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Abstract

In this thesis, we study the problem of controlling the solutions of various nonlinear PDE

models that describe the evolution of the free interface in thin liquid films flowing down in-

clined planes. We propose a control methodology based on linear feedback controls, which

are proportional to the deviation between the current state of the system and a prescribed

desired state. We first derive the controls for weakly nonlinear models such as the Kuramoto-

Sivashinsky equation and some of its generalisations, and then use the insight that the an-

alytical results obtained there provide us to derive suitable generalisations of the controls

for reduced-order long-wave models. We use two long-wave models to test our controls:

the first order Benney equation and the first order weighted-residual model, and compare

some linear stability results with the full 2-D Navier–Stokes equations. We find that using

point actuated controls it is possible to stabilise the full range of solutions to the gener-

alised Kuramoto-Sivashinsky equation, and that distributed controls have a similar effect on

both long-wave models. Furthermore, point-actuated controls are efficient when stabilising

the flat solution of both long-wave models. We extend our results to systems of coupled

Kuramoto-Sivashinsky equations and to stochastic partial differential equations that arise by

adding noise to the weakly nonlinear models.
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Chapter 1

Introduction

In this chapter we introduce the problems studied in this thesis. We start with an introduction

and motivation for the control of thin film flows and for the introduction of noise in our

models. We will then take a closer look at the hierarchy of models for the description of thin

film flows and explain how we are going to use it to construct our controls. We will also

review the relevant results in the literature, summarising the existing techniques for both

long-wave models and weakly nonlinear models, with and without noise. Finally, we outline

the objectives of the thesis, discuss the main results of our work and describe the structure

of the thesis.
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1.1 Overview of the subject and applications

The ability to control a desired particular dynamic state in systems exhibiting chaos is a

challenging and fundamental problem in nonlinear science that has attracted considerable

attention over the last decades [27, 43, 166, 192]. Chaos and its control are pertinent in a

wide variety of natural phenomena and technological applications, from turbulent flows [65],

coating processes [95], and reaction-diffusion systems [145] to spatiotemporal instabilities

in lasers [114] and cardiac arrhythmias [41], to name but a few. Not surprisingly, many

different approaches have been proposed to control, up to some extent, different aspects of

chaotic dynamics. Most of these approaches were attempted for the case of maps or ordinary

differential equations (ODEs), and this case has been thoroughly explored - see [27] for a

review of the subject. In particular, it is known how to find strange chaotic attractors [94],

stabilise unstable periodic orbits in low dimensional systems [198], direct chaotic trajectories

to any desired state using small perturbations [166, 192] and how to control chaos in a high

dimensional chaotic time signal, without assuming any knowledge of the dynamics [11].

Despite the considerable attention that chaos control for maps or ODEs has received,

several important problems, such as the control of spatiotemporal chaos for partial differ-

ential equations (PDEs), which are infinite dimensional dynamical systems, have not yet

been resolved. In this thesis, we will focus on the control of PDEs whose solutions exhibit

spatiotemporal chaotic behaviour, systems of coupled PDEs of this type, and also stochastic

partial differential equations (sPDE) that are obtained from these equations by the addition of

noise. The common factor between all the equations we present is that they are all obtained

in different asymptotic limits when modelling falling liquid films flowing down an inclined

planar wall - see Fig. 1.1. This is a classical problem in fluid mechanics, and it is well known

that the solution corresponding to a flat film, which is known as Nusselt solution, is stable

when the film layer is sufficiently thin. However, it becomes unstable when the Reynolds

number is above a critical value which depends on the inclination angle θ. In our case, the

Reynolds number depends on the undisturbed interface flow speed, and is going to be defined

later in this Chapter. The development of thin film models for this system, and the behaviour

exhibited therein, has recently been reviewed in [54, 120].

In addition to acting as a paradigm for understanding transitions between different types

of dynamical behaviour, the flow of thin films has a broad range of industrial applications.

We note particularly coating flows [227], where a uniform coating of a flat or shaped sub-
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y = h(x, t)

θ

g

x

y

Figure 1.1: Sketch of a thin liquid film falling down a planar wall. We consider a fluid layer

bounded on y = 0 by a rigid wall inclined at an angle θ to the horizontal, and at y = h(x) by

a free surface.

strate is desired, and heat and mass transfer, which is typically enhanced by mixing associ-

ated with interfacial waves [120]. These contrasting applications lead naturally to the desire

to control the system dynamics, and in an ideal situation we would like to be able to drive

the system into the full range of regimes.

After the onset of instability, the system initially exhibits waves that propagate down the

slope, followed by more complicated behaviour that can eventually lead to three-dimensional

(3-D) spatiotemporal chaos (see Fig. 1.2), which is precisely the behaviour we want to sup-

press. In order to do that, we will apply linear feedback controls [234], which represent our

ability of injecting/removing fluid through a finite number of slots in the wall. Intuitively, if

we can remove fluid from places where the fluid layer is too thick, or inject it where it is too

thin, we will be able to obtain the desired state.

The first instability to develop as the film thickness increases is in the form of long-wave

perturbations which propagate down the slope, and have no transverse component. The long-

wave, streamwise nature of the instability means that thin film flows are often studied using

reduced-dimensional models based on long-wave assumptions and neglecting variation in

the transverse direction (and hence also neglecting any effect of side walls). A number of

different models are available, which differ most fundamentally in the manner in which in-

ertial effects are incorporated. Despite the fact that these are reduced-dimensional models,

and therefore much easier to solve than the full Navier–Stokes system, the nonlinearities

present in the equations make it hard to obtain analytical results for these models, and there-
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Figure 1.2: Shadow image of waves naturally occurring on a falling film atR = 32.7 without

controlled perturbations imposed on the film flow. Reproduced from [173].

fore a weakly nonlinear asymptotic analysis can be performed, obtaining a simpler prototype

model which provides a good description of the dynamics of the interface of thin films close

to criticality. We consider two different first-order long-wave models: the Benney equa-

tion and the weighted-residual (WR) equation, which were extended by [206] to include the

effect of suction and injection through the planar wall. These two long-wave models are

identical at zero Reynolds number, and both agree with the Navier–Stokes system regarding

the critical Reynolds number for the onset of instability. Furthermore, both models reduce to

the well known Kuramoto-Sivashinsky (KS) equation under weakly nonlinear analysis - see

Section 1.2 for further details. However, the structures of these models differ significantly, in

particular the number of degrees of freedom. The Benney and KS equations are single evolu-

tion equations for the interface height h(x, t), while the weighted-residual model comprises

coupled equations for h(x, t), and the independently-evolving down-slope flux q(x, t). It is

important to notice, however, that the Navier–Stokes equations at finite Reynolds number
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allow evolution of h(x, t) together with evolution of the vector-valued velocity field at every

point within the fluid.

The controls we will apply in the systems studied here model blowing and suction of

fluid through the planar wall. We will consider two cases: in the simplest scenario, the

controls are distributed along the domain, which allows us to obtain linear stability results

for both the flat solution and nontrivial steady states and travelling wave solutions, even

in the case of long wave models; but in more realistic cases, the control actuation is only

possible at a finite number of points in the domain and we consider the effect of this type of

controls on the flat solution of long-wave models and in both the flat and nontrivial solutions

of the Kuramoto-Sivashinsky equation. Furthermore, observations of the current state are

not available everywhere and we will also take this into account in our analysis.

Physical systems are naturally susceptible to the effects of random noise. In the case of

thin films, this is usually an effect of thermal noise [60, 96], but in control systems it can also

be an effect of noise in the observations of the system state, the application of the controls

or uncertainty in parameters of the system. There are many ways in which the effects of

noise can be studied for thin films, and we will focus on the case of roughening processes,

which are characterised by a time-fluctuating ’rough’ interface, the dynamics of which is

described in terms of a stochastic partial differential equation. Examples are found in a

broad range of applications, which include surface growth dynamics such as surface erosion

by ion sputtering processes [31, 32, 106, 110], fluid flow in porous media [4, 177, 199],

fracture dynamics [29]; and, as mentioned before, thin film dynamics [24, 60, 96, 120], to

name but a few. Understanding the dynamics of the fluctuating interface in terms of its

roughening properties, which often exhibit scale-invariant universal features, has become an

important problem in statistical physics which has received considerable attention over the

last decades [14].

1.2 Governing equations and hierarchy of models

We will now present the equations that we will consider in this thesis. The full details

on the derivation of the long-wave equations are in [206], where the authors extended the

Benney [21] and weighted-residual [187] methodologies to the controlled case. We consider

a thin layer of fluid, with mean thickness hs, flowing down a plane inclined at an angle θ to

the horizontal. We adopt a coordinate system such that x is the down-slope coordinate, and
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v = F (x , t)

x

y

y = h(x , t)

Figure 1.3: Sketch of flow domain showing coordinate system. We consider a fluid layer,

with mean height hs, bounded on y = 0 by a rigid wall inclined at an angle θ to the horizontal,

and at y = h(x) by a free surface. Fluid is injected through the wall, with velocity v =
F (x, t) which changes in time in response to fluctuations of the free surface.

y is the perpendicular distance from the wall, as shown in Fig. 1.3. The upper interface of

the fluid is a free surface, located at y = h(x, t). The lower boundary of the fluid is a rigid

wall, through which fluid may be injected or removed.

The two-dimensional (2-D) Navier–Stokes equations admit a solution which is uniform

in the streamwise direction, known as the Nusselt solution [162], for which the surface ve-

locity is Us = ρgh2
s sin θ
2η

, where ρ is the fluid density, g the acceleration due to gravity, hs

the mean film thickness and η the dynamic viscosity of the fluid. We non-dimensionalise

the problem based on the length scale hs and the velocity scale Us, and define the Reynolds

number R and the capillary number C based on the velocity Us:

R =
ρhsUs

η
, C =

ηUs

γ
, (1.1)

where γ is the coefficient of surface tension at the air-fluid interface. Subsequent equations

are all dimensionless.

The main goal of a successful control methodology would be to solve the 2-D Navier–

Stokes equations, with velocity u(x, y, t) = (u, v), and fluid pressure p(x, y, t). In this case,
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the momentum and continuity equations are

R (ut + uux + vuy) = −px + 2 + uxx + uyy, (1.2a)

R (vt + uvx + vvy) = −py − 2 cot θ + vxx + vyy (1.2b)

and

ux + vy = 0. (1.3)

The boundary conditions at the wall are given by

u = 0, v = F (x, t). (1.4)

Here the function F (x, t) represents the injection velocity normal to the wall, y = 0. Note

that we assume that the injection of fluid does not affect the no-slip boundary condition on

the wall. At the interface, y = h(x, t), the tangential and normal components of the dynamic

stress balance condition yield

(vx + uy)
(
1− h2x

)
+ 2hx (vy − ux) = 0, (1.5)

p− pa −
2

1 + h2x

(
vy + uxh

2
x − hx (vx + uy)

)
= − 1

C

hxx
(1 + h2x)

3/2
, (1.6)

where pa is the atmospheric pressure, assumed constant. The system is closed by the kine-

matic boundary condition at the free surface

ht = v − uhx. (1.7)

Defining the down slope flux q

q(x, t) =

∫ h

0

u(x, y, t) dy, (1.8)

integrating (1.3), and applying the boundary conditions (1.4) and (1.7), yields the mass con-

servation equation in terms of q:

ht − F (x, t) + qx = 0. (1.9)
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1.2.1 Long-wave models for thin film flows

In the long wave limit, the solutions are characterised by having large wavelength when

compared to its mean thickness, and therefore when deriving the models it is usual to look

for solutions with wavelength L� 1 and define the long-wave parameter ε = 1/L. The first

step then is to rescale the Navier–Stokes equations (1.2)-(1.7) according to

X = εx, T = εt, v = εV, C = ε2Ĉ, F = εf, (1.10)

where ε	 1, obtaining

εR (uT + uuX + V uy) = −εpX + 2 + ε2uXX + uyy, (1.11a)

ε2R (VT + uVX + V Vy) = −py − 2 cot θ + ε3VXX + εVyy (1.11b)

ux + vy = 0. (1.11c)

The boundary conditions at the wall are given by

u = 0, V = f(x, t), (1.12)

and at the interface y = h(X, T ) we have

(
ε2VX + uy

) (
1− ε2h2X

)
+ 2εhX (εVy − εuX) = 0, (1.13)

p− pa −
2

1 + ε2h2x

(
εVy + ε3uXh

2
X − εhX

(
ε2VX + uy

))
= − 1

Ĉ

hXX

(1 + ε2h2X)
3/2
.(1.14)

The rescaled equation (1.9) is

hT − f(X, T ) + qX = 0. (1.15)

First order Benney equation

After expanding u, V, p and q in powers of ε,

u = u0 + εu1 +O(ε2), V = V0 + εV1 +O(ε2), (1.16)

p = p0 + εp1 +O(ε2), q = q0 + εq1 +O(ε2), (1.17)
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and substituting in (1.11)-(1.15), we obtain the following leading order solution

u0 = y(2h− y), V0 = f(X, T )− y2hX , p0 = pa −
hXX

Ĉ
+ 2(h− y) cot θ, (1.18)

with the flux being

q0 =

∫ h

0

u0 dy =
2h3

3
, (1.19)

which leads to the equation

hT − f(X, T ) + 2h2hX = O(ε). (1.20)

We then substitute the leading order solution into the O(ε) part of the rescaled equations and

integrate to obtain u1:

u1 =
y

2
(y − 2h)

(
2h cot θ − hXX

Ĉ

)
X

+

+R

[
(hT − f)

(
y3

3
− h2y

)
+

2hhX
3

(
y4

4
− h3y

)
+ hy(y − 2h)f

]
. (1.21)

We can then find the first order correction for q:

q1 =

∫ h

0

u1 dy = −h
3

3

(
2h cot θ − hXX

Ĉ

)
X

+R

(
−5hTh

4

12
− 3h6hX

10
− h4f

4

)
. (1.22)

We eliminate hT from (1.22) using (1.20) and obtain the Benney equation for q:

q(X, T ) = q0 + εq1 +O(ε2) =

2h3

3
+ ε

[
h3

3

(
−2hX cot θ +

hXXX

Ĉ

)
+R

(
8h6hX
15

− 2h4f

3

)]
+O(ε2), (1.23)

which can be recasted into the original variables to obtain

q(x, t) =
h3

3

(
2− 2hx cot θ +

hxxx
C

)
+R

(
8h6hx
15

− 2h4F

3

)
= Z(h, F ), (1.24)

where Z is a (nonlinear) differential operator, which is applied to h and F . The coupling of

(1.24) to (1.9) yields a closed system for the evolution of the interface height h(x, t). We

note that the appearance of terms involving F in (1.24) is a consequence of the choice of F
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with respect to the long wave scaling. By supposing F to be an order smaller with respect to

ε, we can replace (1.24) with the simpler version:

q(x, t) =
h3

3

(
2− 2hx cot θ +

hxxx
C

)
+

8Rh6hx
15

. (1.25)

In this limit, the only effect of F on the system dynamics is via the mass conservation

equation (1.9).

First order weighted-residual model

In the Benney model, the flux q is slaved to the interface height h. Alternatively, following

the weighted-residual methodology developed by [187], the flux q gains its own evolution

equation, so that time derivatives of both h and q appear in the equations. In this method-

ology, ε is considered as an ordering parameter, rather than being a variable with respect to

which the solutions are expanded: for the first order weighted residuals equations we retain

terms up to order ε in equations (1.11)-(1.15), obtaining

εR (uT + uuX + V uy) = −εpX + 2 + uyy, (1.26a)

0 = −py − 2 cot θ + εVyy (1.26b)

The mass conservation equation and boundary conditions at the wall remain the same, while

the boundary conditions at y = h(X, T ) become

uy = 0, (1.27)

p = pa + 2εuX − hXX

Ĉ
, (1.28)

where we used mass conservation to write Vy = −uX . We can then integrate the rescaled

y−momentum equation (1.26b) to obtain an expression for p:

p = pa + 2(h− y) cot θ − hXX

Ĉ
− εuX − 2εhxuy, (1.29)

which we can then substitute in the x−momentum equation (1.26a).

