

As presented before, a dynamic system is used to generate the system refer-
ence trajectories for the bilateral controller. The dynamic system output is
modulated by the task end-state goal g and by the forcing term h: the first
provides the point-attraction behavior, the second the non-linear evolution
that permits to learn the operator movements. In [15] a simple second-order
linear system is introduced to "emulate" the operator dynamics and it is
presented below.

ÿ = α (β (g − y) − ẏ) + h

The system output y is used as the bilateral control virtual master, while
the action goals g can adapt the saved task to new environmental conditions.
Finally, to add the capability to slow down or speed up the task reproduction
the temporal scaling factor τ is included:

τ2 ÿ = α (β (g − y) − τ ẏ) + h (89)

Forcing Term

The forcing terms h = [hp, hf] store the non-linear behavior of the action
position and force trajectories. The forcing term structure should be chosen
so that it can represent complex patterns and that can be also easily modeled
after the reference trajectories. In [15], a linear combination of N radial basis
functions ψi(z) for each DOF j, with i = 0, 1, 2, . . . ,N− 1, is used:

h(t) =

∑N−1
i=0 ψi(z(t))wi∑N−1
i=0 ψi(z(t))

(
g− y(0)

)
z(t) (90)

Because we need to model both the master position and force reference, two
set of weights and two goals are saved to generate the hp, hf references. The
i = 0, 1, 2 . . . ,N− 1 Gaussian radial basis functions ψi(z(t)) are centered at
the canonical system times ci, i = 0, 1, . . . ,N− 1 equally spaced along the
Canonical System evolution, and have widths σi [16, 4]:

ψi(t) = exp
[
−
(z(t) − ci)

2

2σ2i

]
(91)

σ2i =
ci
N2

(92)

The Gaussian radial basis functions ψi are equally distributed along the task
duration tD: τ tD is divided into N time windows, each of those starts at

di =
τ tD
N
· i

that, in the z(t) coordinate, becomes

ci = exp
[
−
di
τ tD

]
= exp

[
−
τ tD i

τ tD N

]
and can be simplified to

ci = exp
[
−
i

N

]
(93)
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Figure 48: Example of the a Gaussian radial basis function.

The forcing term in (90) is modulated by (g − y(0)), ensuring that is
properly scaled under a change of movement/force amplitude, obtained by
changing the task position and force goals gp, gf. As the canonical system
transitions, it activates the radial basis functions that, weighted by wi, gener-
ate the forcing term for each of the dynamic system outputs. In Figure 49 the
activations of 7 radial basis functions and their weighted sum, as described
by (90), is presented.

Figure 49: RBF activations and the forcing term output, calculated from the
weighted sum of the activation functions.

At each action start the system state y(0) is attracted to the goal g by the
(g − y) term, whereas h provide the non-linear behavior and τ provides the
temporal scaling properties. The (89) can be rewritten in the Laplace domain,
where the behavior of the dynamic system is more explicit:

Y(s) =
αβ

τ2s2 +ατs+αβ

[
G+

H(s)

αβ

]
(94)
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From the (94) it can be recognized that the dynamic system acts like a second-
order low pass filter, that is tuned to present critical damping:

β =
α

4
⇐⇒ ξ =

ατ

2
√
τ2αβ

= 1 (95)

with cutoff frequency wn = α/τ.

Dynamic System Bandwidth

The dynamic system cutoff frequency wn = α/τ is chosen with the as-
sumption that the mechanical system is handled by the operator hand and
therefore it should have a similar behavior. Various studies regarding the
dynamic properties of the hand movements are present in the scientific lit-
erature, of which several have tried to estimate the "control bandwidth" of
the operator. In [18], the subjects are asked to balance an inverted pendu-
lum with a decreasing length L: the pendulum dynamics are governed by
an unstable pole in s =

√
g/L rad/s and so, by reducing the pendulum

length (therefore increasing the pole frequency), the bandwidth needed to
stabilize the system increases. From the experimental results, the estimated
human control bandwidth is limited to frequencies around 3Hzwhile higher
frequencies involve a loss in the movements amplitude precision. Similar re-
sults are presented in [19], where it is shown that the precise amplitude of
finger movement can be controlled up until 3− 4 Hz. The DMP dynamic
system is then tuned to have a bandwidth of 4Hz, or:

wn = 2π · 4Hz ≈ 25 rad/s (96)

obtaining, with τ0 = 1,

α = 25

β = α/4 = 6.25

The same τ term is present in both the canonical and dynamic systems: when
the action is speed up or down, the filter bandwidth is changed to preserve
the output trajectory path, otherwise the high frequency components will be
attenuated by the second order low-pass filter.

