141 research outputs found

    A shock-capturing algorithm for the differential equations of dilation and erosion

    Get PDF
    Dilation and erosion are the fundamental operations in morphological image processing. Algorithms that exploit the formulation of these processes in terms of partial differential equations offer advantages for non-digitally scalable structuring elements and allow sub-pixel accuracy. However, the widely-used schemes from the literature suffer from significant blurring at discontinuities. We address this problem by developing a novel, flux corrected transport (FCT) type algorithm for morphological dilation / erosion with a flat disc. It uses the viscosity form of an upwind scheme in order to quantify the undesired diffusive effects. In a subsequent corrector step we compensate for these artifacts by means of a stabilised inverse diffusion process that requires a specific nonlinear multidimensional formulation. We prove a discrete maximum-minimum principle in this multidimensional framework. Our experiments show that the method gives a very sharp resolution of moving fronts, and it approximates rotation invariance very well

    Wavelet and Multiscale Methods

    Get PDF
    [no abstract available

    Tensor Decomposition Methods for High-dimensional Hamilton--Jacobi--Bellman Equations

    Get PDF
    A tensor decomposition approach for the solution of high-dimensional, fully nonlin-ear Hamilton-Jacobi-Bellman equations arising in optimal feedback control of nonlinear dynamics is presented. The method combines a tensor train approximation for the value function together with a Newton-like iterative method for the solution of the resulting nonlinear system. The tensor approximation leads to a polynomial scaling with respect to the dimension, partially circumventing the curse of dimensionality. A convergence analysis for the linear-quadratic optimal control problem is presented. For nonlinear dynamics, the effectiveness of the high-dimensional control synthesis method is assessed in the optimal feedback stabilization of the Allen-Cahn and Fokker-Planck equations with a hundred of variables. 1. Introduction. Richard Bellman first coined the expression "curse of dimen-sionality" when referring to the overwhelming computational complexity associated to the solution of multi-stage decision processes through dynamic programming, what is nowadays known as Bellman's equation. More than 60 years down the road, the curse of dimensionality has become ubiquitous in different fields such as numerical analysis, compressed sensing and statistical machine learning. However, it is in the computation of optimal feedback policies for the control of dynamical systems where its meaning continues to be most evident. Here, the curse of dimensionality arises since the synthesis of optimal feedback laws by dynamic programming techniques demands the solution of a Hamilton-Jacobi-Bellman (HJB) fully nonlinear Partial Differential Equation (PDE) cast over the state space of the dynamics. This intrinsic relation between the dimensions of the state space of the control system and the domain of the HJB PDE generates computational challenges of formidable complexity even for relatively simple dynamical systems 1. Much of the research in control revolves around circumventing this barrier through different trade-offs between dimensional-ity, performance, and optimality of the control design. Prominent examples of the research landscape shaped by the curse of dimensionality include model order reduction , model predictive control, suboptimal feedback design, reinforcement learning and distributed control. However, the effective computational solution of dynamic programming equations of arbitrarily high dimensions through deterministic methods remains an open quest with fundamental implications in optimal control design

    Efficient method for detection of periodic orbits in chaotic maps and flows

    Full text link
    An algorithm for detecting unstable periodic orbits in chaotic systems [Phys. Rev. E, 60 (1999), pp. 6172-6175] which combines the set of stabilising transformations proposed by Schmelcher and Diakonos [Phys. Rev. Lett., 78 (1997), pp. 4733-4736] with a modified semi-implicit Euler iterative scheme and seeding with periodic orbits of neighbouring periods, has been shown to be highly efficient when applied to low-dimensional system. The difficulty in applying the algorithm to higher dimensional systems is mainly due to the fact that the number of stabilising transformations grows extremely fast with increasing system dimension. In this thesis, we construct stabilising transformations based on the knowledge of the stability matrices of already detected periodic orbits (used as seeds). The advantage of our approach is in a substantial reduction of the number of transformations, which increases the efficiency of the detection algorithm, especially in the case of high-dimensional systems. The performance of the new approach is illustrated by its application to the four-dimensional kicked double rotor map, a six-dimensional system of three coupled H\'enon maps and to the Kuramoto-Sivashinsky system in the weakly turbulent regime.Comment: PhD thesis, 119 pages. Due to restrictions on the size of files uploaded, some of the figures are of rather poor quality. If necessary a quality copy may be obtained (approximately 1MB in pdf) by emailing me at [email protected]

    A new anisotropic diffusion method, application to partial volume effect reduction

    Get PDF
    The partial volume effect is a significant limitation in medical imaging that results in blurring when the boundary between two structures of interest falls in the middle of a voxel. A new anisotropic diffusion method allows one to create interpolated 3D images corrected for partial volume, without enhancement of noise. After a zero-order interpolation, we apply a modified version of the anisotropic diffusion approach, wherein the diffusion coefficient becomes negative for high gradient values. As a result, the new scheme restores edges between regions that have been blurred by partial voluming, but it acts as normal anisotropic diffusion in flat regions, where it reduces noise. We add constraints to stabilize the method and model partial volume; i.e., the sum of neighboring voxels must equal the signal in the original low resolution voxel and the signal in a voxel is kept within its neighbor's limits. The method performed well on a variety of synthetic images and MRI scans. No noticeable artifact was induced by interpolation with partial volume correction, and noise was much reduced in homogeneous regions. We validated the method using the BrainWeb project database. Partial volume effect was simulated and restored brain volumes compared to the original ones. Errors due to partial volume effect were reduced by 28% and 35% for the 5% and 0% noise cases, respectively. The method was applied to in vivo "thick" MRI carotid artery images for atherosclerosis detection. There was a remarkable increase in the delineation of the lumen of the carotid artery

    Control theory for infinite dimensional dynamical systems and applications to falling liquid film flows

    Get PDF
    In this thesis, we study the problem of controlling the solutions of various nonlinear PDE models that describe the evolution of the free interface in thin liquid films flowing down inclined planes. We propose a control methodology based on linear feedback controls, which are proportional to the deviation between the current state of the system and a prescribed desired state. We first derive the controls for weakly nonlinear models such as the Kuramoto-Sivashinsky equation and some of its generalisations, and then use the insight that the analytical results obtained there provide us to derive suitable generalisations of the controls for reduced-order long-wave models. We use two long-wave models to test our controls: the first order Benney equation and the first order weighted-residual model, and compare some linear stability results with the full 2-D Navier-Stokes equations. We find that using point actuated controls it is possible to stabilise the full range of solutions to the generalised Kuramoto-Sivashinsky equation, and that distributed controls have a similar effect on both long-wave models. Furthermore, point-actuated controls are efficient when stabilising the flat solution of both long-wave models. We extend our results to systems of coupled Kuramoto-Sivashinsky equations and to stochastic partial differential equations that arise by adding noise to the weakly nonlinear models.Open Acces
    • …
    corecore