The weighted-residual methodology then assumes that u can be expanded in terms of

basis functions φj satisfying the no-slip boundary condition on the wall and zero tangential
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stress in the interface,

u =
∑
j

aj(X, T )φj(ȳ), φj(z) = zj+1 −
(
j + 1

j + 2

)
zj+2, ȳ =

y

h(X, T )
. (1.30)

We can then use the functions φj as test functions and integrate. We obtain

εR

∫ h

0

φn(ȳ)(u0T + u0u0X + V0u0y) dy =

=

(
−ε
(
2h cot θ − hXX

C̄

)
X

+ 2

)∫ h

0

φn(ȳ) dy +

∫ h

0

φn(ȳ)uyy dy,

where

u0(X, y, T ) =
3q

h
φ0(ȳ), V0(X, y, T ) = f(X, T )−

∫ y

0

u0X(X, y
′, T ) dy′. (1.31)

We then set n = 0 and integrate by parts to obtain

εR

(
2

5
qT − 23

40

qhT
h

+
111

280

qqX
h

− 18

35

q2hX
h

+
3qf

8h

)
=

(
−ε
(
2h cot θ − hXX

C̄

)
X

+ 2

)
h

3
− q

h2
.

(1.32)

We can now use (1.20) again to eliminate hT and obtain the equation for q:

2εRh2

5
qT+q =

2h3

3
+ε

[
h3

3

(
−2hX cot θ +

hXXX

Ĉ

)
+R

(
18q2hX

35
− 34hqqX

35
+
hqf

5

)]
,

(1.33)

which can be rescaled back to the original variables, to obtain

2

5
Rh2qt+q =

h3

3

(
2− 2hx cot θ +

hxxx
C

)
+R

(
18q2hx
35

− 34hqqx
35

+
hqF

5

)
= Z(h, q, F ),

(1.34)

which when coupled to (1.9) yields a closed system for h(x, t) and q(x, t). Initial conditions

are required for both h and q. The Benney and weighted-residual models are identical when

R = 0, and can be shown to agree at O(1) and O(ε) in the long-wave limit [206].

1.2.2 Weakly nonlinear models

The long-wave models presented in the previous subsection represent good low-order ap-

proximations of thin film flows down inclined planes, but the complicated nonlinearities that
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are present in the models make the task of obtaining analytical results practically impossi-

ble. This motivated the development of weakly nonlinear models of thin film flows. Weakly

nonlinear models are a significant development in nonlinear dynamics and are widely used

in fluid mechanics, plasma physics or reaction-diffusion systems. In the context of thin film

flows, the validity of the models obtained depends on certain a priori assumptions (e.g.,

the derivation of these models assumes small amplitude waves) and therefore these models

are only valid in limited regions of the parameter space. Nevertheless, the simplicity of the

equations obtained makes them amenable to mathematical analysis, which allows for a better

understanding of the dynamics in the appropriate parameter regime.

The weakly nonlinear model obtained for thin film flows down inclined planes is the

so-called Kuramoto-Sivashinsky (KS) equation. This equation was derived in the context of

reaction-diffusion systems by Kuramoto [132] and for flame front propagation by Sivashin-

sky [157, 195]. In the context of thin film flows, it is studied for the case of vertical walls

by Sivashinsky and Michelson [194] and for the interface between two fluids by Hooper and

Grimshaw [101]. The KS equation is a fourth order dissipative PDE, which has a Burgers

nonlinearity. Its controlled version can be obtained from both equations (1.24) and (1.34).

Starting from (1.24), we write h(x, t) = 1+εU(ξ, τ), f(x, t) = ε2g(ξ, τ), where we rescaled

the time and space variables so that the equations sit in the moving frame, ξ = x− t, τ = εt,

so that we obtain

Uτ + 4UUξ +

(
8R

15
− 2

3
cot θ

)
Uξξ +

1

3Ĉ
Uξξξξ = g,

and after a new change of variables

U =
1

60

√
3Ĉ (8R− 10 cot θ)3

15
U, ξ =

√
5

Ĉ(8R− 10 cot θ)
X,

g =
Ĉ2(8R− 10 cot θ)5

16 · 33 · 55 G, τ =
75

Ĉ(8R− 2 cot θ)2
T

we obtain

uT + uXXXX + uXX + uuX = G, (1.35)

where X ∈ (0, L), T > 0 and L is the original wavelength of the perturbations. This

equation can then be rescaled to different domain lengths: rescaling it to x ∈ (0, 2π) peri-
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odic domains introduces the instability parameter ν that we will discuss in Chapter 2, while

rescaling it to x ∈ (0, 1) introduces the parameter λ that we will discuss below. The lat-

ter case is commonly seen in the context of boundary control problems, where the usual

boundary conditions are Dirichlet, Neumann or mixed, rather than periodic.

It is important to notice that dispersion effects can be included in this equation [120] if

when deriving the Benney equation we retain terms up to order ε2 and/or derive a second

order weighted-residual model. Furthermore, other effects such as electric fields can be

included in the derivation [217].

Similarly to the uncontrolled case, even though the KS equation is not valid everywhere

in the parameter space, it still provides us with (analytical) information about the behaviour

of the system in certain parameter regions. We can therefore derive controls for this equation

and hope that we can learn enough so that we can generalise these controls in order to apply

them to the more complicated long-wave models, or to other models which we describe

below.

Weakly nonlinear models are also useful for the analysis of multiphase flows in channels.

For the case of three fluids confined in a channel and driven by gravity and/or a streamwise

pressure gradient, Papaefthymiou et al [169] derived systems of coupled equations of the

form

uit+
2∑

j=1

[
qijujx +

2∑
k=1

εβijk(ujuk)x + ε(Rsij + cot θgij)ujxx +
ε

Ci

dijujxxxx

]
= 0, (1.36)

for i = 1, 2, and where ε is again the long-wave parameter and all of the coefficients are

rational polynomial functions of the physical parameters. This is a quite general system of

PDEs, which was studied by extensive numerical experiments in [168] but for which there

are no known analytical results. We study two particular cases of this system in Chapter 5.

1.2.3 The stochastic Kuramoto-Sivashinsky equation

We will also consider the stochastic Kuramoto-Sivashinsky (sKS) equation,

ut = −νuxxxx − uxx − uux + σξ(x, t), (1.37)
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Figure 1.4: Sketch of a liquid film falling down an inclined plane with a vibrating disordered

wall. The thickness of the film is denoted as h(x, t) and the disordered wall position is

denoted as s(x, t). Reproduced from [179].

which has been derived in [179] as a weakly nonlinear asymptotic model for a liquid film

falling down an inclined plane with a vibrating disordered wall - see Fig. 1.4. The term

ξ(x, t) denotes a Gaussian mean-zero spatiotemporal noise, which is taken to be white in

time, and whose strength is controlled by the parameter σ:

〈ξ(x, t)ξ(x′, t′)〉 = G(x− x′)δ(t− t′), (1.38)

where G(x− x′) represents its spatial correlation function.

The quadratic nonlinearity in Eq. (1.37) is typically referred to as Burgers nonlinearity.

We note that an alternative version of Eq. (1.37) is found by making the change of variable

u = −hx, giving rise to

ht = −νhxxxx − hxx +
1

2
(hx)

2 + ση(x, t), (1.39)

where ξ(x, t) = ∂xη(x, t).

The main effect of this transformation is to change the dynamics of the mass u0(t) =

1
2π

∫ 2π

0
u(x, t) dx of the solution. Indeed, Eq. (1.37) with PBCs preserves the value of u0

whereas as a consequence of the nonlinear term (hx)
2, Eq. (1.39) does not conserve the mass

h0(t) =
1
2π

∫ 2π

0
h(x, t) dx. Both equations have received a lot attention over the last decades,

with Eq. (1.37) being more appropriate in mass-conserved systems such as the dynamics of
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thin liquid films [24, 60, 96, 120, 179], and Eq. (1.39) relevant in modeling surface growth

processes such as surface erosion by ion sputtering processes [31, 32, 55, 56, 135, 151, 186].

It is also worth mentioning that the quadratic nonlinearity appearing in equation (1.39) is

the same as that in the Kardar-Parisi-Zhang (KPZ) equation [97, 122]

ht = hxx +
1

2
(hx)

2 + ση(x, t). (1.40)

In fact extensive work indicates that Eq. (1.39) and Eq. (1.40) are asymptotically equivalent,

something referred to as the “Yakhot conjecture" [66, 182, 230]. Throughout the remainder

of this thesis we will refer to Eq. (1.37) as the sKS equation with Burgers nonlinearity and

Eq. (1.39) as the sKS equation with KPZ nonlinearity.

1.3 Stability and control of thin film flows

For flat homogeneous walls, a trivial solution of all of the models for thin film flows is

a steady uniform flow, known as the Nusselt solution, in which the free interface is flat.

As we mentioned already, this solution can be unstable in certain parameter regimes, e.g.,

if the inclination angle is too steep, or the fluid layer is too thick. This instability, and

therefore the existence of other, possibly non-steady, states of the system, can be explored to

achieve certain states that can be of benefit for different applications. Much of the thin-film

literature focuses on the additional instabilities and flow modes that can occur in flows with

heating and cooling [13], or on flows over steady non-uniform topography; both have direct

applications in heat exchangers. Thermal effects and topography are often combined with

each other [25, 189] or with electric fields [83, 213, 214, 217, 222].

The introduction of steady but spatially-varying topography can be used to create pat-

terned steady states, which have slightly different stability properties to the corresponding

unpatterned system. The steady states and dynamics of systems with wavy walls have been

studied using various combinations of full computations, long-wave models, and experi-

ments [81, 98, 174, 176, 190, 212]. The effect of topographical patterning on flow stability

is quite subtle, and the critical Reynolds number can be increased or decreased depending

on the system parameters and the choice of topography amplitude and wavelength. It is

generally only possible to obtain significant modification to the critical Reynolds number by

introducing large-amplitude topographical variations, and hence also large-amplitude defor-
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mation of the free surface and flow. Steady topographical patterning falls into the category

of open-loop control, where the controls to be applied are pre-determined.

Steady heating of the planar wall, either by heating the substrate uniformly [13, 210], lo-

cally [119], in an oscillating manner [189], or by point heaters [207] has a more direct effect

in the stability of thin films. It is shown that local or point heating induce gradients of surface

tension, which in turn promote the formation of waves or bumps in the heated region, which

travel downstream. Similarly, distributed heating leads to steady state deformations, which

enhance heat transfer. When combined with topography, Blyth and Bassom [25] have shown

that for zero Reynolds number, small Péclet number and small amplitude topography, sinu-

soidal heating can flatten the interface, while large enough steady uniform heating induces

the interface to be in phase with the wall shape, which would otherwise be out of phase. An

important thing to notice, however, is that too much heating may lead to evaporation, which

in turn can induce film breakup [13].

Thompson et al [206] used long wave models to study the effect of imposed, steady,

spatially-periodic suction/injection on thin-film flow down an inclined plane. They found

that the imposed suction always leads to non-uniform states, enables a non-trivial bifurcation

structure and complicated time-dependent behaviour, and significantly alters the trajectories

of particles in the flow, but has a relatively small effect on flow stability. Suction is, how-

ever, the only mechanism by which the net system mass can be modified, and so suction

controls are the only way in which perturbations of infinite wavelength can be made better

than neutrally stable.

Other physical mechanisms that have been investigated within the context of thin-film

flow down inclined planes include chemical coatings or microstructure to induce effective

slip [121], surfactants [26], porous [163, 204] or deformable [82] walls and magnetic fields

[5]. All of these previous studies consider passive, predetermined, modifications to the sys-

tem, rather than active feedback, and therefore their effect is on introducing additional solu-

tion states of the system, rather than affecting the stability of the existing ones.

It is well known from a control theory perspective that controls chosen in response to

real-time observations of the system state are able to have a much stronger effect on flow

stability than that caused by open-loop controls, and furthermore can do so without changing

the nature of the steady state itself. Therefore we will consider this more efficient way of

affecting the stability of a given system state by using feedback controls [234]. Feedback
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control consists of a set of control actuators and response functions, where the response

functions are constructed based on hypotheses regarding the dynamics of the uncontrolled

system and its response to the control actuators. We will use linear feedback controls, in

which the response functions are linear functions of the deviation of the observed state from

the desired state. This agrees with the intuition that removing fluid from thicker areas, or

injecting it in thinner regions will drive the system towards the desired state. We note that

the main advantage of using (closed-loop) feedback controls is that the controls actively

respond to the evolution of the system, as opposed to the passive (open-loop) control, such

as varying topography, or prescribed uniform heating, which have been used before. This

in turn means that if/once the desired state is achieved, then the controls do not need to be

active anymore. The advantages of this fact will become clearer in Chapters 2 and 3.

Feedback control methodologies rely on the ability of shifting the eigenvalues of a linear

operator to the complex left half-plane, ie, to make the eigenvalues of this operator have

negative real part. This is called pole placement and we state the algorithms we will use in

Appendix A.2. These are based on results on robustness and invariance concepts, which are

presented in, e.g., [19, 45, 46, 57, 58, 87, 123].

In order to obtain the response functions, the control methodology requires real-time

observations of at least some components of the system state, and we will build our control

strategies around observations of the film height. These can be obtained in experiments in

several ways: Liu and Gollub [142] investigated experimentally the dynamics of thin films

within the context of the onset of chaos; they used a fluorescence imaging process to measure

the two-dimensional film thickness in real time, and also used laser beam deflection to obtain

local measurements of the interface slope; Vlachogiannis and Bontozoglou [223] examined

the flow of thin films over a wavy wall, and used interferometry calibrated against needle-

point measurements to obtain the interface height; Heining, Pollak and Sellier [99] showed

that the free surface shape and topography profile can be obtained from measurements of the

surface velocity, and implemented this both in Navier–Stokes simulations and experiments;

and Schörner, Reck and Aksel [190] used experiments with visualization by laser reflection

to study the effect of differently shaped topographical configurations with the same basic

amplitude and wavelength on the flow down an inclined plane; they were able to infer the

streamwise growth rate of small-amplitude perturbations by comparing the magnitude of

interfacial fluctuations at two streamwise locations.
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Feedback control in the form of suction and blowing is used in aeronautics [86] and

proves to be a useful tool for the delay of transition to turbulence. It is shown that strong, lo-

calised, or point actuated suction can weaken or completely suppress the secondary instabil-

ities created by cross-flow vortices [76, 77]. Furthermore, numerical studies [111] show that

suction is an efficient way of reducing drag, while downstream blowing in small amplitudes

improves lift and drag characteristics. These are useful tools for reducing fuel consumption.

Feedback control strategies have also been implemented for the two-dimensional Navier–

Stokes equations in the context of data assimilation [68], in which controls applied towards

known observations are used to overcome incomplete knowledge of the initial state in the

forecasting of hurricanes and typhoons, and also to suppress noise-induced unsteadiness on

flow over a round backward facing step [15]. However, in the case of long-wave models for

thin film flows, we are only aware of the use of feedback controls in applications such as

the use of thermal perturbations in liquids spreading over a solid substrate to suppress the

contact line instability [95] or the delay of the onset of long-wavelength Marangoni-Bénard

convection [164] in systems with zero Reynolds number.