Fitting the DMP Action Weights

A DMP model can "learn" a task trajectory reference by fitting a set of pa-
rameters (weights) of the non-linear functions hp, hf to imitate the recorded
operator task. In the case of multi-DOF system, a set of parameters are asso-
ciated to each DOF to realize complex movements. DMPs have been success-
fully used to learn the Ball-in-a-Cup game with a 7-DOF robotic manipulator
[17]. For each action parameter i we define a quadratic loss function Ji that
measures how well each RBF approximate the reference signal. The learn-
ing objective is then finding each weight wpi , wfi that minimize the weighted
quadratic loss function

Ji =

M−1∑
k=0

ψi(z(k))
[
href(k) − γ(k)wi

]2
(97)
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where M = D/T is the number of task samples, γ(k) = [g− y(0)]z(k) and
h ref(k) the forcing term we want to learn. z(k) indicates the sampled ver-
sion of z(t), z(k) = z(kT). To solve the optimization problem, the loss func-
tion can be rewritten in the vectorized form

Ji =
[
h ref − swi

]T
Ψi
[
h ref − swi

]
(98)

where h ref is a vector of the hk, k ∈ {0, 1, . . . ,M− 1} samples, Ψ a diagonal
matrix of the radial basis functions activation,

Ψi =

ψi(0) 0 0

0
. . . 0

0 0 ψi(M− 1)

 ∈ RM×M

and s a vector of the γ(k) = gj z(k) terms. The solution of the locally-
weighted linear regression is

wi =
(
sTΨs

)−1
sTΨh ref (99)

The position forcing term reference hp,ref is calculated rearranging the (89)

hp,ref = α
(
β
(
yp,ref − gp

)
+ τ ẏp,ref)+ τ2 ÿp,ref (100)

while for the force’s
hf,ref = αβ

(
yf,ref − gf

)
(101)

where yref is the vector of the master position (yp = xm) and force (yf = Fm)
reference.

4.3 bilateral action dmp model

4.3.1 Action Saving

The presented Dynamic Movement Primitive framework is used to save an
operator action. Multiple actions can be combined to generate a new task
and by adjusting the DMP parameters it is possible to deal with environ-
mental changes. The forces estimated by the DOB include all disturbances
acting on the motor, such as static and viscous friction, but we are interested
in saving a generalized version of the operator task, invariant to time and
amplitude scaling. For this reason, estimated external disturbances are sub-
tracted from the force signal before the parameters fitting, using the friction
model presented in section 3.5. In particular the static F̂st and viscous B̂
friction coefficients have been estimated in subsection 2.6.2 and K = 10; the
net external force Fn is calculated as:

F̂n = F̂− Ffr = F̂−Bẋ− sign(ẋ) ·max [K · abs(ẋ); Fst] (102)

4.3.2 Action Loading

Having recorded various operator tasks, it is possible to combine them into
a single task, possibly changing the time constants τ to speed it up or down
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and the goal g to scale the position or force references. The generated refer-
ences are joined together by an interpolator that ensures continuous position
and speed references by joining the different actions using a 3rd-degree poly-
nomial for the position and a 1st degree (linear) for the force. Finally, the
net force reference Fn is supplemented with the estimated friction force for
its feed-forward compensation.

4.3.3 Number of RBFs

When an action position and force references are used to model the Dynamic
Movement Primitives forcing terms hp, hf, the number of radial basis func-
tions N needs to be chosen. In the machine learning jargon, N is defined as
an hyperparameter, a user-defined parameter that control the model complex-
ity and its accuracy. Increasing N means that, during equal time intervals,
the higher RBFs density can better approximate the position/force signals
to obtain an higher quality representation of the original trajectory, at the
cost of a higher computational load. As an example, an arbitrary signal href,
generated from the combination of two sinusoidal waveforms at 3 and 6Hz,
is used as the reference for a possible forcing term signal:

href = sin(3 · 2πt) + sin(6 · 2πt)

The signal is approximated using different values of N and the outputs are
displayed in Figure 51a. As the number of Gaussian radial basis functions
N increases from 10 to 60, the reference signal is better approximated by the
weighted sum of RBFs, as it is proved by the quadratic loss index L2, defined
as

L2 =

M∑
k=0

[
href(k) − h(k)

