3,976 research outputs found

    Stability Boundaries for Offshore Wind Park Distributed Voltage Control

    Get PDF
    In order to identify mechanisms causing slow reactive power oscillations observed in an existing offshore wind power plant, and be able to avoid similar events in the future, voltage control is studied in this paper for a plant with a static synchronous compensator, type-4 wind turbines and a park pilot control. Using data from the actual wind power plant, all stabilizing subsystem voltage proportional-integral controller parameters are first characterized based on their Hurwitz signature. Inner loop current control is then designed using Internal Mode Control principles, and guidelines for feed forward filter design are given to obtain required disturbance rejection properties. The paper contributes by providing analytical relations between power plant control, droop, sampling time, electrical parameters and voltage control characteristics, and by assessing frequencies and damping of reactive power modes over a realistic envelope of electrical impedances and control parameters

    Control of multi-terminal HVDC networks towards wind power integration: A review

    Get PDF
    © 2015 Elsevier Ltd. More interconnections among countries and synchronous areas are foreseen in order to fulfil the EU 2050 target on the renewable generation share. One proposal to accomplish this challenging objective is the development of the so-called European SuperGrid. Multi-terminal HVDC networks are emerging as the most promising technologies to develop such a concept. Moreover, multi-terminal HVDC grids are based on highly controllable devices, which may allow not only transmitting power, but also supporting the AC grids to ensure a secure and stable operation. This paper aims to present an overview of different control schemes for multi-terminal HVDC grids, including the control of the power converters and the controls for power sharing and the provision of ancillary services. This paper also analyses the proposed modifications of the existing control schemes to manage high participation shares of wind power generation in multi-terminal grids.Postprint (author's final draft

    Ofshore Wind Park Control Assessment Methodologies to Assure Robustness

    Get PDF

    Methodology for Tuning MTDC Supervisory and Frequency-Response Control Systems at Terminal Level under Over-Frequency Events

    Get PDF
    This paper proposes a methodology for tuning a supervisory and frequency-response outer loop control system of a multi-terminal direct current (MTDC) grid designed to transmit o_shore wind energy to an onshore AC grid, and to provide frequency support during over-frequency events. The control structure is based on a master–slave scheme and ensures the achievement of frequency response, with specific implementation of the UK national grid code limited-frequency sensitive (LFSM) and frequency-sensitive (FSM) modes. The onshore AC grid is modelled with an equivalent frequency-response model to simulate the onshore AC grid dynamics under frequency deviations. The main innovation of this paper is the development of a methodology for tuning simultaneously two hierarchical levels of a MTDC coordinated control structure, i.e., the MTDC supervisor, given by the active power set point for slave terminal, and the slope of frequency-response functions at onshore terminals. Based on these two hierarchical levels, di_erent strategies are evaluated in terms of frequency peak reductions and change of the frequency order type. Moreover, tuning guidance is given when a di_erent MTDC control structure or di_erent synchronous generator characteristics of the onshore AC grid are considered.This research was funded by the Spanish Ministry of Economy, Industry and Competitiveness (project ENE2016-79145-R AEI/FEDER, UE) and the Basque Government (project KK-2017/00083, and research group GISEL, grant number IT1083-16

    Conclusions and Future Work

    Get PDF

    Dynamics estimation and generalized tuning of stationary frame current controller for grid-tied power converters

    Get PDF
    The integration of AC-DC power converters to manage the connection of generation to the grid has increased exponentially over the last years. PV or wind generation plants are one of the main applications showing this trend. High power converters are increasingly installed for integrating the renewables in a larger scale. The control design for these converters becomes more challenging due to the reduced control bandwidth and increased complexity in the grid connection filter. A generalized and optimized control tuning approach for converters becomes more favored. This paper proposes an algorithm for estimating the dynamic performance of the stationary frame current controllers, and based on it a generalized and optimized tuning approach is developed. The experience-based specifications of the tuning inputs are not necessary through the tuning approach. Simulation and experimental results in different scenarios are shown to evaluate the proposal.Peer ReviewedPostprint (published version

    Renewable energy balancing with thermal grid support

    Get PDF
    Waste heat valorisation in process industry is a common strategy today. The residual heat is converted to electricity by using steam turbines or organic Rankine cycles. As this energy conversion is likely constructed as an integral cooling capacity for the primary process, loss of electricity production will result in reduced process cooling and hence production capacity loss. This restriction prevents these generators to deliver supporting services to the electrical grid. In this paper, it is proven that coupling waste heat recovery with a district heating network provides flexibility to the electricity generation while ensuring cooling capacity to the process. This flexibility can be utilised by a Virtual Power Plant (VPP), e. g., to compensate for the variable output of renewable energy sources. Today, the power fluctuations are only compensated by traditional power plants (gas, coal) due to the scale and flexibility of these power plants. In this paper, a strategy is defined to balance variable (renewable) production with industrial waste heat. As such, some grid support tasks can be transferred from the central power plants to decentralised generation units. The backup of the variable sources is provided by utilising the local available capacity, while maintaining or improving energy efficiency of exothermal industrial processes. Operational boundaries are defined and new challenges identified. In this paper, firstly, the heat sources available for this concept are identified. Secondly, the properties of the different conversion technologies are described. Thirdly, the benefits of a virtual power plant utilising waste heat are determined. Finally, this VPP concept is verified by means of a case study in Belgium, Ostend Energy port. Available heat from biomass, chemical processing and waste incineration is used as primary energy source to balance local renewable production

    Reduced-Order and Aggregated Modeling of Large-Signal Synchronization Stability for Multi-Converter Systems

    Get PDF

    Offshore Wind Farm-Grid Integration: A Review on Infrastructure, Challenges, and Grid Solutions

    Get PDF
    Recently, the penetration of renewable energy sources (RESs) into electrical power systems is witnessing a large attention due to their inexhaustibility, environmental benefits, storage capabilities, lower maintenance and stronger economy, etc. Among these RESs, offshore wind power plants (OWPP) are ones of the most widespread power plants that have emerged with regard to being competitive with other energy technologies. However, the application of power electronic converters (PECs), offshore transmission lines and large substation transformers result in considerable power quality (PQ) issues in grid connected OWPP. Moreover, due to the installation of filters for each OWPP, some other challenges such as voltage and frequency stability arise. In this regard, various customs power devices along with integration control methodologies have been implemented to deal with stated issues. Furthermore, for a smooth and reliable operation of the system, each country established various grid codes. Although various mitigation schemes and related standards for OWPP are documented separately, a comprehensive review covering these aspects has not yet addressed in the literature. The objective of this study is to compare and relate prior as well as latest developments on PQ and stability challenges and their solutions. Low voltage ride through (LVRT) schemes and associated grid codes prevalent for the interconnection of OWPP based power grid have been deliberated. In addition, various PQ issues and mitigation options such as FACTS based filters, DFIG based adaptive and conventional control algorithms, ESS based methods and LVRT requirements have been summarized and compared. Finally, recommendations and future trends for PQ improvement are highlighted at the end
    corecore