29,725 research outputs found

    Asymptotic behaviour for a class of non-monotone delay differential systems with applications

    Get PDF
    The paper concerns a class of nn-dimensional non-autonomous delay differential equations obtained by adding a non-monotone delayed perturbation to a linear homogeneous cooperative system of ordinary differential equations. This family covers a wide set of models used in structured population dynamics. By exploiting the stability and the monotone character of the linear ODE, we establish sufficient conditions for both the extinction of all the populations and the permanence of the system. In the case of DDEs with autonomous coefficients (but possible time-varying delays), sharp results are obtained, even in the case of a reducible community matrix. As a sub-product, our results improve some criteria for autonomous systems published in recent literature. As an important illustration, the extinction, persistence and permanence of a non-autonomous Nicholson system with patch structure and multiple time-dependent delays are analysed.Comment: 26 pages, J Dyn Diff Equat (2017

    H ? filtering for stochastic singular fuzzy systems with time-varying delay

    Get PDF
    This paper considers the H? filtering problem for stochastic singular fuzzy systems with timevarying delay. We assume that the state and measurement are corrupted by stochastic uncertain exogenous disturbance and that the system dynamic is modeled by Ito-type stochastic differential equations. Based on an auxiliary vector and an integral inequality, a set of delay-dependent sufficient conditions is established, which ensures that the filtering error system is e?t - weighted integral input-to-state stable in mean (iISSiM). A fuzzy filter is designed such that the filtering error system is impulse-free, e?t -weighted iISSiM and the H? attenuation level from disturbance to estimation error is belowa prescribed scalar.Aset of sufficient conditions for the solvability of the H? filtering problem is obtained in terms of a new type of Lyapunov function and a set of linear matrix inequalities. Simulation examples are provided to illustrate the effectiveness of the proposed filtering approach developed in this paper

    Fuzzy-model-based robust fault detection with stochastic mixed time-delays and successive packet dropouts

    Get PDF
    This is the Post-Print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEThis paper is concerned with the network-based robust fault detection problem for a class of uncertain discrete-time Takagi–Sugeno fuzzy systems with stochastic mixed time delays and successive packet dropouts. The mixed time delays comprise both the multiple discrete time delays and the infinite distributed delays. A sequence of stochastic variables is introduced to govern the random occurrences of the discrete time delays, distributed time delays, and successive packet dropouts, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fuzzy fault detection filter such that the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fuzzy fault detection filters, and then, the corresponding solvability conditions for the desired filter gains are established. In addition, the optimal performance index for the addressed robust fuzzy fault detection problem is obtained by solving an auxiliary convex optimization problem. An illustrative example is provided to show the usefulness and effectiveness of the proposed design method.This work was supported in part by the National Natural Science Foundation of China under Grant 61028008, 60825303, 61004067, National 973 Project under Grant 2009CB320600, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University), Ministry of Education, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the University of Hong Kong under Grant HKU/CRCG/200907176129 and the Alexander von Humboldt Foundation of Germany
    corecore