]2
Another example is presented in Figure 51b, where a triangle wave is used
as the reference href. As expected the quadratic error decreases as the num-
ber of RBF increases, better approximating the reference. The number of RBF
needed to approximate the function to a given precision (defined as the max-
imum absolute error) depends on the reference signal characteristics. Given
the smooth kernel shape of the Gaussian RBF, even with a large number of
elements it is difficult to approximate non-differentiable points like the cusp
in the triangular wave. As presented above, the human hand movements
have a limited control bandwidth, an so this limitation shouldn’t represent
a problem for the action modeling:

• the position reference doesn’t present non-derivable points like the tri-
angular wave did;

• the force reference, on the other hand, includes high frequency com-
ponents that won’t be present in the DMP model and so are lost. Of
those high frequency components:

– some are estimation noise, therefore the filtering of those is a pos-
itive side effect of the model-fitting process;

– the remaining fraction is actual lost information.



98 bilateral control task imitation

Figure 50: Approximation of different signals using N Gaussian radial basis func-
tions

(a) Combination of two sinusoidal waves at 3 and 6 Hz

(b) Triangular wave
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In practice the number N of RBF is incremented by 10 until the position
approximation error is reduced to 0.2mm and the force error to 0.5N. For
the majority of the actions, the limiting condition is the one on the force.

4.3.4 Computation time

The number of Gaussian radial basis functions is a trade-off between the
forcing term approximation precision we want to achieve, the computa-
tional load necessary to fit the corresponding weights and the memory space
needed to archive the weights. The fitting of the DMP model for a partic-
ular operator action happens after the bilateral task is completed, therefore
during offline operation. In Figure 52 the time needed to fit a test action
reference (the triangular wave shown in the previous section) is presented.
Because the algorithm runs as a program on a general purpose PC where
other programs are active, to obtain more significant results each calculation
duration is obtained as the mean of 10 algorithm runs. From the collected
data, it emerges that the computation time increases linearly with the num-
ber of RFB, in particular it takes a base time of approximately 13ms for 1

RBF and 0.065ms for each additional RBF on an Intel i7 at 2.8GHz.

tcalc = Nrbf · 0.065 ms+ 13ms

Figure 52: Computation time for different numbers of RBFs.

4.3.5 Force Scaling

To adapt a saved action to an environment different from the one present
during the recording, the action goals gp, gf can be modified. By scaling
the two parameters proportionally the applied force is proportional to the
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position displacement, that is compatible with the interaction of objects with
linear stiffness and for actions that start at the contact point. As it will be pre-
sented later, different behaviors can be achieved tweaking the position and
force goals independently, useful for example when the stiffness of the tar-
get changes. One limitation of the movement scaling approach is that, if the
starting value coincides with the goal, the term [g− y(0)] ' 0 deteriorates
the forcing term dynamics (90). A possible solution consists in splitting the
task into two sub-tasks or, if the task is symmetric with respect to a point in
time, consider only the first half and generating the other half using g = −1.

4.4 task imitation

From the experimental bench bilateral control setup two primitive actions
are isolated:

1. the movement to position the end-effector in contact with the target (a
sponge) from the home position;

2. the interaction with the environment, by pressing the end-effector against
the sponge

The two actions position and force references are used to model two DMPs,
Figure 53 and Figure 54.

Figure 53: Action Primitive 1 – Simple motor movement, recorded samples (blue)
and DMP task model (orange).
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Figure 54: Action Primitive 2 – Interaction with the environment (sponge), recorded
samples (blue) and DMP task model (orange).

4.4.1 Bilateral task scaling

After the task have been modelled, the scaling capabilities of the DMP frame-
work applied to the bilateral control are tested.

Time Scaling

The action execution can be sped up or down adjusting τ: in Figure 55

the task time constant τ is doubled and halved to generate the references
(black dotted lines) of other two actions. The references are then used as
the virtual master references for the motion copying system. The collected
experimental results are reported in Figure 55: for both actions the task
reproduction output matches the generated references; while the estimated
force is faithfully reproduced, there is a significant position error (0.43mm)
compared to the bilateral control operation.

Amplitude Scaling

The bilateral action can be also amplitude scaled: this operation is "trickier"
than the time scaling because the two references need to match the envi-
ronment impedance. A simplified environment model is used, where it is
hypothesized that the damping is negligible in respect to the (constant) stiff-
ness K

F = K ∆x (103)

After these considerations, if the position and force references are changed
proportionally, the original action can be scaled accordingly. The same action
used in the time scaling is modified by doubling and halving the position
and force goals gp, gf; the results are reported in Figure 56.
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Figure 55: DMP model temporal scaling capabilities

Figure 56: DMP model position/force scaling capabilities
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4.4.2 Task generation

The saved bilateral control action primitives can now be used to generate a
new complete task without the need to record new operator actions. The two
modeled primitives (Figure 53, Figure 54) are used to generate a complete
task as indicated in Table 9. The generated position and force references,
that will be loaded by the motion copying system and are already supple-
mented with the estimated friction, are presented in Figure 57 as well as
the result trajectory obtained by the bilateral controller. From the experi-
mental results, the proposed framework and simplifications are supported
by the experimental results, that, albeit not perfectly matching, show a good
position tracking (max |ep| = 1.1mm) as well as force mirroring, meaning
that the reference position/force relationship successfully approximates the
experimental conditions.