There is extensive work on the use of feedback control to suppress waves in the weakly

nonlinear model of thin film flows - see, e.g. [42, 63, 136]. Christofides [42] used point actu-

ated controls modelling blowing and suction to stabilise the zero solution of the Kuramoto-

Sivashinsky equation. Armaou and Christofides [8, 9] also claim that stabilisation of the flat

state can be achieved by using only 5 control actuator functions, independently of the domain

length (which affects the number of unstable eigenvalues of the system); they argue that this

is possible due to the multiplicity of the eigenvalues of the linear operator of the KS equation

being less than or equal to 4. Furthermore, using a similar argument, they prove that the

response function can be built based on only a finite number of observations of the interface

height, and they do that by using static (where the controls are based on only the most recent

set of observations) or dynamic (where the controls are based on an approximation of the

system which evolves over time) output feedback controls (see Chapter 3 and Appendix A.2

for more details), either using linear or nonlinear feedback controls. Moreover, when using

nonlinear feedback controls, efforts have been made to optimise the placement of actuators

and sensors when stabilising the zero solution of the KS equation [10, 149]. This is done

by defining an appropriate cost functional and either by analysing a large number of runs or

using the optimisation software MINOS, which uses reduced gradient techniques; a proof of
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the existence of these optimal positions was not given, however.

In the works mentioned above, the Kuramoto-Sivashinsky equation is assumed to satisfy

periodic boundary conditions. If this is not the case, then it is possible to use both distributed

and boundary controls for the control of the resulting system. In non-periodic domains, x is

usually rescaled to be in a domain of length 1, x ∈ (0, 1), thus defining an instability param-

eter λ, which is proportional to the original domain length. In [144], the authors stabilise the

zero solution for small λ (ie, small domains) by using nonlinear boundary feedback control

in both boundaries. Cerpa [35] uses a problem of moments approach and spectral analysis

to prove that the linear KS equation with both Dirichlet and Neumann boundary conditions

can be controlled using one boundary control on the first derivative at x = 0; the system is

controllable if the parameter λ does not belong to a specific countable set. A similar result is

proved for distributed controls in [37].

For the full nonlinear case, Cerpa and Mercado [38] use two boundary controls applied

at x = 0 to steer the solutions of the Kuramoto-Sivashinsky equation to any given trajec-

tory. They use a Carleman estimate to obtain the null controllability of the linearised system,

followed by a local inversion theorem to prove local controllability of all the trajectories

of the KS equation. Hu and Temam [104] formulate and solve the problem of robust con-

trol of the KS equation through the boundary in the finite time horizon, by considering the

finite component of the worst case disturbance aggravating the system. Their results are

not only valid for the zero solution but also for any target flow U . They apply their results

to a data assimilation problem, where the control to be determined is the initial condition.

Sakthivel and Ito [188] consider the same problem, with Neumann and Dirichlet boundary

control, but in the case where there is uncertainty in the parameters of the system; they use

a spatially dependent scaling function, which provides them with controllers of less control

effort. Byrnes et al [33] consider the different problem of tracking regulation for systems

governed by the Kuramoto-Sivashinsky equation. They use boundary controls applied in

both boundaries which force the system to remain bounded while at the same time all out-

puts are driven to track time dependent reference signals. Furthermore, they only consider a

finite number of observations (outputs) of the system, by using a dynamic compensator (or

dynamic output feedback control). Finally, Kobayashi [128] uses adaptive stabilisation tech-

niques based on high-gain nonlinear output feedback controls and proves global asymptotic

stability of the zero solution. Other examples of adaptive or input-output feedback control
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applied to fluid dynamics are its application to convectively unstable flows [67], where the

authors apply both linear-quadratic regulators and model-free adaptive methods to the lin-

earised Kuramoto-Sivashinsky equation, spatially developing flows [12], where the controls

are applied to the Ginzburg-Landau equation, and general dissipative PDEs [220].

Some authors also consider the case when a generalisation of the Kuramoto-Sivashinsky

equation that includes effects of dispersion is coupled with a heat equation that models the

temperature of the thin film. In [39], the authors prove that these systems can be forced

to rest (ie, to the zero solution) by using boundary control in both equations. Furthermore,

in [40] the authors prove that the same system can be controlled by using a localised control

that acts in an open subset of the domain and only in one of the equations. In a recently

submitted paper [34], this result is generalised to the control of any given trajectory.

The optimal control problem for the weakly nonlinear models with Dirichlet/Neumann

boundary conditions was also considered: Gao [79] proves a Pontryagin’s maximum prin-

ciple for a forced Kuramoto-Sivashinsky equation, where both the solution and the (dis-

tributed) control have pointwise constraints, while Sun [200] investigates the problem for

optimal boundary control, presenting first order necessary conditions for both fixed and free

final time horizons. When the equations include the effects of dispersion, Zheng [238] es-

tablished a bang-bang principle for an optimal control, by obtaining a relationship between

the null controllability and the time optimal control problem with the help of Carleman esti-

mates.

1.4 Roughening processes

As was mentioned before, roughening processes are characterised by a time-fluctuating

rough interface which is described in terms of a stochastic partial differential equation. An

important feature of systems involving dynamics of rough surfaces is that one often observes

the emergence of scale invariance both in time and space, i.e., the statistical properties of

quantities of interest are described in terms of algebraic functions of the form f(t) ∼ tβ or

g(x) ∼ xα, where α and β are referred to as scaling exponents. An example of this is the

surface roughness, or variance of u(x, t), which is defined as

r(t) =

√
1

2π

∫ 2π

0

[u(x, t)− u0(t)]
2 dx, . (1.41)
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We remark that u0 may or may not depend on time, depending on whether we consider the

Burgers or the KPZ nonlinearities. Usually the above quantity grows in time until it reaches

a saturated regime, in which the fluctuations become statistically independent of time and

are scale-invariant up to some typical length scale of the system, say �s. This behavior can

be expressed as:

〈r(t)〉 ∼
{
tβ if t	 ts,

rs if t� ts,
(1.42)

where 〈. . . 〉 denotes average over different realizations, β is the so-called growth expo-

nent [14], and ts and rs are the saturation time and saturated roughness value, respectively,

which depend on the length scale �s. In particular, at a given time t < ts, the correlation

of these fluctuations are on a spatial length scale which grows in time as �c ∼ t1/z. There-

fore, saturation occurs whenever �c = �s from which we find rs ∼ �αs with α = βz. In

this context, the exponents α and z are the roughness and dynamic exponent, respectively,

and their particular values determine the type of universality class [130]. For example, it is

known that the long-time behavior of the KPZ equation Eq. (1.40), is characterized by the

KPZ universality class with α = 1/2 and z = 3/2, while its linear version, which is referred

to as the Edwards-Wilkinson (EW) equation, is characterized by the EW universality class

with α = 1/2 and z = 2 [14, 52, 97, 160, 183].

The ability to control not only the dynamics of the surface roughness (i.e. the growth

rate) but also its convergence towards a desired saturated value has recently seen an in-

creased interest due to the large amount of different technological applications. We notice

particularly the work by Lou and Chtistofides [146, 150, 151], where the authors use nonlin-

ear (distributed) feedback controls to control the solutions of the sKS equation to a desired

saturated value of the surface roughness. These authors also use kinetic Monte-Carlo meth-

ods to predict the future state variance in order to design controls that minimise an objective

function that penalises the discrepancy between the predicted state variance of the solution

and that of a desired trajectory [152, 153]. The same method is also applied to equations

that consider the system coupled to a gas phase [147, 148]. Finally, similar techniques are

used and combined with dynamic output feedback control in [106, 107] and applied to the

control of other statistical properties such as film porosity, film thickness and surface mean

slope in [105, 108, 109, 237].

It is important to note that these control strategies address not only the control the surface
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roughness but also other face values, such as the film porosity and film thickness, and also

consider various linear dissipative models, including the stochastic heat equation, the linear

stochastic KS equation, and the Edwards-Wilkinson (EW) equation. However, it should be

pointed out that most of these works involve the use of nonlinear feedback controls which

change the dynamics of the system and requires knowledge of the nonlinearity at all times,

something that may be difficult to achieve. This is because the nonlinear terms are included

implicitly in the controls, which makes the system dynamics essentially linear.

In addition to these works, we note [184], where the authors use nonlinear model pre-

dictive control to drive the system towards a desired mean value and surface roughness,

and estimates the system state based on the substrate temperature; Hu and Mao [110] ad-

dress the use of feedback controls both on the drift and the diffusion part of the sPDE and

investigate the almost-sure stabilisation problem, rather than the mean-square stabilisation

problem, which is equivalent to control the surface roughness; finally, Block et al [23] de-

rive a method to control the surface roughness of the KPZ equation by using time delayed

feedback controls.

Still considering the sKS equation but focussing on the trajectories of the solutions rather

than their statistical properties, Pradas et al [179, 180] showed that in the parameter regime

where the system is close to criticality (i.e., for ν close to 1), if the noise present in the

equation is highly degenerate, it forces the system to undergo several transitions, eventu-

ally stabilising the zero solution for strong enough noise intensities. This is because in this

parameter regime the system can be described by the dynamics of the first mode only, and

therefore the authors can use multiscale analysis to obtain an amplitude equation for the first

mode. Gao et al [80] discuss observability estimates and also the null controllability of the

linear stochastic KS equation, as well as the same equation when considered backwards in

time i.e., with a minus sign in front of the time derivative.

Feedback control problems are also studied for general stochastic PDEs and mostly in-

volve the inverse problem of the generation of the stationary covariance matrix of the asso-

ciated system. This problem is solved in [6] by identifying each possible system with the

solution of a quadratic matrix inequality.
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1.5 Objectives and structure of this thesis

In this thesis, we study the problem of using feedback controls to stabilise different solutions

to equations modelling thin films flowing down inclined planes. The main objective is to

derive controls based either on the reduced-order long-wave models or the weakly nonlinear

models that would be effective in the full Navier–Stokes system. Ideally, we would like to

derive controls for the Kuramoto-Sivashinsky equation, which would then work for both the

long-wave models and the full Navier–Stokes system. The difficulty in applying the KS con-

trols to these more complicated systems is twofold: the nonlinearities, even in the simplest

case of the Benney equation (when the linear operator is the same as in the KS case, and

therefore controls that stabilise the KS equation should stabilise at least the linear operator

of the Benney equation) are more complicated, and so there is no guarantee that controls

that stabilise the linear operator will work in the full nonlinear dynamics; and secondly, the

structure of the weighted-residual and Navier–Stokes models, when applied at finite wave-

length, is significantly different to that of the KS equation. On the other hand, since the linear

operators are similar for the KS and the Benney equations, we can carefully build a control

strategy for the Kuramoto-Sivashinsky equation, for which we can obtain analytic results,

and extract information on the behaviour of the system and its reaction to the controls at

least in a region of the parameters where this equation is valid. This will in turn build our

intuition on how the controls should behave in the long-wave models.

We therefore start in Chapter 2 by studying the control problem applied to the Kuramoto-

Sivashinsky equation and some of its generalisations that include the effects of dispersion

and/or of an electric field applied perpendicular to the undisturbed surface. We apply point-

actuated feedback controls and prove that with the right choice of response functions, which

depend on the difference between the current state of the system and the state we wish to

achieve, we can drive the system towards any chosen state, either the zero state, or steady

state or travelling wave solutions of the KS equation. The solution can also be driven to

any periodic state of our choosing by using point actuated controls combined with the right

choice of distributed controls. We proceed to prove that the controls obtained are robust with

respect to changes in the parameters of the system and small changes in the number of control

actuators used, and finally we present our results on the existence of an optimal distributed

control, and an algorithm to compute the optimal position for the control actuators in the

various cases considered.
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We then consider the effect of feedback controls in the long-wave models. Using in-

sight from the weakly nonlinear models, we know that proportional controls are likely to

stabilise the linear operator of the long-wave models, and we show that in fact, a propor-

tional control scheme in which fluid is injected at each streamwise location in proportion to

the observed deviation of the interface height at that location from uniform, has a stabilis-

ing effect on nearly-uniform flow in both the long-wave models. Furthermore, by solving

an Orr-Sommerfeld equation for the linear stability of the Navier–Stokes equations, we also

find that proportional controls have a stabilising effect in the full system. We also consider

control strategies based on a finite number of point actuators and when the system can only

be observed at a small number of locations in the domain, by using dynamic observers.

For non uniform states, we discuss linear stability and nonlinear behaviour of the controlled

system when using distributed, proportional controls. We note that the property of a given

non-uniform state being an exact solution of the equations is model dependent and therefore

can never be perfectly satisfied. It is therefore reasonable to suspect that a control strategy

carefully optimised for one model may be ineffective in another, and so we focus on the

use of relatively simple control schemes, and investigate their robustness to variations in the

model details.

Chapter 4 is dedicated to the stochastic Kuramoto-Sivashinsky equation. We will make

use of the controls obtained for the deterministic KS equation to derive a splitting methodol-

ogy that will allow us to control the saturated value of the surface roughness of the solutions

to the stochastic KS equation with both the Burgers and the KPZ nonlinearities: we split

the equation into a linear stochastic PDE, of which we know how to control the surface

roughness, and a nonlinear deterministic KS-type equation, which we can then control to

zero. This splitting method allows us to build linear feedback controls with smaller cost,

with the additional advantage that we can control the deterministic equation towards any de-

sired shape, which allows us to also control the solution trajectories. It improves the existing

results since we neither need to assume knowledge of the nonlinearity at all times nor need

to change the dynamics of the system in the way that it was done before. We then extend

the controls to be point actuated, which, to our knowledge, has not been done for stochastic

PDEs. This extension makes the problem considerably harder to solve, due to the fact that

the resulting system of linear stochastic ODEs is not decoupled. This leads to the need to

solve a new matrix problem, which is similar to a matrix Lyapunov equation, but that to our
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knowledge has not been addressed. We develop an algorithm to solve the resulting matrix

problem, and note that its complexity makes it harder to solve for a large N . However, we

obtained satisfactory results when controlling towards a range of surface roughness values

for moderately small N .

Finally, in chapter 5 we consider systems of coupled KS equations. We consider two

particular cases of the system described in equation (1.36): the first one considers that there

are no first order derivatives and the coupling comes through the second derivatives only,

and in the second case, which represents a vanishing viscosity limit of a conservation law,

there are no second derivatives (i.e. inertia) involved and the coupling is only via the first

derivatives. There are no analytical results known for these systems and therefore we begin

in both cases by trying to find bounds on their solutions. We use the so-called background

flow method to bound the solutions to the first particular case and we find that both the

solutions to these systems and their derivatives are bounded in L2. This provides us with the

necessary estimates to be able to prove the applicability of feedback controls to the system,

as well as to prove existence of an optimal distributed control. In the second case, we use

the entropy method proposed by Giacomelli and Otto [84] for the scalar KS equation in

the system obtained. We were able to generalise most of the results in this reference to the

particular system that we are considering. However, the crucial step on bounding the system

depends on the existence of viscosity solutions for the Burgers equation, which does not

generalise to our case and therefore we were not able to obtain the desired bounds for the

system. We discuss some ideas on how to overcome this problem.

We summarise the main results and outcomes of our research, and discuss possible future

work directions in Chapter 6.
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Chapter 2

Controlling weakly nonlinear models

In this chapter we study the problem of controlling and stabilising solutions of the Kuramoto-

Sivashinsky equation, which is an example of a general class of infinite-dimensional dynam-

ical systems exhibiting low-dimensional spatiotemporal chaos. We consider a generalised

form of the equation in which the effects of an electric field and dispersion are included.

We show that using a finite number of linear, time dependent, point actuated feedback

controls we are able to stabilise and/or control all stable or unstable solutions, including

steady solutions, travelling waves (single and multipulse ones, which we refer to as bound

states) and spatiotemporal chaos. Both the feedback and optimal control problems are stud-

ied. Furthermore, the proposed control methodology is shown to be robust with respect to

changing the parameters in the equation, e.g. the viscosity coefficient or the intensity of the

electric field.

