10 research outputs found

    On Modified l_1-Minimization Problems in Compressed Sensing

    Get PDF
    Sparse signal modeling has received much attention recently because of its application in medical imaging, group testing and radar technology, among others. Compressed sensing, a recently coined term, has showed us, both in theory and practice, that various signals of interest which are sparse or approximately sparse can be efficiently recovered by using far fewer samples than suggested by Shannon sampling theorem. Sparsity is the only prior information about an unknown signal assumed in traditional compressed sensing techniques. But in many applications, other kinds of prior information are also available, such as partial knowledge of the support, tree structure of signal and clustering of large coefficients around a small set of coefficients. In this thesis, we consider compressed sensing problems with prior information on the support of the signal, together with sparsity. We modify regular l_1 -minimization problems considered in compressed sensing, using this extra information. We call these modified l_1 -minimization problems. We show that partial knowledge of the support helps us to weaken sufficient conditions for the recovery of sparse signals using modified ` 1 minimization problems. In case of deterministic compressed sensing, we show that a sharp condition for sparse recovery can be improved using modified ` 1 minimization problems. We also derive algebraic necessary and sufficient condition for modified basis pursuit problem and use an open source algorithm known as l_1 -homotopy algorithm to perform some numerical experiments and compare the performance of modified Basis Pursuit Denoising with the regular Basis Pursuit Denoising

    Geometric and Algebraic Combinatorics

    Get PDF
    The 2015 Oberwolfach meeting “Geometric and Algebraic Combinatorics” was organized by Gil Kalai (Jerusalem), Isabella Novik (Seattle), Francisco Santos (Santander), and Volkmar Welker (Marburg). It covered a wide variety of aspects of Discrete Geometry, Algebraic Combinatorics with geometric flavor, and Topological Combinatorics. Some of the highlights of the conference included (1) counterexamples to the topological Tverberg conjecture, and (2) the latest results around the Heron-Rota-Welsh conjecture

    Topics in learning sparse and low-rank models of non-negative data

    Get PDF
    Advances in information and measurement technology have led to a surge in prevalence of high-dimensional data. Sparse and low-rank modeling can both be seen as techniques of dimensionality reduction, which is essential for obtaining compact and interpretable representations of such data. In this thesis, we investigate aspects of sparse and low-rank modeling in conjunction with non-negative data or non-negativity constraints. The first part is devoted to the problem of learning sparse non-negative representations, with a focus on how non-negativity can be taken advantage of. We work out a detailed analysis of non-negative least squares regression, showing that under certain conditions sparsity-promoting regularization, the approach advocated paradigmatically over the past years, is not required. Our results have implications for problems in signal processing such as compressed sensing and spike train deconvolution. In the second part, we consider the problem of factorizing a given matrix into two factors of low rank, out of which one is binary. We devise a provably correct algorithm computing such factorization whose running time is exponential only in the rank of the factorization, but linear in the dimensions of the input matrix. Our approach is extended to noisy settings and applied to an unmixing problem in DNA methylation array analysis. On the theoretical side, we relate the uniqueness of the factorization to Littlewood-Offord theory in combinatorics.Fortschritte in Informations- und Messtechnologie fĂŒhren zu erhöhtem Vorkommen hochdimensionaler Daten. ModellierungsansĂ€tze basierend auf Sparsity oder niedrigem Rang können als Dimensionsreduktion betrachtet werden, die notwendig ist, um kompakte und interpretierbare Darstellungen solcher Daten zu erhalten. In dieser Arbeit untersuchen wir Aspekte dieser AnsĂ€tze in Verbindung mit nichtnegativen Daten oder NichtnegativitĂ€tsbeschrĂ€nkungen. Der erste Teil handelt vom Lernen nichtnegativer sparsamer Darstellungen, mit einem Schwerpunkt darauf, wie NichtnegativitĂ€t ausgenutzt werden kann. Wir analysieren nichtnegative kleinste Quadrate im Detail und zeigen, dass unter gewissen Bedingungen Sparsity-fördernde Regularisierung - der in den letzten Jahren paradigmatisch enpfohlene Ansatz - nicht notwendig ist. Unsere Resultate haben Auswirkungen auf Probleme in der Signalverarbeitung wie Compressed Sensing und die Entfaltung von Pulsfolgen. Im zweiten Teil betrachten wir das Problem, eine Matrix in zwei Faktoren mit niedrigem Rang, von denen einer binĂ€r ist, zu zerlegen. Wir entwickeln dafĂŒr einen Algorithmus, dessen Laufzeit nur exponentiell in dem Rang der Faktorisierung, aber linear in den Dimensionen der gegebenen Matrix ist. Wir erweitern unseren Ansatz fĂŒr verrauschte Szenarien und wenden ihn zur Analyse von DNA-Methylierungsdaten an. Auf theoretischer Ebene setzen wir die Eindeutigkeit der Faktorisierung in Beziehung zur Littlewood-Offord-Theorie aus der Kombinatorik