Table 9: Task generation reference actions.

Sector Action gp gf τ

A Action 1 g
p
0 gf0 0.9

B Action 2 g
p
0 gf0 1

C Action 2 g
p
0 gf0 2/3

D Action 2 1.4gp0 1.4gf0 1

E Action 1 −gp0 −gf0 0.5



104 bilateral control task imitation
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4.5 task adaptation to target changes

In the previous section the recorded bilateral control primitives are used to
model an operator action and are combined to realize a new task, with the
hypothesis that the environmental conditions remain the same as during the
primitives recording by the operator. In this section it is studied the problem
of adapting recorded primitives to environmental changes. Two possible
conditions are considered: the target position/shape or its material (more
specifically its stiffness) are changed. To asses the adaptation capabilities
a test task is chosen (Figure 58, Table 10), composed of two actions, built
similarly to what was done in the previous section. A performance baseline
was obtained by changing the environmental conditions (target material and
position) and executing the saved task as it is, Figure 59.

Figure 58: Original target position (green box) and master position reference.

Sector Action Duration τ Note

A Action 1 1 s 1
Movement from the home
position to contact point

B Action 2 1.4 s 1
Interaction with the
environment

C Action 1 1 s 1 Return to the home position

Table 10: Default task configuration
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Figure 59: Test task in presence of environmental changes – Test 1 with the default
configuration, Test 2 with a softer target, Test 3 with a stiffer target posi-
tioned closer to the home position.

Operator
Bilateral
Control

DMP
Training

Motion
Database

Virtual
Master

Trajectory
Geneneration
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f
0 ]

[wp,wf ]

[wp,wf ]
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gf

[x∗
m, F̂

∗
m]gp0
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τ0

Figure 60: Task recording and environmental task adaptation logic blocks.
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Strategy for the Action Primitives Adaptation

In Figure 60 the proposed strategy to adapt the saved bilateral primitives is
presented as a block diagram:

• in the first phase (red background) the operator action is modeled and
saved to the motion database

• in the second phase the action is loaded from the database and, from
the new environment information collected during an exploration pro-
cedure, adapted to the new conditions.

Said exploration procedure is presented in the next pages.

4.5.1 Target Position Estimation

The first step to adapt the action primitive to the new target position is the
estimation of said position. To do so the following steps are performed:

1. the linear motor is accelerated from the home position to the constant
speed v in a time t1 = 0.1 s (constant acceleration of a = v/t1);

2. after t2 = 0.2 s the estimated external force is monitored and a force
threshold Ft is activated;

3. once n consecutive samples exceed the force threshold, the end-effector
is considered in contact with the target and the motor output is dis-
abled – this option permits to avoid false-positives at the cost of a
delay in the contact detection

4. being the end-effector in contact with the target, the position is regis-
tered after the motor speed drops to zero, to allow for possible over-
shoots to even out.

The choice of the v, Ft, n values is a trade-off between the speed of estima-
tion, maximum impressed force and the detection false-positives tolerance.
It is arbitrarily set Ft = 0.5N to limit the maximum force exerted on the tar-
get. With n = 5 no false-positive detections have occurred during the exper-
imental testing, while for example n = 2 produced several. For the choice of
the motor speed different tests have been conducted, with v = 1, 2, 4 cm/s.
The experimental results for different values of v are reported with a steel tar-
get in Figure 61 and with a soft target in Figure 62. The test with v = 4 cm/s
in Figure 61 (red lines) force estimation presents disturbances that exceed
the force threshold around t = 0.25 s, but lasts for only 3 consecutive sam-
ples and therefore it isn’t detected as a contact, avoiding the false-positive
detection described before.
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Figure 61: Target position estimation - Hard (steel) target.

Figure 62: Target position estimation - Soft (sponge) target.
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Other than the estimation total duration, the effects of the different motor
speeds are:

• for the hard target the only difference is the impact force

• for the soft target an overshoot is caused by the motor inertia

In Table 11 are reported the results from the soft target tests: overshoot,
time of the initial contact and the total estimation duration (until the end-
effector is resting still at the target edge, therefore including the overshoot
dynamics).