The main results of this chapter are published in references [89, 90].



Chapter 2. Controlling weakly nonlinear models 47

2.1 The generalised Kuramoto-Sivashinsky equation

The starting point of our analysis of the control of thin film flows down inclined planes is

the weakly nonlinear model for the perturbations of the flow’s interface, the well-known

Kuramoto-Sivashinsky (KS) equation. More than modelling such interfaces, the Kuramoto-

Sivashinsky equation on L−periodic domains

ut + uxxxx + uxx + uux = 0, (2.1)

u(x, t) = u(x+ L, t),

is a paradigm evolution equation that has received considerable attention in recent years due

to its wide applicability as well as the rich and complex dynamics that it supports. The

KS equation arises in many physical problems including falling film flows [21, 101, 193,

196], two-fluid core-annular flows [53, 170], flame front instabilities and reaction-diffusion-

combustion dynamics [194, 195], propagation of concentration waves in chemical physics

applications [132, 133, 134], and trapped ion mode dynamics in plasma physics, [48]. The

KS equation (2.1) is one of the simplest partial differential equations (PDEs) that can pro-

duce complex dynamics including chaos - see for example the numerical experiments in

[112, 113, 117, 127, 172, 197, 228, 229]. Routes to chaos have been shown numerically to

follow a Feigenbaum period-doubling cascade - see [197] where the two universal Feigen-

baum constants are also computed for the KS equation with three-digit accuracy. A detailed

knowledge of the stationary, travelling and time-oscillatory solutions (typically chaotic) of

(2.1) is significant in technological applications that seek to enhance heat or mass transfer,

for example. In this sense certain solutions are better than others and a description of the so-

lution phase space is a crucial step in constructing relevant control strategies that can access

unstable states, for instance, that may be desirable in applications.

In many studies equation (2.1) is scaled to 2π−periodic domains according to the rescal-

ing

x∗ =
2π

L
x, t∗ =

(
2π

L

)2

t, u∗ =
L

2π
u, (2.2)

to take the form (we drop the stars and use the same symbols for dependent and independent
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variables)

ut + νuxxxx + uxx + uux = 0, (2.3)

u(x, t) = u(x+ 2π, t),

where ν = (2π/L)2 is a positive parameter that decreases as the system size L increases.

The mathematical interest in the KS equation and related models resides in the fact that it

is a simple, one-dimensional equation exhibiting complex dynamics making it amenable to

analysis and also a good case study in the area of infinite-dimensional dynamical systems

and their control. The equation is of the active-dissipative type and instabilities are present

depending on the value of ν. If ν > 1, it is well known [185, 191, 202, 203] that the

zero solution, representing a flat film, is unique. However, when ν < 1 the zero solution

is linearly unstable and bifurcates into nonlinear states including steady states, travelling

waves and solutions exhibiting spatiotemporal chaos - the dynamical complexity increasing

as ν decreases. Some of these solutions are stable, and others are unstable [127]. In [78, 127,

171], one can find studies of the stability of steady states of the KS equation.

In the context of falling film flows there have been several studies to extend the KS

equation by including additional physical effects. Of most interest to the present study are the

derivations in [217, 219] for film flow over flat walls in the presence of electric fields applied

perpendicular to the undisturbed interface. The resulting equation, that also incorporates the

effects of dispersion, is a generalisation of (2.3) and takes the form

ut + νuxxxx + μH[uxxx] + δuxxx + uxx + uux = 0, (2.4)

u(x, t) = u(x+ 2π, t), u(x, 0) = u0(x),

where μ ≥ 0 measures the strength of the applied electric field and the parameter δ measures

dispersive effects. These parameters have also been rescaled in the form δ∗ = 2π
L
δ, μ∗ =

2π
L
μ. The linear operator H is the Hilbert transform operator (see Appendix A.1) and repre-

sents flow destabilisation due to the electric field. On 2π−periodic domains the definition of

H is

H[u](x) =
1

2π
PV

∫ 2π

0

u(ξ) cot

(
x− ξ

2

)
dξ, (2.5)
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where PV stands for the Cauchy principal value integral. In the model analysed, the electric

field needs to be found by solving a harmonic problem above the film and calculating the

Dirichlet to Neumann map of the solution to construct the Maxwell stresses that interact

with the hydrodynamics - see [217, 219] for the details. In fact, for the linearised problem

the eigenvalues λ corresponding to the eigenfunctions exp(ikx) are

λ = k2 + μk2|k| − νk4 + iδk3, (2.6)

showing that the presence of the electric field destabilises the flow and increases the number

of linearly unstable modes. Note that instability is possible if |k| < kc =
μ+
√

μ2+4ν

2ν
, and so

there are 2l+1 unstable modes where l is the integer part of kc. This additional destabilisation

is important in what follows and makes the control problem more challenging. The modified
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Figure 2.1: Bifurcation diagram of the L2-norm of the steady state solutions (blue solid

curves) and travelling wave solutions (red dashed curves) to the gKS equation (2.4) (with

δ = 0) in the presence of an electric field for 0.01 ≤ ν ≤ 1, and μ = 0 (2.1a), and

0.1 ≤ ν ≤ 1 and μ = 0.2 (2.1b), μ = 0.5 (2.1c), and μ = 1(2.1d). Note that for μ �= 0, only

a few of the branches are shown in these diagrams.

equation (2.4) in the absence of dispersion (δ = 0), has a similar dynamical behaviour to the

KS equation (2.3) but with chaotic dynamics appearing at higher values of ν as μ increases
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- see Fig. 2.1.

On the other hand, in the absence of an electric field but with dispersion present, it is

established that sufficiently large values of δ act to regularise the dynamics (even chaotic

ones) into nonlinear travelling wave pulses - see [3, 124, 125]. However, in a regime of

moderate values of δ travelling waves or pulses appear to be randomly interacting with each

other giving rise to what is widely known as weak/dissipative turbulence (in the “Manneville

sense" [120, 126, 155]) - see [178, 216] for a weak interaction theory between pulses that

are sufficiently separated.
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Figure 2.2: Time evolution of the gKS equation for ν = 0.01 (L = 20π), μ = 0. The left

panel shows the chaotic behaviour in the absence of dispersion, while the middle panel shows

the weak/dissipative turbulent behaviour for small values of δ and the right panel shows the

chaotic regularisation with relatively large values of dispersion.

2.1.1 Existence, uniqueness and bounds on solutions

There is extensive literature on the behaviour of the solutions to the KS equation. Well

posedness of solutions is studied, for instance, in [185, 202, 203]. It was proved in [51]

that the long time dynamics of the KS equation are finite dimensional in the sense that they

are governed by a dynamical system of finite dimension which is at least as large as the

number of linearly unstable modes (this number scales with L or ν−1/2 for (2.1) or (2.3),

respectively); these authors also proved that the solutions are attracted by a global attractor,

a set of finite dimension. Boundedness of solutions for general initial conditions was proved

independently and by using distinct methods by [50, 93, 115]. These studies also focussed

on finding bounds for the dimension of the global attractor by estimating L2−norms of the

solutions, starting with the odd-parity results of [159] and those for general initial data by

[50] along with more recent improvements in [30] and [167]. We will summarise the existing

bounds and the methods used to obtain them below - see Table 2.1. Analyticity of solutions



Chapter 2. Controlling weakly nonlinear models 51

in a strip in the complex plane around the real axis was also proved in [1] and [49] using

different methods.

For the generalised Kuramoto-Sivashinsky equation case the literature is less extensive,

but one can find a detailed analysis of the spatiotemporal dynamics of the solutions to the

case when μ > 0, detailing the various attractors and their stability in [217], as well as a

study of the boundedness of solutions and an estimate of the dimension of the global attractor

[218] for a class of more general operators whose symbols in Fourier space are such that the

electric field term in (2.6) is |k|α with 3 ≤ α < 4. When δ > 0, and in fact for a more

general linear operator, Frankel and Roytburd [74] proved that there exist an absorbing set

and a compact attractor of finite Hausdorff dimension and a stability analysis for the same

operators can be found in [75]. For the gKS equation with μ = 0, studies of the stability

of travelling waves are available at [16, 17]. Finally, the general case (μ > 0, δ > 0)

was studied numerically by Tseluiko and Papageorgiou in [219]. The authors carried out

extensive numerical experiments to characterise the solutions to this equation and study the

interactions between dispersion and the electric fields applied. To our knowledge, there are

no analytical bounds explicitly dependent on ν and μ on the solutions for this particular

equation, although Frankel and Roytburd [75] found bounds for a more general case, when

νuxxxx + μH[uxxx] is replaced by P(D)u, where P(D) is an elliptic pseudo-differential

operator. In this case, the authors found that the norm of the solutions is bounded by a

constant, as long as ν is larger than a constant ν0 that depends on P(D), and therefore on ν

and μ, or bounded by ν−17/4 otherwise.

The goal of this chapter is to stabilise non-uniform unstable steady states or travelling

wave solutions of equation (2.4). For the theoretical analysis of the feedback control problem

for the gKS equation we need L∞ bounds on the solution and its derivatives and for this

reason we present a survey of the many bounds obtained for the solutions of the gKS equation

for various cases, depending on whether one, both or none of the coefficients μ or δ are

positive. These bounds are presented in Table 2.1 below.

We will use some of the L2 bounds summarised in Table 2.1, as well as existing bounds

for the derivatives of the solutions, together with the Sobolev embedding theorem - see Ap-

pendix A.1 - to establish the necessary L∞ estimates. We now outline the chosen esti-

mates. Optimal estimates for the solution of the KS equation (2.1) in (0, L) were obtained

by Otto [167], and for the rescaled 2π−periodic KS equation (2.3) these estimates can be
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Case ν > 0, μ = δ = 0
Paper Bound Method

Nicolaenko et al, [159] ν−1 Uses background flow method,

only valid for odd functions

Il’yashenko, [115] ν−72 Approximates KS equation as

perturbation of Hamilton-Jacobi equation;

removes parity assumption

Goodman, [93] ν−1 Uses Lyapunov method and

is valid for general periodic solutions

Collet et al, [50] ν−
11
20 Uses background flow method,

valid for all mean zero functions

Jolly et al, [118] ν−
1
2 Modified the method in [50]

Bronski and Gambill, [30] ν−
1
2 Generalises [50] for

general boundary conditions

Giacomelli and Otto, [84] ν−
1
4 Uses entropy method

Otto, [167] ν−
1
6 Uses Besov spaces

Goldman et al, [88] ν−
1
6 Simplifies and improves bounds in [167]

Wittenberg and Holmes, [229] ν
1
4 Found numerically

Case ν > 0, δ > 0, μ = 0

Frankel and Roytburd, [75] ν−
17
4 Combines the methods in [50] and [93]

Case ν > 0, μ > 0, δ = 0
Tseluiko and Papageorgiou, [218] C(ν, μ, ϕ) Uses background flow method,

ϕ is the background flow

O(μ3) Found numerically for ν = 0.5,

estimated to be valid for all values of ν
General case

Frankel and Roytburd, [75] Constant if ν ≥ ν0 = ν0(ν, μ)

or ν−
17
4 if ν < ν0

Combines the methods in [50] and [93].

Table 2.1: Various bounds established for the gKS equation.

expressed in terms of ν =
(
2π
L

)2
to find

lim sup
t→∞

‖u(·, t)‖ ≤ O(ν−1/6), (2.7a)

lim sup
t→∞

‖ux(·, t)‖ ≤ O
(
ν1/2 ln5/3

(
ν−1/2

))
, (2.7b)

lim sup
t→∞

‖uxx(·, t)‖ ≤ O
(
ν ln5/3

(
ν−1/2

))
, (2.7c)

where ‖ · ‖ = (
∫ 2π

0
(·)2 dx)1/2 denotes the L2-norm of the solution. For the generalised
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equation (2.4) but in the absence of dispersion (δ = 0), Tseluiko & Papageorgiou [218] used

the background flow method to obtain similar estimates in the presence of an electric field.

Their estimates are of the form

‖u‖ ≤ (‖u0‖+ ‖ϕ‖) e−Dt + C(ν, μ) + ‖ϕ‖, (2.8)

where C and D are constants depending on μ and ν, and ϕ is a constructed function with

finite L2-norm (we do not need to give it here). They also proved that for u0 ∈ Ḣ1
p (0, 2π),

the first and second derivatives of the solution are bounded, and therefore, u ∈ Ḣ2
p (0, 2π),

where Ḣs
p is the Sobolev space of s−times differentiable functions that are periodic and have

zero mean - see Appendix A.1.

It is also important to remark that in the case of the generalised KS equation (2.4), with

both δ and μ non-zero, it was proved in [74, 75] that the L2 norm of the solution is also

bounded. In fact

lim sup
t→∞

‖u(·, t)‖ ≤
{

O(ν−17/4), if ν < ν0,

C, if ν ≥ ν0,
(2.9)

where ν0 depends on the symbol of the linear operator. Note that these are not optimal

bounds. The authors also prove boundedness in L2 of spatial derivatives of u up to order 4.

The estimates (2.7)-(2.9) together with the fact that the solutions to all the equations belong

to the Sobolev spaces Ḣs
p with s ≥ 2, imply (by use of the Sobolev embedding theorem) that

there exist constants C1, C2 that depend only on ν and μ such that

‖u‖∞ ≤ C1‖u‖H2 , ‖ux‖∞ ≤ C2‖ux‖H1 , (2.10)

where u is a solution of equation (2.4), which provides us with the necessary L∞ bounds.

2.1.2 Stabilisation of the zero solution of the KS equation

Recently, a few research groups [7, 9, 42, 43, 44, 63, 136, 149] showed how to stabilise the

zero solution of the Kuramoto-Sivashinsky equation by using state feedback controls. When

using linear feedback controls, it was shown that it is possible to stabilise the zero solution

using only 5 point actuated controls. In addition, in [42], Christofides also proves that the

stabilisation is possible using only a certain number of observations of the solution instead

of full knowledge of the solution at all times, as long as the number of observations is equal
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to or exceeds the number of unstable modes. These results, however, seem to only be valid

for relatively large values of ν (ν ≥ 1/49), and for smaller ν the authors suggest the use of

more control actuators or a change in the location of the actuators and observers. In further

work utilising nonlinear feedback controls [7, 43], Armaou and Christofides formulated op-

timisation techniques and computed possible optimal states by analysing a large number of

runs; a proof of the existence of these optimal positions was not given, however.

An example of the stabilisation of the zero solution for relatively large values of ν (ν =

0.2 and ν = 0.4, which have 5 and 3 unstable modes, respectively) using the same number

of point actuated controls as unstable modes, and assuming full knowledge of the solution

at all times is plotted in Fig. 2.3. Our results are in good agreement with those obtained in

[44].

(a) ν = 0.2 (b) ν = 0.4

Figure 2.3: Spatiotemporal evolution showing stabilisation to the zero solution of the KS

equation for (a) ν = 0.2 (α = 20), and (b) ν = 0.4 (α = 10).

2.2 Stabilisation of nontrivial solutions to the gKS equation

We can now introduce the controlled generalised KS equation, which will form the basis of

our analysis and computations. This consists of a forced version of (2.4) and reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + νuxxxx + μH[uxxx] + δuxxx + uxx + uux =
m∑
i=1

bi(x)fi(t), x ∈ (0, 2π), t > 0,

u(x, 0) = u0(x), x ∈ (0, 2π),

∂ju

∂xj
(x+ 2π, t) =

∂ju

∂xj
(x, t), x ∈ (0, 2π), t > 0,

fi(t) ∈ L2(0, T ).