    Topics in learning sparse and low-rank models of non-negative data

    Get PDF
    Advances in information and measurement technology have led to a surge in prevalence of high-dimensional data. Sparse and low-rank modeling can both be seen as techniques of dimensionality reduction, which is essential for obtaining compact and interpretable representations of such data. In this thesis, we investigate aspects of sparse and low-rank modeling in conjunction with non-negative data or non-negativity constraints. The first part is devoted to the problem of learning sparse non-negative representations, with a focus on how non-negativity can be taken advantage of. We work out a detailed analysis of non-negative least squares regression, showing that under certain conditions sparsity-promoting regularization, the approach advocated paradigmatically over the past years, is not required. Our results have implications for problems in signal processing such as compressed sensing and spike train deconvolution. In the second part, we consider the problem of factorizing a given matrix into two factors of low rank, out of which one is binary. We devise a provably correct algorithm computing such factorization whose running time is exponential only in the rank of the factorization, but linear in the dimensions of the input matrix. Our approach is extended to noisy settings and applied to an unmixing problem in DNA methylation array analysis. On the theoretical side, we relate the uniqueness of the factorization to Littlewood-Offord theory in combinatorics.Fortschritte in Informations- und Messtechnologie fĂŒhren zu erhöhtem Vorkommen hochdimensionaler Daten. ModellierungsansĂ€tze basierend auf Sparsity oder niedrigem Rang können als Dimensionsreduktion betrachtet werden, die notwendig ist, um kompakte und interpretierbare Darstellungen solcher Daten zu erhalten. In dieser Arbeit untersuchen wir Aspekte dieser AnsĂ€tze in Verbindung mit nichtnegativen Daten oder NichtnegativitĂ€tsbeschrĂ€nkungen. Der erste Teil handelt vom Lernen nichtnegativer sparsamer Darstellungen, mit einem Schwerpunkt darauf, wie NichtnegativitĂ€t ausgenutzt werden kann. Wir analysieren nichtnegative kleinste Quadrate im Detail und zeigen, dass unter gewissen Bedingungen Sparsity-fördernde Regularisierung - der in den letzten Jahren paradigmatisch enpfohlene Ansatz - nicht notwendig ist. Unsere Resultate haben Auswirkungen auf Probleme in der Signalverarbeitung wie Compressed Sensing und die Entfaltung von Pulsfolgen. Im zweiten Teil betrachten wir das Problem, eine Matrix in zwei Faktoren mit niedrigem Rang, von denen einer binĂ€r ist, zu zerlegen. Wir entwickeln dafĂŒr einen Algorithmus, dessen Laufzeit nur exponentiell in dem Rang der Faktorisierung, aber linear in den Dimensionen der gegebenen Matrix ist. Wir erweitern unseren Ansatz fĂŒr verrauschte Szenarien und wenden ihn zur Analyse von DNA-Methylierungsdaten an. Auf theoretischer Ebene setzen wir die Eindeutigkeit der Faktorisierung in Beziehung zur Littlewood-Offord-Theorie aus der Kombinatorik

    Computational Geometric and Algebraic Topology

    Get PDF
    Computational topology is a young, emerging field of mathematics that seeks out practical algorithmic methods for solving complex and fundamental problems in geometry and topology. It draws on a wide variety of techniques from across pure mathematics (including topology, differential geometry, combinatorics, algebra, and discrete geometry), as well as applied mathematics and theoretical computer science. In turn, solutions to these problems have a wide-ranging impact: already they have enabled significant progress in the core area of geometric topology, introduced new methods in applied mathematics, and yielded new insights into the role that topology has to play in fundamental problems surrounding computational complexity. At least three significant branches have emerged in computational topology: algorithmic 3-manifold and knot theory, persistent homology and surfaces and graph embeddings. These branches have emerged largely independently. However, it is clear that they have much to offer each other. The goal of this workshop was to be the first significant step to bring these three areas together, to share ideas in depth, and to pool our expertise in approaching some of the major open problems in the field

    Quantitative analysis of algorithms for compressed signal recovery

    Get PDF
    Compressed Sensing (CS) is an emerging paradigm in which signals are recovered from undersampled nonadaptive linear measurements taken at a rate proportional to the signal's true information content as opposed to its ambient dimension. The resulting problem consists in finding a sparse solution to an underdetermined system of linear equations. It has now been established, both theoretically and empirically, that certain optimization algorithms are able to solve such problems. Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2007), which is the focus of this thesis, is an established CS recovery algorithm which is known to be effective in practice, both in terms of recovery performance and computational efficiency. However, theoretical analysis of IHT to date suffers from two drawbacks: state-of-the-art worst-case recovery conditions have not yet been quantified in terms of the sparsity/undersampling trade-off, and also there is a need for average-case analysis in order to understand the behaviour of the algorithm in practice. In this thesis, we present a new recovery analysis of IHT, which considers the fixed points of the algorithm. In the context of arbitrary matrices, we derive a condition guaranteeing convergence of IHT to a fixed point, and a condition guaranteeing that all fixed points are 'close' to the underlying signal. If both conditions are satisfied, signal recovery is therefore guaranteed. Next, we analyse these conditions in the case of Gaussian measurement matrices, exploiting the realistic average-case assumption that the underlying signal and measurement matrix are independent. We obtain asymptotic phase transitions in a proportional-dimensional framework, quantifying the sparsity/undersampling trade-off for which recovery is guaranteed. By generalizing the notion of xed points, we extend our analysis to the variable stepsize Normalised IHT (NIHT) (Blumensath and Davies, 2010). For both stepsize schemes, comparison with previous results within this framework shows a substantial quantitative improvement. We also extend our analysis to a related algorithm which exploits the assumption that the underlying signal exhibits tree-structured sparsity in a wavelet basis (Baraniuk et al., 2010). We obtain recovery conditions for Gaussian matrices in a simplified proportional-dimensional asymptotic, deriving bounds on the oversampling rate relative to the sparsity for which recovery is guaranteed. Our results, which are the first in the phase transition framework for tree-based CS, show a further significant improvement over results for the standard sparsity model. We also propose a dynamic programming algorithm which is guaranteed to compute an exact tree projection in low-order polynomial time

    Subject Index Volumes 1–200

    Get PDF

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    Studia Scientiarum Mathematicarum Hungarica

    Get PDF
    corecore