Speed [cm/s] First contact [s] Total duration [s] Overshoot [mm]

1 0.731 0.844 1.21
2 1.467 1.527 0.23
4 2.887 2.889 0.09

Table 11: Position detection results – Soft target

4.5.2 Target Position Modification

The position scaling properties and the target position detection procedure
are then tested together to evaluate the target position adaptation capability
of the proposed framework. The same target used during the action record-
ing is moved to two different position (closer and further from the original
point). After the estimation of the target position x∗t , the position goal gp

of the first (0 → x∗t) and third action (x∗t → 0) is updated to match the new
value.

The experimental results are presented in Figure 63. While the master
force reference matches very closely the recorded ones, the position tracking
presents some flaws during the action reproduction, especially during the
contact with the target.
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Figure 63: Task adaptation to targets at different positions from the home point –
Original task (orange), further (green) and closer target (purple).

4.5.3 Target Stiffness Estimation

The second option to adapt an action primitive to a new environment is to
change the position and force references independently to match the new
target stiffness (i.e. made by a different material). The target stiffness K is
hypothesized constant and is estimated by comparing the displacement ∆x
with the estimated reaction force F during the environment interaction.

F = K ∆x (104)

The stiffness estimation is performed after the target position detection, when
the end-effector is still resting against the target edge. Two strategies can be
followed:

• perform a position control and record the estimated force

• perform a force control and record the end-effector position

Both have some advantages and limitations. The position control has a stable
behavior, but drives the motor ignoring the environment reaction forces; this
is not a problem for sturdy objects, but it could be for fragile ones. A pure
force control permits to have direct control over the applied forces, but on
the other hand it is not stable: in case the target object moves from the motor
trajectory, the force control accelerates the motor until the reference force is
reached, but this condition could be against an obstacle or a mechanical stop.
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Position Control

For the target stiffness estimation using the position control the following po-
sition/speed signals are used as the bilateral control master reference, while
the force control is temporarily disabled by setting the force gain to zero,
Kf = 0. The displacement ∆x, estimated force and the linear regression re-
sults (K1 original target, K2 stiff one, K3 soft one) are reported in Figure 64.

x∗m = 0.02 sin (0.2πt)

ẋ∗m = 0.2π · 0.02 cos (0.2πt)

t ∈ [0, 5] s

Figure 64: Target stiffness estimation – Position control

Force Control

Similar to what was done with the position control, the target estimation
with force control is achieved by disabling the position control and using

F∗m = −5 sin (0.2πt)

as the bilateral master force reference. The negative sign is justified by fact
that the bilateral controller objective is to obtain the overall force balance. As
briefly described before, the force control alone is not stable: to avoid any
damage to the experimental setup, at every control step the motor velocity
is compared with a threshold value: if v > 3 cm/s the control command is
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zeroed and the exploration procedure interrupted. The results are reported
in Figure 65. The maximum motor speed depends on the stiffness K:

F(t) = 5 sin(0.2πt)

x(t) =
5 sin(0.2πt)

K

max(ẋ) = ẋ(t = 0) =
π

K

with K = 200N/m:
max(ẋ) = π/200 = 1.57 cm/s

Figure 65: Target stiffness estimation – Force control

Comparison of the Stiffness Estimation Methods

To evaluate the two environment stiffness estimation procedures, the coeffi-
cient of determination R2 is calculated for both. The coefficient of determina-
tion provides a measure of how well observed outcomes are replicated by
the model, based on the proportion of total variation of outcomes explained
by the model.

R2 = 1−
SSres

SStot
(105)

where SSres is the sum of squares of the residuals

SSres =
∑
i

(
Fi − K̂ ∆xi

)2
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SStot the total sum of squares

SStot =
∑
i

(
Fi − F

)2
and F the mean force. The results are reported in Table 12 as well as the
relative difference between the two methods.

Target
Posit. Ctrl

[N/m]
Posit. Ctrl

R2

Force Ctrl
[N/m]

Force Ctrl
R2

Difference

1 504 0.78 481 0.87 4.7 %
2 712 0.85 808 0.95 11.8 %
3 225 0.80 268 0.94 16.0 %

Table 12: Stiffness estimation comparison

While the environmental conditions didn’t change between the two meth-
ods execution, from the calculated coefficients of determination the posi-
tion/force data collected during the force control better match the proposed
environment model in respect to the other method. The model expects the
force to be proportional to the displacement, but in reality there is an hystere-
sis between the forward and backward movements: during the first half the
motor pushes against the target, while during the second half there isn’t any
mechanical link between end-effector and target. The asymmetric behavior
can be seen in Figure 64.