(2.11)
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We assume that the initial condition satisfies u0 ∈ Ḣ2
p (0, 2π), m denotes the number of

controls, bi(x), i = 1, . . . ,m are the control actuator functions and fi(t), i = 1, . . . ,m are

the controls. We will use point actuator functions, which means that the functions bi(x) are

delta functions centered at positions xi, i.e. bi(x) = δ(x − xi), or a smooth approximation

of such delta functions.

We use an argument similar to [8, 42, 44] to prove that it is possible to stabilise nontrivial

steady states of the generalised KS equation (2.4). Using the Galerkin representation of u,

u(x, t) =
u0(t)√
2π

+
∞∑
n=1

usn(t)
sin(nx)√

π
+

∞∑
n=0

ucn(t)
cos(nx)√

π
, (2.12)

substituting into (2.11), and taking the inner product with the functions 1√
2π

,
sin(nx)√

π
and

cos(nx)√
π

, n = 1, . . . ,∞, we obtain the following infinite system of ODEs (dots denote time

derivatives):⎧⎪⎪⎪⎨⎪⎪⎪⎩
u̇sn =

(
−νn4 + μn3 + n2

)
usn + δn3ucn + gsn +

m∑
i=1

bsinfi(t), n = 1, . . . ,∞,

u̇cn =
(
−νn4 + μn3 + n2

)
ucn − δn3usn + gcn +

m∑
i=1

bcinfi(t), n = 0, . . . ,∞,

(2.13)

where bsin =
∫ 2π

0
bi(x) sin(nx)dx and bcin =

∫ 2π

0
bi(x) cos(nx)dx. The nonlinearities gsn and

gcn are given by (see [2] and Appendix B.1)

gsn =
n

4
√
π

∑
j+k=n

(ucju
c
k − usju

s
k) +

n

2
√
π

∑
j−k=n

(ucju
c
k + usju

s
k), n = 1, . . . ,∞,

gcn = − n

2
√
π

∑
j+k=n

ucju
s
k +

n

2
√
π

∑
j−k=n

(ucju
s
k − usju

c
k), n = 0, . . . ,∞.

In deriving the system (4.16) we used H[sin(x)](x) = − cos(x) and H[cos(x)](x) = sin(x);

these formulas can be derived using contour integrations in the complex plane, for example.

We now define zu =
[
zuu zus

]T
, where zuu =

[
uc0 us1 uc1 · · · usl ucl

]T
contains

the coefficients of the (slow) unstable modes and zus =
[
usl+1 ucl+1 · · ·

]T
those of the

(fast) stable modes. In addition,
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G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

gs1

gc1

gs2

gc2
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 · · ·
0 0 δ 0 0 0 · · ·
0 −δ 0 0 0 0 · · ·
0 0 0 · · · 0 δn3 · · ·
0 0 0 · · · −δn3 0 · · ·
...

...
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎢⎣
f1(t)

f2(t)
...

fm(t)

⎤⎥⎥⎥⎥⎥⎦ .

Furthermore, we introduce the notation

A =

[
Au 0

0 As

]
and B =

[
Bu

Bs

]
, (2.14)

where

Au = diag(0,−ν + μ+ 1,−ν + μ+ 1, · · · ,−l4ν + μl3 + l2,−l4ν + μl3 + l2),

As = diag(−(l + 1)4ν + μ(l + 1)3 + (l + 1)2,−(l + 1)4ν + μ(l + 1)3 + (l + 1)2, · · · ),

and

Bu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bc10 bc20 · · · bcm0

bs11 bs21 · · · bsm1

bc11 bc21 · · · bcm1

...
... · · · ...

bs1l bc2l · · · bcml

bs1l bs2l · · · bsml

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bs =

⎡⎢⎢⎣
bs1(l+1) bs2(l+1) · · · bsm(l+1)

bc1(l+1) bc2(l+1) · · · bcm(l+1)
...

... · · · ...

⎤⎥⎥⎦ , (2.15)

discretise the stable and unstable parts of the linear operator A and the delta functions, re-

spectively. We can rewrite the infinite dimensional system of ODEs (4.16) as

żu = Azu +Dzu +G+BF. (2.16)

We have the following result.

Proposition 1. Let ū be a linearly unstable steady state or travelling wave solution of (2.4)
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and let 2l + 1 be the number of unstable eigenvalues of the system

ut = −νuxxxx − μH[uxxx]− uxx, (2.17)

i.e., l+1 ≥ μ+
√

μ2+4ν

2ν
> l. If m = 2l+1 and there exists a matrix K ∈ Rm×m such that all

of the eigenvalues of the matrix Au + BuK have negative real part, then the state feedback

controls

[f1 · · · fm]T = F = K(zuu − zūu) (2.18)

stabilise ū.

Proof. Let u = ū + v be a solution to (2.4). Substituting into (2.4) and using the fact that

ū is a steady state or travelling wave solution of (2.4), we obtain the following PDE for the

perturbation v,

vt + νvxxxx + μH[vxxx] + δvxxx + vxx + vvx + (ūv)x = 0, (2.19)

and in controlled form we have

vt + νvxxxx + μH[vxxx] + δvxxx + vxx + vvx + (ūv)x =
m∑
i=1

bi(x)fi(t). (2.20)

First we will prove that the given controls stabilise the zero solution of

vt = −νvxxxx + μH[vxxx] + vxx. (2.21)

Note that the dispersion term does not affect instability due to it being an antisymmetric

operator in a periodic domain and therefore it is not necessary to include it in this part of the

analysis. After applying a Galerkin truncation and the controls given by (2.18), we obtain

żv =

[
Au +BuK 0

BsK As

]
zv = Czv. (2.22)

Since the eigenvalues of Au +BuK have negative real part and the matrix C multiplying zv

is triangular by blocks, it follows that the zero solution to (2.22) is exponentially stable.

Next, following [8, 42, 44], we use a Lyapunov argument to show that these controls

stabilise the zero solution to equation (2.19). We first use the fact that exponential stability
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of the system (2.22) implies that there exists a positive constant a such that the operator

L(v) = −νvxxxx − μH[vxxx] − vxx +
∑m

i=1 bi(x)Ki·zvu, where Ki· denotes the i−th row of

the matrix K, satisfies

(Lv, v) ≤ −a‖v‖2. (2.23)

Defining E(v) =
∫ 2π

0
v2

2
dx, it is easy to verify that E(0) = 0 and E(v) > 0, ∀v > 0.

Multiplying (2.19) by v and integrating gives

d

dt

∫ 2π

0

v2

2
dx =

∫ 2π

0

vvt dx = (Lv, v)− δ

∫ 2π

0

vxxxv dx−
∫ 2π

0

v2vx dx−
∫ 2π

0

v(ūv)x dx.

(2.24)

Integration by parts and use of periodicity shows that the first two integrals on the right-hand

side of (2.24) are zero. It remains to obtain an estimate for the third integral. Again using

integration by parts and periodicity gives

−
∫ 2π

0

(ūv)xv dx = −
∫ 2π

0

ūvxv dx−
∫ 2π

0

ūxv
2 dx = −1

2

∫ 2π

0

ūxv
2 dx

≤ − inf ūx
2

∫ 2π

0

v2 dx = − inf ūx
2

‖v‖2 . (2.25)

Adding everything up, we obtain

1

2

d

dt
‖v‖2 ≤ −

(
a+

inf ūx
2

)
‖v‖2 . (2.26)

If the eigenvalues of the matrix Au + BuK are chosen such that 2a+ inf ūx ≥ 0, we obtain

that d
dt
E(v(t)) ≤ 0, which proves that V is a Lyapunov function for the system at v = 0 and

therefore the zero solution is stable.

Using the controls given by (2.18), we can therefore stabilise the nontrivial steady state

ū of the original equation.

Using Proposition 1, we can conclude that in order to stabilise the steady state ū of

equation (2.4) we should solve the PDE

ut + νuxxxx + μH[uxxx] + δuxxx + uxx + uux =
m∑
i=1

bi(x)Ki·(zuu − zūu). (2.27)

Remark 1. Since the solutions to the generalised Kuramoto-Sivashinsky equation are taken
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to be periodic with zero mean, it follows that inf ūx < 0. Therefore, the constant a in (2.26)

must be chosen large enough so that a + inf ūx

2
is positive. In the case when δ > 0, we also

need to account for the fact that the amplitude of the solutions (and therefore the absolute

value of their derivatives) grows with δ [3, 126]. Further details can be found in Section 2.3.

Remark 2. The above proposition is clearly valid for the case when ū = 0, in which case

the controls are fi(t) = Ki·zuu , as presented in [8, 42, 44]. In the case when ū is a travel-

ling wave, the result follows using a time dependent zū. See Section 2.3 and in particular

Equation (2.41).

Remark 3. From estimates (2.7), it follows that the value inf |ūx| is finite and therefore we

can conclude (2.26).

Remark 4. Christofides et al. [8, 42, 44] argued that due to the multiplicity of the eigenval-

ues of the Kuramoto-Sivashinsky equation being less or equal than 4, one would only need

5 controls to stabilise the zero solution of that equation. The same holds in our case: the

multiplicity of the eigenvalues of the linear operator in (2.21) is also less than or equal to 4,

but numerical results suggest that we need to use m = 2l+1 controls, or at best m = 2l− 1

controls, see Fig. 2.5 and the discussion below.

Remark 5. The fact that we are separating the system between stable and unstable modes

implies that the matrix Bu is square (Bu ∈ Rm×m), and using bi(x) = δ(x − xi) means

that Bu has full rank. It follows that the Kalman rank condition ([234] and Appendix A.2) is

automatically verified and the matrix K needed for the stabilisation will always exist.

2.2.1 Controls applied to general PDEs

The framework we present here is valid for general infinite dimensional dynamical systems

described by PDEs considered in a bounded domain with periodic boundary conditions of

the form

ut = Au+Du+N (u), (2.28)

where A and D are linear spatial differential operators with constant coefficients, A be-

ing a long-wave unstable operator, which we assume to be self adjoint in L2 so that its

eigenfunctions, denoted as {wj}∞j=0, form a basis of L2, and D being a dispersive oper-

ator which has the same eigenfunctions as A, and N is a nonlinear operator. Writing
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u(x, t) =
∑∞

j=0 uj(t)wj(x), all of the analysis follows, as long as the operator D is anti-

symmetric or can be bounded and we can bound the nonlinearity N (u) in a similar way to

equation (2.25).

Furthermore, it should be noted that with our methodology not only nontrivial solu-

tions but also arbitrary periodic functions, say g(x, t), which are not necessarily solutions of

Eq. (2.28), can be stabilised by adding an extra forcing term as follows:

ut −Au−Du+N (u) =
m∑
i=1

bi(x)fi(t) + G(g), (2.29)

where G(g) = gt − Ag − Dg +N (g). This makes u = g a solution of equation (2.29) and

the same argument described above for (2.11) is still valid for (2.29). For example, we can

choose to stabilise the solution of (2.4) with μ = 0 to a sinusoidal function g(x) = sin (x)

for which case we have G(g) = (ν − 1) sin(x)− δ cos (x) + 1
2
sin(2x) - see Section 2.3.

2.2.2 Robustness of controls

A natural and important question is whether the proposed control methodology is robust with

respect to changes (or uncertainty) in the parameters ν, μ and δ that appear in the equation.

The robustness of our method can be proved rigorously using techniques from control theory,

e.g. [123, Thm. 6], and we take this up next.

Proposition 2. ([123, Thm. 5]) Let λi, i = 1, . . . , N be the eigenvalues of the matrix C

appearing in (2.22), X be the matrix of eigenvectors of C , and let κ(·) denote the condition

number. Then we have

‖K‖2 ≤

(
‖A‖2 +max

j
(|λj|)κ(X)

)
σm(B)

(2.30)

where σm(B) is the m-th smallest singular value of B, which is defined in Equations (2.14)

and (2.15), and the solution zv to equation (2.22) satisfies

‖zv(t)‖ ≤ κ(X)max
j

(
|eλjt|

)
‖zv(0)‖. (2.31)

Proposition 3. (Thm. 6, [123]) If the feedback matrix K is such that Equation (2.22) is

exponentially stable, then the perturbed closed loop system matrix A + BK + Δ remains
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stable for all disturbances Δ which satisfy

‖Δ‖2 < min
s=iω

σN (sI − (A+BK)) =: ζ(K), (2.32)

where

ζ(K) ≥ min
j
Re

( −λj
κ(X)

)
,

and Re(·) denotes the real part.

In particular, if there is an error in the estimation of the parameters ν and μ, then the

feedback matrix K will still stabilise the zero solution as long as the error in the parameter

estimation is bounded by ζ(K). We have studied the robustness of the controls for stabilising

steady states and travelling waves by combining Propositions 2 and 3. We now present a

summary of our results.

Variations in δ

As seen from the dispersion relation (2.6), variations in δ do not affect the stability of the

solutions and consequently so they do not affect the matrix K. This implies that the matrix

Δ is zero, and the zero solution to system (2.22) is still stable. In the case when we are inter-

ested in stabilising travelling waves, we need to take into account the fact that the amplitude

of the travelling waves increases with δ - see for example [126, Fig. 1]. Hence, if we over-

estimate the value of inf ūx and take this into account when choosing the new eigenvalues,

the stabilised solution should remain close to the desired travelling wave as demonstrated by

our numerical experiments in Fig. 2.4.

Variations in ν and μ

As seen from (2.6) variations in ν and μ can affect the stability of the solutions and the num-

ber of unstable modes. An increase in unstable modes in turn affects the number of controls

needed since our theoretical results support that we need the same number of controls as

unstable modes as stated in Remark 4. However, we have performed numerical experiments

(see Fig. 2.5) that show that using two less controls than predicted theoretically does not

affect the stability of the solutions.
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Figure 2.4: Snapshots of the time evolution of a stabilised travelling wave solution for μ =
0, ν = 0.01 and assuming uncertainty in the parameter δ. Black dashed line is the desired

travelling wave (which is the correct solution for δ = 0.03), red full line is the controlled

solution assuming δ = 0.04 and the dots represent the controls locations and their intensity.

Now we consider the case where we have some uncertainty of amplitude ε1 and ε2 in the

values of ν and μ, respectively,

ut = −(ν + ε1)uxxxx − (μ+ ε2)H[uxxx]− uxx − uux +
m∑
i=1

bi(x)Ki· (zu − zū) . (2.33)

The controls have been chosen so that the solution to the equation is stabilised when ε1 =
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Figure 2.5: Snapshots of the time evolution of the stabilised travelling wave solution in

Fig. 2.12b using m = 19 controls instead of m = 21 at different times. Red full line is the

controlled solution, black dashed line is the desired travelling wave and the dots represent

the controls and their intensity.

ε2 = 0. Multiplying (2.33) by u, integrating by parts and using Young’s inequality, we find

1

2

d

dt
‖u(·, t)‖2 ≤ −κ‖u‖2 − ε1‖uxx‖2 +

ε2
2

(
‖ux‖2 + ‖uxx‖2

)
,

where κ = a+ inf ūx

2
is a constant. On the other hand, the perturbation −ε1uxxxx− ε2H[uxxx]

can be discretised and written as

Δ = diag(0,−ε1k4 + ε2k
3,−ε1k4 + ε2k

3), (2.34)
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Figure 2.6: Snapshots of the time evolution of a stabilised travelling wave solution for

δ = μ = 0 and assuming uncertainty in the parameter ν. Black dashed line is the desired

travelling wave (which is the correct solution for ν = 0.013 ⇔ L ≈ 55) and red full line

is the controlled solution assuming ν = 0.01 ⇔ L ≈ 62. The dots represent the controls’

locations and their colours represent each control’s amplitude.

k = 1, . . . , N/2, and it follows that its Fröbenius norm is given by

‖Δ‖22 = 2

N/2∑
k=1

k6 (−ε1k + ε2)
2 = 2

N/2∑
k=1

k6
(
ε21k

2 − 2ε1ε2k + ε22
)
. (2.35)

For stability we need (2.35) to satisfy estimate (2.32) - see Proposition 3. Therefore, we have

the following proposition.