On the other hand, during the force control (second method) the motor
position is adjusted to generate the reference reaction force, Figure 65. The
target elastic non-linearity can be observer in the position trajectories: they
don’t return to the starting point even if no force is being applied and there-
fore present a skewed trajectory.

4.5.4 Target Stiffness Modification

After the exploration procedure described in the last subsection, the original
task is adapted to modifications in the target material/composition. To cope
with stiffness changes two line of action are considered:

• scaling the force reference to maintain the position unaltered

• scaling the position reference to maintain the applied force unaltered

Force Reference Scaling

The first option is to scale the force goal gf of the second action (the one
active during the interaction with the environment) proportionally with the
target stiffness. Having defined the original target with A, the softer one
with B and the stiffer one with C, the new force goals values are:

gfB =
KB
KA
gfA gfC =

KC
KA
gfA

The bilateral system references and outputs for the 3 different targets are
reported in Figure 66. The target used to record the operator task (A) is
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used to obtain the task reproduction performance baseline: the maximum
position error is max |eAp | = 1.12mm, while the maximum force error is
max |eAf | = 1.1N. For the other two targets:

• for the stiffer object (B) the maximum position error is max |eBp | =

0.77mm and the force error max |eBf | = 1.1N;

• for the softer object (C) the maximum position error is max |eCp | =

1.44mm and the force error max |eCf | = 1.2N.

From the experimental position and force data samples, the force reproduc-
tion is effective (the absolute error between the reference and the estimated
external forces is similar across all three trials) while the position tracking
error become smaller as the stiffness of the object increases: this behavior
can be explained because, as the target stiffness increases, the same force
error produce a smaller displacement error. Therefore soft objects require
a more precise position/force references – and are therefore less robust to
position and force mismatches – because the same force error translates to a
larger position error.

Figure 66: Environment adaptation – Force scaling to maintain the position unal-
tered.

Position Reference Scaling

The second option is to scale the position goal gp of the second action, this
time inversely proportional to the estimated target stiffness, to maintain the
output force constant across different targets:

gfB =
KA
KB
g
p
A g

p
C =

KA
KC
g
p
A
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The results are reported in Figure 67: as designed, the applied forces across
the 3 different materials are close to the force reference, and, as observed in
the previous method, the force error is similar over the three experiments:
max |eAf | = 1.4N, max |eBf | = 1.4N, max |eCf | = 1.6N. The baseline perfor-
mance, given by the original task and target, achieves a maximum absolute
position error of max |eAp | = 0.34mm, while with the soft one the error is
max |eBp | = 1.13mm and the stiff one max |eCp | = 0.89mm. Similarly for
what was shown with the previous method, while the force control achieves
roughly the same performance independently of the target, the position er-
ror varies: the same force error translates to different position displacements,
with higher stiffness materials generating smaller position errors.

Figure 67: Environment adaptation – Position scaling to maintain a constant inter-
action force.

4.5.5 Final Comments

Several approaches to adapt a learned bilateral control action to new envi-
ronmental conditions were proposed, as well as the mechanisms to estimate
these changes. In particular:

• the action target position is detected by monitoring the estimated exter-
nal force during a constant speed run – this method produces highly
repeatable results and several parameters like the speed, force thresh-
old and number of samples can be adjusted to obtain more precise
results, faster estimation time or higher false-positives tolerance;
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• the target stiffness is obtained by comparing the displacement and re-
action force samples, that can be collected is several ways – the best
results were obtained by controlling the applied force, ensuring that
the is always contact between target and end-effector;

• the target position changes adaptation is performed by matching the
DMP movement goal to the new target position;

• the task adaptation to a new target can be obtained by changing posi-
tion or force references individually, depending on whether we need
to maintain unaltered the applied force or the position path.

In the controlled experimental environment the task modification has always
produces the desired effects by reducing the position/force errors, but the
proposed approach should be extended and tested to multiple DOFs robots,
operating over multiple degrees of freedom to further confirm the results.
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4.6 iterative bilateral control

4.6.1 Iterative Learning Control

The Iterative Learning Control (ILC) paradigm was introduced for the con-
trol of systems that perform repetitive tasks and can therefore take advan-
tage of the errors committed in the past iterations to improve the next execu-
tions performance. Defined T as the sampling period, Tr = NT the repetitive
task period and k = 0, 1, 2, . . . ,N − 1 each sample, the controlled system
input generated by the ILC is:

u(n,k) = u(n− 1,k) +K e(n,k) (106)

in other words the control output generated in the previous cycle added to
the current error multiplied by a proportional gain K. Over several task itera-
tions, the control law u(n,k), k = 0, 1, . . . ,N− 1 is updated to incrementally
reduce the system output error, starting from the null reference u(0,k) = 0
During the simulation and experimental trials, the control error decreases
every iteration like predicted, but, reached a minimum after a number of
cycles, starts to increase until the destabilization of the system. In fact the
updating mechanism keeps adding to the control reference u(n,k) the dis-
turbances present in the feedback loop (e.g. sampling or simulation errors)
multiplied by K, ultimately taking the system to instability. The solution is
to limit the updating to a time window and then using the resulting u(n,k)
unaltered for the next n+ i cycles. When the learning needs to be resumed
(for example because the external conditions have changed), it should start
from the null reference u(0,k) to avoid the error-adding complication.

4.6.2 Iterative Bilateral Control

In the previous sections the recorded bilateral control action were adapted to
environment changes after an exploratory activity was performed to assess
the new target position or stiffness. However, if the same action is performed
multiple times over the same environment configuration, the position error
committed in the previous runs can be used to improve the control reference,
in a similar fashion to what the ILC suggests. The objective of the improve-
ment is to minimize the position error while maintaining the force control, in
other words to obtain a better position/force matching for the specific action.
While the ILC records the control law as u(n,k), in the bilateral control it is
more convenient to directly modify the action virtual master force reference
Fm, directly involved in the force controller. The proposed corrective action
is presented below:

1. after each action execution, the recorded position and force samples
are used to estimate the target stiffness K̂ with the same model used in
the subsection 4.5.3;

2. the force reference of the next execution n+ 1 is supplemented with
the position error multiplied by the estimated target stiffness;

Fm(n+ 1,k) = Fm(n,k) + K̂(n) · ep(n,k)
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3. the weights wf of the action DMP model are updated with the new
reference.

The same instability problems found in the ILC need to taken care of:
to detect the minimum error configuration, the total quadratic error L2 is
calculated for each step and monitored:

L2(n) =
∑
k

(xm(k) − xs(k))
2 (107)

when the error trend is decreasing the update process is active and both the
current (Fm(n,k)) and the previous (Fm(n − 1,k)) master force references
are saved. As soon as the error starts increasing

L2(n− 1) < L2(n)

the Fm updating is stopped and Fm(n − 1,k) is used as the master force
reference.

Experimental Testing

The saved action used for the testing of the DMP scaling properties (subsec-
tion 4.4.1) is utilized, but the original target is substituted with a stiffer one,
to introduce the (unknown) environmental changes. Each step main param-
eters (position error, loss function, target estimated stiffness) are reported in
Table 13, position and force results in Figure 68.

The force weight values evolution across the different runs is presented in
Figure 69, where we see a non-linear relationship between the force ampli-
tude and the RBFs, justifying the fact that the force update is done before in
the time domain and then the weights are updated to reflect the new force
reference.

Step Max. position error [mm] Loss func. L2 Est. Stiffness [N/m]

0 2.37 1.837 733

1 1.01 0.750 747

2 0.525 0.351 743

3 0.305 0.213 741

4 0.196 0.120 747

5 0.217 0.175 752

Table 13: Iterative bilateral control step results.
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Figure 68: Position and force data from consecutive steps with the force reference
updating.

Figure 69: Force weight updating during the iterative learning.





C O N C L U S I O N S

The thesis starting point was the study of techniques to save the manual
expertise of a person by recording a task motion position and applied forces.
This system could be useful to store the person manual knowledge with the
goal of reproducing said motion whenever necessary, without the constraint
of the person presence, or to train future workers that weren’t originally
available.

To accurately record a task motion it is necessary to record both the move-
ment path and the applied forces. This goal was accomplished in the second
chapter by first studying and designing a Bilateral Control system, capable
of reproducing the operator movement (master side) at the slave side, and
then extending the system to record the motion and reproduce it using the
recorded user position and forces as a virtual master reference, realizing a
Motion Copying System. In the second chapter the MCS stability was as-
sessed by studying the transfer function poles between the saved and the
reproduced force: the system is stable even with huge variations of the en-
vironment conditions. As easily predicted the presence of environmental
changes leads to reproduced position and force errors, that degrade the sys-
tem ability to accomplish the goal of accurate motion reproduction. In the
third chapter a solution to the problem of bilateral task environment adap-
tation is proposed; the considered variations are limited to changes in the
target distance and/or its stiffness. Another problem with the MCS refer-
ences is the large number of samples recorded and stored to represent a task.
A model (based on the Dynamic Movement Primitives) was introduced to
simplify the scaling of a saved task and to reduce the amount of data used
to represent an action, with the cost of an abstraction layer introduced by
the model dynamic system and forcing terms.