Proposition 4. Let K be a matrix such that Au + BuK has the prescribed (negative real
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part) eigenvalues, λ1, . . . , λm, with m = 2l + 1, and let

BK =

[
BuK 0

BsK 0

]
.

Then the perturbed system A+BK +Δ, where Δ is given by (2.34), is stable provided that

⎛⎝2

N/2∑
k=1

k6
(
ε21k

2 − 2ε1ε2k + ε22
)⎞⎠1/2

≤ min
s=iω

σN (sI − (A+BK)) .

We have performed numerical experiments to test the robustness of the controls, and in

particular we focussed on robustness with respect to the parameters δ and ν. Numerical

results are presented in Figs. 2.4-2.6 (results in these figures are shown in the original un-

scaled domain of length L - see (2.2) for the transformations). In Fig. 2.5 we use the same

parameter values as in Fig. 2.12b but we use 19 controls instead of 21, i.e. two controls less

than the number of unstable eigenvalues. The black dashed curve is the desired travelling

wave solution and the red solid curve is the controlled solution with 19 controls. We con-

clude, therefore, that our control methodology is robust with respect to a slight decrease in

the number of controls. Note however, that the number of controls cannot be significantly

smaller than the number of unstable eigenvalues - for example, running the same numerical

experiment with 17 controls did not yield satisfactory results in the sense that wavy pertur-

bations observed in panels (b) and (c) were not suppressed.

A robustness test with respect to changes in ν (with δ = μ = 0) is depicted in Fig. 2.6.

We begin with an unstable travelling wave at ν = 0.013 and wish to control it but by solving

the KS equation with a reduced value of ν = 0.01, i.e. we impose an uncertainty in the

value of the parameter ν or equivalently in the shape of the desired solution. The results

again show robust behaviour with the two solutions being almost indistinguishable. Finally

in Fig. 2.4 we present robustness experiments for μ = 0, ν = 0.01 and changes in the

dispersion parameter δ from 0.03 to 0.04, with equally accurate performance as before.

2.3 Numerical Results

Section 2.2 was devoted to proving rigorously that steady states and travelling wave solu-

tions of the generalised KS equation can be stabilised using linear feedback controls. The
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number of controls is predicted to be as large as the number of linearly unstable modes, and

robustness with respect to uncertainty in the parameters ν, μ and δ was also proved. In this

section we implement the linear feedback controls numerically and undertake an extensive

computational study of the stabilisation and control in practical situations.

2.3.1 Computation of non-uniform steady states and travelling waves

One of the main objectives of our work is the stabilisation of unstable solutions of the gKS

equation. To obtain steady state solutions ū(x) (in the absence of dispersion), we need to

solve the equation

νūxxxx + μH[ūxxx] + ūxx + ūūx = 0, (2.36)

in the interval [0, 2π], subject to periodic boundary conditions. Travelling waves of speed c

are found by looking for solutions of the form ū(x, t) = U(x− ct) = U(ξ) and solving

− cU ′ + νU ′′′′ + μH[U ′′′] + δU ′′′ + U ′′ + UU ′ = 0, (2.37)

subject to periodic boundary conditions, where primes denote differentiation with respect to

ξ. We note that equation (2.36) is a particular case of (2.37). Expressing the solutions in

Fourier series

U(ξ) =
∞∑
n=1

U s
n

sin(nξ)√
π

+ U c
n

cos(nξ)√
π

, (2.38)

and substituting into (2.36) and (2.37) we obtain an infinite system of nonlinear algebraic

equations for the coefficients U s
n, U

c
n, n = 1, . . . ,∞, or for the coefficients and the velocity

c, in the case of travelling waves. The resulting system of equations for steady states is

(νn4 − μn3 − n2)U c
n + gcn = 0, n = 1, . . . ,∞, (2.39a)

(νn4 − μn3 − n2)U s
n + gsn = 0, n = 1, . . . ,∞. (2.39b)

For travelling waves we can assume, without loss of generality due to translation invariance,

that U s
1 = 0, to obtain
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−(cn+ δn3)U s
n + (νn4 − μn3 − n2)U c

n + gcn = 0, n = 1, . . . ,∞, (2.40a)

(cn+ δn3)U c
n + (νn4 − μn3 − n2)U s

n + gsn = 0, n = 2, . . . ,∞, (2.40b)

(c+ δ)U c
1 + gs1 = 0. (2.40c)

The systems were truncated and solved using a nonlinear solver (e.g. MATLAB’s fsolve) to

find solutions to system (2.39) by first setting μ = 0 and carrying out a numerical contin-

uation on ν, and secondly by fixing a value of ν and varying μ. Additional computations

were done using the continuation software AUTO-07p [61]. For travelling waves we used

continuation on ν, μ and δ. Without loss of generality we also impose c > 0: if U(x− ct) is

a solution of (2.37) with c < 0, then −U(−x− (−c)t) is also a solution with c > 0.

Given the Fourier coefficients and the velocity of a travelling wave, we can write the

soluton of the KS equation as

ū(x, t) = U(x− ct) =
∑∞

n=1 (U
s
n cos(nct) + U c

n sin(nct)) sin(nx)+∑∞
n=1 (U

c
n cos(nct)− U s

n sin(nct)) cos(nx).
(2.41)

Our computational results are presented in the bifurcation diagram in Fig. 2.1 that depicts

the variation of the L2-norm with ν of the steady states and travelling wave solutions of

the gKS equation (2.4) in the absence of dispersion (δ = 0). Panels (a)-(d) correspond to

μ = 0, 0.2, 0.5, 1.0; steady-states are plotted with solid blue curves and travelling waves

with dashed red curves. We observe that the presence of the Hilbert transform increases

the value of ν for which instability arises [217], but it does not change the shape of the

bifurcation diagram. This is because the Hilbert transform term acts as a negative diffusion,

see Equation (2.6), and therefore its presence acts to shift the bifurcation diagram to higher ν,

i.e. lower α = 4/ν as seen in the figure. We emphasise the fact that the bifurcation diagrams

in Fig. 2.1 are not complete and we expect additional unstable branches, in analogy with

known results for the KS equation [127]. This is not a restriction here, since we are interested

in demonstrating the stabilisation of unstable steady or travelling wave solutions, rather than

the stabilisation of all such branches. For the branches computed here, we analysed their

stability numerically by adding a small perturbation to the initial condition (about 10% or

smaller of the amplitude of the steady state solution) and studied the time evolution to ensure
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that we identified unstable steady solutions to be stabilised using linear feedback controls.

2.3.2 Time dependent simulations and feedback control

We used a Galerkin truncation [208] for the spatial discretisation of the PDE, with the number

of modes varying between 32, 64 and 128 depending on the number of unstable modes.

Time integration is carried out using second order implicit-explicit backward differentiation

formulae (BDF) schemes [2, 3].

To construct the matrix K necessary for the stabilisation of the steady states, we used

MATLAB’s command place (see Appendix A.2 for description). Given the matrices A and

B, we sought a matrix K such that the eigenvalues of the matrix A+BK were:

• −1 if it is the eigenvalue corresponding to the constant eigenfunction 1√
2π

.

• ±λ if λ is an eigenvalue of A with negative/positive real part.

• −10δλ instead of −λ if δ > 0. We do this because the amplitude of the solutions

grows with δ - [126], so we need to account for this when building the controls.

Controlling towards steady state solutions

We begin by comparing our numerical results in the absence of electric fields and dispersion

(μ = 0, δ = 0) and for two values of ν = 0.2 and ν = 0.4 with those obtained by Christofides

in [44] (note that the number of unstable eigenvalues is 2l + 1 where l = [ν−1/2], and [·]
denotes the integer part). The number of controls used is 5 and 3, respectively, i.e. equal to

2l + 1; these are placed equidistantly and the initial condition is

u0(x) =
1√
2π

+
1√
π

5∑
n=1

(sin(nx) + cos(nx)) .

The results are presented in Fig. 2.3 and clearly show that the system is controlled to the zero

solution long before the final computed time of t = 5.

With our methodology we can also stabilise the zero solution for small values of ν (i.e.,

a large domain length), which support rather complex chaotic behaviour. As an example,

we plot in Fig. 2.7 the results of the stabilisation of the zero solution for ν ≈ 9 × 10−4,

which corresponds to L = 200, and δ = μ = 0. We used m = 63 equidistant controls and
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random initial conditions. For a video of the time evolution shown in this Figure, see the

Supplemental material of [90]. The dots in the video represent the control actuator positions,

while their colour varies with the amplitude of the controls.
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Figure 2.7: Spatiotemporal evolution of the KS equation (δ = μ = 0). The left panel shows

the uncontrolled solution, while the right panel shows the stabilised zero solution, using

m = 63 equidistant controls.

Results analogous to those presented in Fig. 2.3 were found regarding the stabilisation of

the zero solution to the KS equation in the presence of an electric field. In what follows we

use the following initial condition unless stated otherwise:

u0(x) =
1√
π
(sin(x) + cos(x)) . (2.42)

Note that the number of unstable modes is 2l+1 where l =

[
μ+
√

μ2+4ν

2ν

]
: see Proposition 1-

and this is the number of controls used in the numerical experiments. The numerical results

for ν = 0.2 and μ = 0.5 with 5 equidistant controls are shown in Fig. 2.8, where we again

clearly observe stabilisation to the zero solution.

Having shown the stabilisation of zero states for small values of ν, we turn next to the

stabilisation of nontrivial steady states of the generalised KS equation (2.4), in the absence

of dispersion. We illustrate the feasibility of our control methodology for two typical cases

that yield unstable steady states as computed in the bifurcation diagram of Fig. 2.1. In the

first case we use ν = 0.1115, μ = 0, and in the second ν = 0.35, μ = 0.3. In both cases

we used 2l + 1 equidistant controls, i.e., the same as the number of unstable eigenvalues of

the system. The results of our numerical experiments are presented in Figs. 2.10 and 2.11,

respectively. When ν = 0.1115, μ = 0, i.e. α ≈ 35.87, both stable and unstable steady states

coexist and the solution of the PDE with a given initial condition, e.g. (2.42), evolves to the
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Figure 2.8: Spatiotemporal evolution showing stabilisation to the zero solution of the KS

equation in the presence of an electric field with μ = 0.5 and ν = 0.2 (α = 20).
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Figure 2.9: Zoom in of Panel 2.1(a) with ν ∈ [0.1, 1]. Branches are labelled as used in Ta-

bles 2.5-2.7: Branch 1 - unimodal steady states; branch 2 - bimodal steady states; branch 3 -

trimodal steady states; branch 4 - tetramodal steady states. The cross and open circle symbols

indicate the steady states (stable and unstable, respectively) that are shown in Fig. 2.10.

most attracting stable state. This is shown in Fig. 2.10(a) where it is seen that the solution

evolves to a stable bimodal steady state, marked with a circle in Fig. 2.9. We are interested

in using feedback control to stabilise one of the coexisting unstable steady states, and the

results of achieving this are presented in Figs. 2.10(b)-(c); panel 2.10(b) shows the evolution

of the initial condition (2.42) using 2l + 1 = 5 equidistant controls and stabilisation of the

steady state marked with a + in Fig. 2.9 is achieved relatively quickly after approximately 2

time units. The evolution of the amplitudes of the 5 applied controls is shown in Fig. 2.10(c),

and we see that the required energy tends to values very close to zero as time evolves. Note

that the control amplitudes remain small and close to zero once the unstable controlled state

is reached, but they cannot be identically zero due to the unstable nature of the controlled
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solution. Fig. 2.11 shows the results for ν = 0.35, μ = 0.3. The solution we choose to

(a) Uncontrolled Solution (b) Controlled Solution

0 1 2 3 4 5−5

0

5

t

f
i(
t)

(c) Controls

Figure 2.10: Control of non-uniform solutions of the KS equation for ν = 0.1115; panel (a)

spatiotemporal evolution without controls (solution belongs to branch 1 of the bifurcation

diagram in Fig. 2.1a); panel (b) controlled to the steady state in branch 4 of the bifurcation

diagram in Fig. 2.1a; panel (c) evolution of the amplitude of the 5 applied controls.

stabilise at these values is an unstable bimodal steady state and Fig. 2.11 shows how it is

stabilised using 2l + 1 = 5 controls.

Figure 2.11: Spatiotemporal evolution of the stabilised steady state of the Kuramoto-

Sivashinsky equation for ν = 0.35 (α ≈ 11.43), μ = 0.3 .
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Controlling towards travelling wave solutions

Our next task is to stabilise travelling wave solutions of the equation with and without disper-

sion and electric field. Fig. 2.12 illustrates the stabilisation of three different travelling wave
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Figure 2.12: Solution to the KS equation for ν = 0.01 (2.12a) with no controls, and con-

trolled to (2.12b) one solitary pulse, (2.12c) two solitary pulses and (2.12d) three solitary

pulses.

solutions to the KS equation (2.4) with no dispersion or electric field (δ = μ = 0) and for a

small value of ν (ν = 0.01) which corresponds to a very large domain (L = 20π ≈ 62) that

enables the existence of single pulse travelling waves as well as two- or three-pulse bound

states. However, due to the small value of ν, when solving the PDE the initial condition

evolves to a solution that exhibits the spatiotemporal chaotic behaviour that is characteristic

of this equation. Panel 2.12(a) shows this chaotic behaviour while Panels (b)-(d) show the

evolution of the controlled solution to 1, 2 and 3 pulses, respectively. We used m = 21

equidistant controls and random initial conditions in each case.

As mentioned before, the presence of dispersion regularises the chaotic behaviour of the

solutions, trapping its dynamics into spatially periodic travelling waves that appear to be

randomly interacting with each other. However, it is also possible to control the solutions in

the presence of dispersion to desired travelling waves or bound states. Figs. 2.13 and 2.14
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show this stabilisation for ν = 0.01, μ = 0 and δ = 0.01 and δ = 0.05, respectively. These

values correspond to original values of L = 20π and δ = 0.1 and 0.5. We again usedm = 21

controls.

Fig. 2.13 plots the results for δ = 0.01. This is a relatively small value of δ and as we can

see in panel (2.13a), we can observe the weak/dissipative turbulent behaviour characteristic

of the gKS equation with small dispersion. Panels (2.13b), (2.13c) and (2.13d) show the

successful stabilisation of travelling waves/bound states with 1, 2 and 3 pulses, respectively.
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Figure 2.13: Solution to the gKS equation for ν = 0.01, δ = 0.01 (L = 20π, δ = 0.1 in

the original variables) (2.13a) with no controls, and controlled to (2.13b) one solitary pulse,

(2.13c) two solitary pulses and (2.13d) three solitary pulses.

Similarly, Fig. 2.14 plots the results for δ = 0.05. As this is a larger value of δ, we expect

the chaotic dynamics to be regularised, and we observe that in panel (2.14a). Again, pan-

els (2.14b), (2.14c) and (2.14d) show the successful stabilisation of travelling waves/bound

states with 1, 2 and 3 pulses, respectively. All the travelling wave figures are rescaled to the

original domains for clarity. Animations of the time evolution of these examples, as well as

the robustness tests presented in Section 2.2.2 are available in the supplemental material of

[90], where we plot the uncontrolled and stabilised solutions, together with m = 21 dots that
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represent the control actuators locations and whose colours represent their amplitude.
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Figure 2.14: Solution to the gKS equation for ν = 0.01, δ = 0.05 (L = 20π, δ = 0.5 in

the original variables) (2.13a) with no controls, and controlled to (2.13b) one solitary pulse,

(2.13c) two solitary pulses and (2.13d) three solitary pulses.