Several ways of adapting the saved task to the environment have been
proposed to estimate the target position and stiffness. The new information
about the environment is successfully used to (linearly) scale position/speed
and force reference to adapt the task and reduce the mismatch error. The
environment model used is simple: it assumes that the environmental damp-
ing is negligible and the stiffness is constant.

Another option to adapt the task to different conditions, briefly explored
in the last section, is based on the Iterative Learning Control. It assumes that
the considered task needs to be reproduced several times and, at every exe-
cution, corrects the force reference to reduce the position error by estimating
the environment stiffness and supplementing the force reference with the
estimated difference.

While the proposed approaches were successfully implemented and al-
ways led to the reduction of position and force errors, validating the ap-
proach and the implementation, the experimental conditions were as simple
as they could get: one degree of freedom linear motor and environment
model with negligible damping coefficients.
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Unfortunately during the developing of this thesis I wasn’t able to extend
the proposed approach to multiply degrees of freedom manipulators, so
this should be the next development step. In particular, by using a cartesian
robot, the DOF dynamics result for the most part decoupled. Increasing the
linear motor travel should be easily achievable by modifying the experimen-
tal setup. Another development I would like to study is the broadening of
environmental conditions under which the adapting mechanism is tested, in
particular extended the proposed approaches to include a damping effect or
in the case of non-linear environment mechanical properties.



A B I L AT E R A L C O N T R O L
R E F E R E N C E S C A L I N G

In the first chapter (section 2.3) the bilateral control reference scaling was
briefly introduced. This mechanism consist of scaling the position/speed
or force signals of a single bilateral controller channel (master or slave) to
achieve a virtual force or movement amplification. This method can be used
to lighten the operator applied force or increase the movement precision.

The bilateral controller inputs are the master and slave differential posi-
tion/speed xd, ẋd and the common estimated force Fc. Two scaling coef-
ficients are introduced: α on the slave side position/speed and β on the
estimated force. [

xc
xd

]
= Q2

[
1 · xm
α · xs

]
[
Fc
Fd

]
= Q2

[
1 · Fm
β · Fs

]
Because the bilateral controller is symmetrical from the point of view of
which system is the master and which is the slave, the scaling is introduced
only on one side of the system.

a.1 position scaling

The value of α represent the ratio between the master and slave movement
amplitude and speed.

xm = α xs

An experimental validation is done for α = 0.5 in Figure 70 and α = 2

in Figure 71. As expected, from the collected samples during the bilateral
control the master amplitude is half of the slave’s for α = 0.5 and doubled
for α = 2, but the applied forces balance remains unvaried.

The obtained system is very different from what a normal gearbox would
produce: only the position and speed components are affected, but not the
force, while the ideal gearbox (for the input/output power balance) would
scale the position and transmitted forces inversely proportional. This also
means that the reproduced impedance doesn’t match the environment at
the slave side:

Zm =
Fm

xm
=

Fs

α xs
=
Zs

α
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Figure 70: Bilateral control under the position and speed scaling with α = 0.5 – the
slave movement amplitude is doubled in respect to the master’s.

Figure 71: Bilateral control under the position and speed scaling with α = 2 – the
slave movement amplitude is halved in respect to the master’s.



a.2 force scaling 125

a.2 force scaling

Through the β coefficient is possible to adjust the master/slave force balance
ratio, like was done for the position scaling. Specifically:

Fm = β Fs

In Figure 72 is presented the experimental data with β = 0.5. Like for the
position scaling, also in this configuration the reproduced impedance at the
master side doesn’t match slave side one:

Zm =
Fm

xm
=
β Fs

xs
= β Zs

The two scaling factor can be chosen jointly to realize a specific objective:

• with α = β we obtain the perfect environment impedance reproduc-
tion because the movement amplitude and applied forces are scaled
proportionally

Zm =
Fm

Xm
=
β Fs

α Xs
= Zs

• with α = 1/β the system mimics the action of a gear reduction mecha-
nism

Zm =
Fm

Xm
=
β Fs

Xs/β
= α2 Zs

Figure 72: Bilateral control under the force scaling with β = 0.5 – the slave force
amplitude is double the master’s.
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