Controlling towards steady states that are not solutions

Finally, we plot the numerical results of the stabilisation of periodic steady states that are not

solutions of the gKS equation, as was presented in Section 2.2.1. We control the solution of

the gKS equation with ν = 0.01, μ = 0 and δ = 0.05 towards the steady state g(x, t) =

sin
(
2π
L
x
)
= sin(

√
νx). We notice, however, that in this case, we need to force the system

with the right hand side G(g(x, t)) and the controls are no longer point actuated. This is

necessary, however, so that g(x, t) is a solution to the equation. We point out that the gKS

equation with δ > 0 does not admit steady non zero solutions. The stabilised solution is

presented in Fig. 2.15.

Energy spent with the controls

When controlling different solutions to the gKS equation, one of the factors to take into

account is the energy spent with the controls: in a practical application it is useless to be able
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Figure 2.15: Spatiotemporal evolution of the gKS equation controlled towards g(x, t) =
sin (

√
νx) for ν = 0.01, μ = 0, δ = 0.05.

to stabilise a chosen state if the energy spent with the stabilisation process, and therefore its

cost, outweighs the advantages of achieving such state. Since our controls are proportional

to the difference between the current state of the solution and the desired state, we know that

once the desired state is reached the amplitudes of the controls will become practically zero.

In most of the computations presented in this section for travelling waves, we kept track of

the energy spent with the controls, which we plot in Fig. 2.16, by tracking their L2 norms

over time:

E1(t) =
m∑
i=1

fi(t)
2. (2.43)
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Figure 2.16: Energy E1(t) spent when stabilising the travelling waves in Figs. 2.13 and 2.14

and the periodic solution g(x, t) in Fig. 2.15 for ν = 0.01 and (a) δ = 0.01 and (b) δ = 0.05.

In Section 2.4 we will be concerned with how to optimise the energy spent in the control

process, where we measure the cost of the controls by three different ways (given by different

Sobolev norms of the solutions).
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2.4 Optimal control for the generalised Kuramoto-Sivashinsky equa-

tion

In practical applications it is important to apply controls that minimise the cost associated

with their use, and this leads to considerations of an optimal control problem based on some

measure of the energy cost of the controls. In what follows we consider the energy of the

controls given by their L2-norm. Since the controls decay to almost zero relatively fast in

time (see Figs. 2.11 or 2.16, for instance), we expect that minimising their L2-norm should

decrease their amplitude.

The objective, then, is to achieve control of the zero solution or other unstable steady-

state or travelling wave solutions of the gKS equation, and to do this while spending the

least energy possible. To that end, we consider a cost functional that includes the distance

between the solution and the desired state, as well as the L2-norm of the controls used.

Different distance norms ‖u − ū‖ can be used and in our computations we employ the L2,

H1 orH2 norms. The reason we consider different norms is that the solutions are expected to

belong to H2(0, 2π), and we wish to analyse the effects of the regularity and the oscillations

of the solutions on the cost functional.

In flow control it is possible to use point actuator functions [7, 43, 44, 63], implying that

we can take bi(x) = δ(x− xi). Assuming that the cost of placing a control at xi is the same

for all actuator positions x ∈ (0, 2π), it makes sense to seek a solution that minimises the

norms of the control functions fi(t). Since the delta functions in the feedback controls are

not L2 functions, the standard results of constrained optimisation for PDEs [141, 211] do not

apply. Because of this hurdle we will first prove existence of optimal controls for the case

of general controls, f(x, t) ∈ L2(0, T ; L̇2(0, 2π)), i.e. mean zero spatially periodic controls

in L2(0, 2π) that are also L2 functions of time, and focus on the case of feedback controls

where we can apply standard optimisation techniques.

We consider cost functionals of the form

C (u, F ) =
1

2

∫ T

0

‖u(·, t)− ū‖2 dt+ 1

2
‖u(·, T )− ū‖2+γ

2

∫ T

0

m∑
i=1

fi(t)
2 dt (2.44)

where ū is the desired steady state, F = [f1 · · · fm], and the norm (e.g. L2, H1 or H2)

is left unspecified. The choice of the parameter γ depends on how large we are willing

to allow the norm of the controls to become: if we need to maintain a small norm of the
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controls while allowing the solution to be considerably different from the steady state, then

we use γ > 1. If, on the other hand, we have a very large amount of energy to spend on

the controls and want the solution to be as close as possible to the desired steady state, then

we choose γ 	 1 so that the weight of the controls does not influence significantly the

value of the cost functional. The terminal time term 1
2
‖u(·, T )− ū‖2 is introduced to provide

us with a condition for the final-value problem obtained when solving the adjoint equation

for the optimisation problem. Before proceeding to the optimisation problem it is useful to

introduce the following definitions.

Definition 1. We denote the space of admissible controls by Fad. Fad is usually a bounded

convex subset of L2(0, T ; L̇2(0, 2π)).

Definition 2. A control f ∗ ∈ Fad is said to be optimal, and u∗ = u(f ∗) is the associated

optimal state, if C(u(f ∗), ū, f ∗) ≤ C(u(f), ū, f) ∀f ∈ Fad.

Our numerical experiments, which we will present in Section 2.4.2, suggest that, given

an initial condition and a desired steady state, there exists at least one optimal placement of

the control actuators for every value of ν and μ. However, here we prove existence of an

optimal control in the case of an open-loop control using the quadratic cost functional

C (u, f) =
1

2

∫ T

0

‖u(·, t)− ū‖2L2 dt+
1

2
‖u(·, T )− ū‖2L2+

γ

2

∫ T

0

∫ 2π

0

f(x, t)2 dx dt.

(2.45)

The point actuated controls in the form of delta functions are not in L2 and hence an analo-

gous proof in this case requires distribution theory which is beyond the scope of the present

study. The optimisation problem is:

minimise C (u, f) (2.46a)

subject to ut + νuxxxx + uxx + uux = f(x, t), (2.46b)

u(x, 0) = u0(x) ∈ Ḣ2
p (0, 2π), (2.46c)

∂ju

∂xj
(x+ 2π) =

∂ju

∂xj
(x), j = 0, 1, 2, 3, (2.46d)

f ∈ Fad. (2.46e)

The main result of this section is the following.
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Theorem 1. Assume that Fad ⊂ L2(0, T ; L̇2(0, 2π)). Then (2.46) has at least one optimal

control f ∗ with associated optimal state u∗.

Remark 6. Since the Hilbert transform and third derivative terms are linear functionals of

u, Theorem 1 can be easily generalised to the case when μ, δ > 0.

Remark 7. The presence of the Burgers nonlinearity in the PDE makes the optimisation

problem no longer convex. Consequently, we do not expect the solution of the optimal control

problem to be unique.

The nonlinearity in our problem, defined by N (u) = uux, is twice Fréchet differentiable

(see Appendix A.1) with respect to u but is neither an increasing functional of u, nor is

it globally Lipschitz continuous. Furthermore, it depends explicitly on the derivative ux.

Consequently, the well developed theory of optimal control for systems of reaction-diffusion

equations [141, 211] does not apply to our problem.

Proof of Theorem 1. Let X = H1(0, T ; Ḣ2
p (0, 2π)) × Fad and e(·, ·) be a functional defined

in X by

e(u, f) =

[
ut + νuxxxx + uxx + uux − f

u(·, 0)− u0(x)

]
. (2.47)

Our optimisation problem is that of minimising the cost functional C subject to e(u, f) = 0,

periodic boundary conditions and (u, f) ∈ X; see Equation (2.46).

Let (u, f) ∈ X satisfy e(u, f) = 0. Since C is a function of the sum of the norms of u

and f , it is clear that C is nonnegative and

C(u, f) → ∞ for ‖(u, f)‖X → ∞. (2.48)

Therefore, there exists a constant c ≥ 0 such that

c = inf
e(u,f)=0

C(u, f) = lim
n→∞

C(un, fn),

where (un, fn) is a minimising sequence in X , which exists due to the reflexivity of L2.

From Equation (2.48) we can conclude that {(un, fn)}n∈N is bounded, and therefore there

exists (u∗, f ∗) ∈ X such that (un, fn) ⇀ (u∗, f ∗) for n → ∞. This means that all the

linear functionals of un and fn, and in particular their derivatives, also converge weakly to
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the same functionals of u∗ and f ∗ in the appropriate space. Hence, we only need to prove

the convergence of the nonlinearity.

Following an argument similar to that in [225] for the Burgers equation, we notice that

since for every t ∈ [0, T ] we have u∗(·, t) ∈ Ḣ2
p (0, 2π), then u∗(·, t) ∈ C([0, 2π]) and

therefore if ϕ ∈ X , (u∗ϕ)(·, t) ∈ L2([0, 2π]). Hence, u∗ϕ ∈ H1(0, T ;L2(0, 2π)) and

∫ T

0

∫ 2π

0

(un − u∗)xu∗ϕ dx dt −−−→
n→∞

0, ∀ϕ ∈ H1(0, T ; Ḣ2
p (0, 2π)). (2.49)

Finally, from the estimates (2.7) we know that ‖unx‖ is bounded, and since H2(Ω) is

compactly embedded in L2(Ω), we deduce that

∫ T

0

∫ 2π

0

(un − u∗)unxϕ dx dt ≤ ‖un − u∗‖‖unx‖‖ϕ‖L∞(0,2π) −−−→
n→∞

0,

∀ϕ ∈ Ḣ2
p (0, 2π). (2.50)

Hence, by adding and subtracting appropriate terms we have

∫ T

0

∫ 2π

0

(ununx − u∗u∗x)ϕ dx dt =
∫ 2π

0

((un − u∗)unxϕ+ (un − u∗)xu∗ϕ) dx −−−→
n→∞

0,

∀ϕ ∈ Ḣ2
p (0, 2π), (2.51)

and therefore the nonlinearity ununx is weakly convergent to u∗u∗x inX . Now, noticing that u∗

and u∗x are continuous in [0, 2π] × [0, T ], we observe that u∗ satisfies the periodic boundary

conditions and the initial condition. If we now consider ϕ ∈ X satisfying ϕ(x, T ) = 0,

and use the weak convergence of the derivatives of u and equation (2.51), we conclude that

(u∗, f ∗) is a weak solution of the state equation. The optimality of the pair (u∗, f ∗) follows

from the weak lower semi-continuity of C (cf. proof of Theorem 4.15 in [211]).

2.4.1 Algorithm and Numerical Experiments

We note that the dependence of the cost functional on the positions xi, i = 1, . . . ,m is in

the controls, since the matrix K necessary to define them depends on the positions chosen.

However, when defining the Lagrangian we will assume that only the functions bi(x) depend

on xi, and treat the controls fi(t) as if they were independent of the positions xi. Under
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this assumption we are able to obtain very satisfactory results, as evidenced by the results

presented in the tables below. We begin by introducing the Lagrangian for this problem (see

Appendix A.3)

L
(
u, p, [x1, x2, . . . , xm]

T
)
=

1

2

∫ T

0

‖u(·, t)− ū‖2 dt+ 1

2
‖u(·, T )− ū‖2

+
γ

2

∫ T

0

m∑
i=1

fi(t)
2 dt

−
∫ T

0

∫ 2π

0

(ut + νuxxxx + uxx + uux) p(x, t) dx dt

+

∫ T

0

∫ 2π

0

m∑
i=1

δ(x− xi)ifi(t)p(x, t) dx dt.

(2.52)

Integrating by parts in space and time and computing the Fréchet derivative with respect to

u (with test functions ϕ(x, t) satisfying ϕ(x, 0) = 0), we obtain the adjoint equation⎧⎪⎪⎨⎪⎪⎩
−pt + νpxxxx + pxx − upx =

∑m
i=1 δ(x− xi)Ki·zp + u− ū,

p(x, T ) = u(x, T ),
∂jp
∂xj (x+ 2π) = ∂jp

∂xj (x),

(2.53)

where x ∈ [0, 2π] and t ∈ [0, T ]. This PDE is backwards in time but is well-posed since it

is a final value problem. To solve it, we obtain the discretised ODE system −żp = Azp +
Gadj(zp, zu) + zu − zū, where the elements of Gadj(zp, zu) are given by (see Appendix B.2)

gsn,adj =
1

2
√
π

∑
j+k=n

k(usjp
s
k − ucjp

c
k) +

1

2
√
π

∑
j−k=n

(
k(usjp

s
k + ucjp

c
k)− j(uskp

s
j + uckp

c
j)
)
,

gcn,adj =
1

2
√
π

∑
j+k=n

k(ucjp
s
k + usjp

c
k) +

1

2
√
π

∑
j−k=n

(
k(ucjp

s
k − usjp

c
k) + j(uckp

s
j − uskp

c
j)
)
,

and we have used the Fourier series representation p(x, t) =
pc0√
2π

+
∑∞

n=1 p
s
n(t)

sin(nx)√
π

+∑∞
n=1 p

c
n(t)

cos(nx)√
π

.

Differentiating with respect to the positions of the control actuators, we also obtain a

descent direction using the variational inequality, or first variation

∫ T

0

[f1(t)px(x̄1, t) · · · fm(t)px(x̄m, t)]T · (x− x̄) dt ≥ 0, ∀x = [x1 · · · xm]T , (2.54)



Chapter 2. Controlling weakly nonlinear models 81

where x̄ = [x̄1, . . . , x̄m] are the optimal positions. To proceed with the optimisation, we

will use a gradient descent method, see [211, Sec. 5.9], and consider Fad = (0, 2π)m. The

algorithm is as follows.

Algorithm for optimal control for the KS equation

Given ν, μ, γ, T, u0(x), A, x
0, B0, ū, compute the matrix K0.

while C(current iteration) < C(previous iteration) do

1. Solve the state equation to obtain uk−1 and compute

C(uk−1, ū, F (xk−1));

2. Solve the adjoint equation to obtain pk−1;

3. Define Px =
[
pk−1
x (xk−1

1 , t) · · · pk−1
x (xk−1

m , t)
]
,

Pk−1 =

∫ T

0

Kk−1(zu
k−1 − zū)Px dt and hk = −Pk−1;

4. Find s = mins>0

{
C(u(xk−1 + shk), ū, F (x

k−1 + shk))
}

;

5. Project xk−1 + shk into (0, 2π)m, obtaining xk;

6. Compute the matrix Bk;

7. Compute the matrix Kk with MATLAB’s command place.

end

Figure 2.17: Algorithm for optimal control of the KS equation.

Note that as mentioned earlier we consider the following three different cost functionals:

C1 (u, ū, f) =
1

2

∫ T

0

‖u(·, t)− ū‖2 dt+ 1

2
‖u(·, T )− ū‖2 + γ

2

m∑
i=1

‖fi(t)‖L2(0,T ) (2.55)

C2 (u, ū, f) = 1
2

∫ T

0
(‖u(·, t)− ū‖2 + ‖ux(·, t)− ūx‖2) dt

+
1

2

(
‖u(·, T )− ū‖2 + ‖ux(·, T )− ūx‖2

)
+
γ

2

m∑
i=1

‖fi(t)‖L2(0,T )

(2.56)
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C3 (u, ū, f) = 1
2

∫ T

0
(‖u(·, t)− ū‖2 + ‖ux(·, t)− ūx‖2 + ‖uxx(·, t)− ūxx‖2) dt

+
1

2

(
‖u(·, T )− ū‖2 + ‖ux(·, T )− ūx‖2 + ‖uxx(·, T )− ūxx‖2

)
+
γ

2

m∑
i=1

‖fi(t)‖L2(0,T ).

(2.57)

2.4.2 Numerical Experiments

Computations were carried out using the algorithm presented in Fig. 2.17 for various values

of ν and μ. The number of controls used was equal to the number of unstable eigenvalues,

and m equidistant points were used as an initial guess for the position of the controls. In all

the computations the initial condition is u0(x) =
sin(x)√

π
+ cos(x)√

π
, and the final time is T = 10.

For μ = δ = 0, the numerical results are presented in Tables 2.2-2.4 for the stabilisation

of the zero solution of the KS equation, and in Tables 2.5-2.7 for the stabilisation on non-

trivial unstable steady states as computed in the bifurcation diagram of Fig. 2.9. Each entry

in Tables 2.2-2.4 contains the value of ν, the value of the cost functional (C1, C2 and C3 for

tables 2.2, 2.3 and 2.4, respectively), the cost of the controls
∑m

i=1 ‖fi(t)‖L2(0,T ), the number

of iterations required to obtain an optimal state, and in the last column the spatial distribution

of the controls over the domain [0, 2π] - a heavy dot is placed where a control acts. Tables 2.5-

2.7 are presented in an analogous manner, with the difference that the first column provides

information on the unstable solution that is being controlled, and in particular the branch

on Fig. 2.1a where the solution was taken from is stated along with the value of ν. As the

results indicate, several distinct unstable solutions at a given value of ν are controlled (e.g.

for ν = 0.1, three solutions are stabilised coming from branches 1, 3 and 4 respectively).

ν Cost C1 Cost of Controls Iterations Optimal Positions

0.9 8.9647 0.5592 3 0 1 2 3 4 5 6

0.8 6.5012 1.1274 6 0 1 2 3 4 5 6

0.7 5.5760 1.7204 4 0 1 2 3 4 5 6

0.6 5.2803 2.3018 3 0 1 2 3 4 5 6

0.5 5.2230 2.8204 5 0 1 2 3 4 5 6

0.4 5.9339 3.8404 5 0 1 2 3 4 5 6

0.3 6.2152 3.9813 2 0 1 2 3 4 5 6

0.2 6.3127 4.5261 2 0 1 2 3 4 5 6

0.1 7.1652 5.5759 2 0 1 2 3 4 5 6

Table 2.2: Optimal positions and value of the cost functional considered in the L2-norm for

different values of ν when stabilising the zero solution to the KS equation.
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ν Cost C2 Cost of Controls Iterations Optimal Positions

0.9 17.6354 0.9698 3 0 1 2 3 4 5 6

0.8 12.2553 1.5486 6 0 1 2 3 4 5 6

0.7 10.8270 2.0016 2 0 1 2 3 4 5 6

0.6 10.2340 4.0181 6 0 1 2 3 4 5 6

0.5 10.1517 4.5407 4 0 1 2 3 4 5 6

0.4 9.3345 4.2298 2 0 1 2 3 4 5 6

0.3 10.9671 4.8110 2 0 1 2 3 4 5 6

0.2 10.7154 5.5308 3 0 1 2 3 4 5 6

0.1 9.7088 5.6463 1 0 1 2 3 4 5 6

Table 2.3: Optimal positions and value of the cost functional considered in the H1-norm for

different values of ν when stabilising the zero solution to the KS equation.

ν Cost C3 Cost of Controls Iterations Optimal Positions

0.9 27.2098 1.1313 3 0 1 2 3 4 5 6

0.8 19.3431 2.3490 5 0 1 2 3 4 5 6

0.7 15.8522 2.5815 4 0 1 2 3 4 5 6

0.6 14.0865 3.3384 5 0 1 2 3 4 5 6

0.5 17.0462 6.4166 1 0 1 2 3 4 5 6

0.4 20.7720 8.3217 1 0 1 2 3 4 5 6

0.3 14.4393 5.3865 3 0 1 2 3 4 5 6

0.2 21.5856 6.1456 1 0 1 2 3 4 5 6

0.1 21.1636 5.6463 1 0 1 2 3 4 5 6

Table 2.4: Optimal positions and value of the cost functional considered in the H2-norm for

different values of ν when stabilising the zero solution to the KS equation.

As expected we observe that the value of the cost functionals C1, C2, C3 given by (2.55)-

(2.57), increases as ν decreases. Furthermore, the value of the cost functional also increases

as we increase the desired regularity of the solution fromL2 toH1 toH2−norms. Comparing

the results and in particular the positions of the optimal controls for the three different cost

functionals in Tables 2.2-2.4, we can conclude that for the stabilisation of the zero steady

states, the optimal control problem is more robust (in the sense that the optimal positions of

the controls do not change much as ν is reduced) when the L2 cost functional C1 is used.

Turning now to the results of Tables 2.5-2.7 that deal with the stabilisation of unstable

nonuniform steady states, we observe once again that there is an increase in the cost func-

tionals as ν decreases. We also observe that in this case (and in contrast to the stabilisation

of the zero solution) the higher order norms give optimal controls that are more robust, with

respect to changing ν, in comparison to utilising the L2 cost functional.
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ν Cost C1 Cost of Controls Iterations Optimal Positions

0.3 14.3164 9.7419 5 0 1 2 3 4 5 6

0.2,br.1 30.0588 21.8691 1 0 1 2 3 4 5 6

0.2,br.3 24.0520 16.2832 2 0 1 2 3 4 5 6

0.1,br.1 28.5591 32.9859 2 0 1 2 3 4 5 6

0.1,br.3 37.8902 32.4264 1 0 1 2 3 4 5 6

0.1,br.4 62.3916 51.6820 4 0 1 2 3 4 5 6

Table 2.5: Optimal positions and value of the cost functional considered in the L2-norm for

different values of ν when stabilising some of the nontrivial steady states from the bifurcation

diagram 2.1a.

ν Cost C2 Cost of Controls Iterations Optimal Positions

0.3 24.6922 9.6582 3 0 1 2 3 4 5 6

0.2,br.1 53.7672 17.9929 2 0 1 2 3 4 5 6

0.2,br.3 52.2630 15.4089 3 0 1 2 3 4 5 6

0.1,br1 87.1636 35.2169 1 0 1 2 3 4 5 6

0.1,br.3 83.9787 33.7581 2 0 1 2 3 4 5 6

0.1,br.4 171.6040 62.1381 2 0 1 2 3 4 5 6

Table 2.6: Optimal positions and value of the cost functional considered in the H1-norm for

different values of ν when stabilising some of the nontrivial steady states from the bifurcation

diagram 2.1a.

ν Cost C3 Cost of Controls Iterations Optimal Positions

0.3 54.5441 13.8436 2 0 1 2 3 4 5 6

0.2,br.1 262.7363 21.1679 3 0 1 2 3 4 5 6

0.2,br.3 266.0515 32.4603 3 0 1 2 3 4 5 6

0.1,br.1 702.4697 35.2169 1 0 1 2 3 4 5 6

0.1,br.3 745.6007 32.4264 1 0 1 2 3 4 5 6

0.1,br.4 1384.6689 63.1272 2 0 1 2 3 4 5 6

Table 2.7: Optimal positions and value of the cost functional considered inthe H2-norm for

different values of ν when stabilising some of the nontrivial steady states from the bifurcation

diagram 2.1a.

We performed the same computations for the case when μ > 0, and the numerical results

are presented in the same manner in Tables 2.8-2.13 (zero solution in Tables 2.8-2.10 and

steady states in Tables 2.11-2.13). However, now we fix ν = 0.5 and each entry in Tables

2.8-2.13 contains the value of μ, the value of the cost functional, the cost of the controls∑m
i=1 ‖fi(t)‖L2(0,T ), the number of iterations required to obtain an optimal state, and in the

last column the spatial distribution of the controls over the domain [0, 2π].

The results are quite similar to the ones for the KS equation: with few exceptions, an
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μ Cost Cost of Controls Iterations Optimal Positions

0.1 5.9009 3.8021 6 0 1 2 3 4 5 6

0.2 6.6360 4.7441 4 0 1 2 3 4 5 6

0.3 6.2167 4.3916 2 0 1 2 3 4 5 6

0.4 6.9673 4.8854 2 0 1 2 3 4 5 6

0.5 7.9267 6.4703 2 0 1 2 3 4 5 6

0.6 8.1923 6.7510 2 0 1 2 3 4 5 6

0.7 8.6480 7.4013 4 0 1 2 3 4 5 6

0.8 9.2724 8.1103 5 0 1 2 3 4 5 6

0.9 9.3181 8.1963 5 0 1 2 3 4 5 6

1 9.9345 8.8975 5 0 1 2 3 4 5 6

Table 2.8: Optimal positions and value of the cost functional considered in the L2-norm for

ν = 0.5 and different values of μ when stabilising the zero solution to the gKS equation.

μ Cost Cost of Controls Iterations Optimal Positions

0.1 10.0252 4.9799 2 0 1 2 3 4 5 6

0.2 9.3949 4.9606 3 0 1 2 3 4 5 6

0.3 10.2386 6.0085 4 0 1 2 3 4 5 6

0.4 9.5283 5.7364 2 0 1 2 3 4 5 6

0.5 9.7414 6.7310 4 0 1 2 3 4 5 6

0.6 10.2817 6.5249 3 0 1 2 3 4 5 6

0.7 11.3514 8.4107 3 0 1 2 3 4 5 6

0.8 10.7201 8.1917 2 0 1 2 3 4 5 6

0.9 11.1564 8.5838 2 0 1 2 3 4 5 6

1 12.8182 9.8639 4 0 1 2 3 4 5 6

Table 2.9: Optimal positions and value of the cost functional considered in the H1-norm for

ν = 0.5 and different values of μ when stabilising the zero solution to the gKS equation.

μ Cost Cost of Controls Iterations Optimal Positions

0.1 18.8787 8.1662 1 0 1 2 3 4 5 6

0.2 23.1180 10.1904 1 0 1 2 3 4 5 6

0.3 18.7295 4.4576 3 0 1 2 3 4 5 6

0.4 17.4085 90.484 2 0 1 2 3 4 5 6

0.5 13.4211 8.1216 1 0 1 2 3 4 5 6

0.6 19.0901 8.2441 1 0 1 2 3 4 5 6

0.7 16.9693 9.9604 1 0 1 2 3 4 5 6

0.8 17.5729 11.3804 1 0 1 2 3 4 5 6

0.9 19.3294 12.6604 1 0 1 2 3 4 5 6

1 23.6598 13.9538 1 0 1 2 3 4 5 6

Table 2.10: Optimal positions and value of the cost functional considered in the H2-norm

for ν = 0.5 and different values of μ when stabilising the zero solution to the gKS equation.
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increase in the intensity of the electric field parameter μ increases the cost of the controls.

In addition, it is found that the optimal controls for stabilising zero steady states are more

robust, with respect to changes in μ, when using the L2 cost functional. Similarly, when

stabilising nontrivial steady states, more robust optimal positions for the controls arise when

the H1 and H2 cost functionals are used.

μ Cost Cost of Controls Iterations Optimal Positions

0.4 1.1036 0.7239 24 0 1 2 3 4 5 6

0.5 77.3429 68.9036 2 0 1 2 3 4 5 6

0.6 24.1021 16.5390 3 0 1 2 3 4 5 6

0.7 64.4793 57.1950 6 0 1 2 3 4 5 6

0.8 121.3373 114.4435 5 0 1 2 3 4 5 6

Table 2.11: Optimal positions and value of the cost functional considered in the L2-norm for

ν = 0.5 and different values of μ when stabilising unstable nontrivial steady states of the

gKS equation.

μ Cost Cost of Controls Iterations Optimal Positions

0.4 2.4294 0.9982 10 0 1 2 3 4 5 6

0.5 104.0632 78.0547 3 0 1 2 3 4 5 6

0.6 56.4254 21.3122 2 0 1 2 3 4 5 6

0.7 99.3032 58.1332 4 0 1 2 3 4 5 6

0.8 190.9989 144.7036 2 0 1 2 3 4 5 6

Table 2.12: Optimal positions and value of the cost functional considered in the H1-norm

for ν = 0.5 and different values of μ when stabilising unstable nontrivial steady states of the

gKS equation.

μ Cost Cost of Controls Iterations Optimal Positions

0.4 14.8599 2.7471 1 0 1 2 3 4 5 6

0.5 169.7523 86.2344 1 0 1 2 3 4 5 6

0.6 194.5729 27.3814 2 0 1 2 3 4 5 6

0.7 298.9302 109.7305 2 0 1 2 3 4 5 6

0.8 489.1133 199.6977 2 0 1 2 3 4 5 6

Table 2.13: Optimal positions and value of the cost functional considered in the H2-norm

for ν = 0.5 and different values of μ when stabilising unstable nontrivial steady states of the

gKS equation.

A more detailed comparison of the energy required to control different solutions using

equidistant actuators or optimally computed positions as described above, is provided in
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Figure 2.18: Controlled steady state of the KS equation for ν = 0.3 (2.18a) and controls

applied: (2.18b) equidistant and (2.18c) optimal.

Figs. 2.18 and 2.19. Fig. 2.18 shows the stabilisation of a nonuniform steady state for the

KS equation, ν = 0.3 and μ = 0, while Fig. 2.19 shows analogous results but for the

electrified problem with parameters ν = 0.5 and μ = 0.4 (in both cases dispersion is absent,

δ = 0). Panel (a) shows the spatiotemporal evolution to the desired state in the presence of

controls, while panels (b) and (c) depict the evolution of the control amplitudes (there are

three controls in each case) for equidistant or optimally positioned actuators, respectively.

The results show that the amplitudes of optimally placed controls decay to zero faster than

those of the equidistantly placed ones.

Optimal control of travelling waves

We also performed similar numerical experiments to find the optimal position of the control

actuators when stabilising travelling waves. We found that in most cases, we cannot do better

than equidistant controls.

We believe that this is due to the following reasons. First, the length of the domain needed
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Figure 2.19: Controlled steady state of the KS equation for ν = 0.5, μ = 0.4 (2.19) and

controls applied: (2.19b) equidistant and (2.19c) optimal.

for the existence of (unstable) travelling waves is long, and therefore the number of unstable

modes (and hence of the number of controls) is large (e.g., in the example of Fig. 2.12 we are

usingm = 21 controls); thus, shifting the position of the controls in a relatively large domain

should not have a big effect on their amplitudes. Second, solitary pulses on long domains

necessarily have large flat regions which are susceptible to linear instabilities leading to the

nonlinear wavy perturbations seen in panels (b) and (c) in Fig. 2.5. It is interesting to note that

there are 10 wavy structures corresponding to the number of linearly unstable modes; thus,

we expect optimality when the controls are approximately equally spaced thus guaranteeing

one control under each wavy structure. Shifting the controls can introduce instability and

nonlinear growth to a different state.
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2.5 Discussion

In this chapter we took our first step towards controlling falling liquid films by studying the

effect of point actuated feedback controls on the Kuramoto-Sivashinsky equation and some

of its generalisations that include physical effects such as dispersion and an electric field.

These are weakly nonlinear models for the interface of thin film flows and are the simplest

models that can be obtained in the rational hierarchy of models presented in Section 1.2.

We extended previous results by Christofides et al. [8, 9, 42, 44] for the stabilisation

of the zero solution to the Kuramoto-Sivashinsky equation (μ = δ = 0) and are now able

to stabilise all types of solutions: we can use point actuated feedback controls to suppress

the spatiotemporal chaotic behaviour that is characteristic to this equation for large domains

(or small values of ν) and drive the solutions towards any chosen steady state or travelling

wave solution of the equations (with both μ = δ = 0 or positive values of these parameters)

and can also drive the solutions of this equation to arbitrary periodic solutions by adding an

extra forcing term. The number of controls is related to the number of unstable modes in

the system, and their amplitudes quickly decay to zero, which is due to the fact that they

are proportional to the distance between the current solution and the desired state. These,

however, cannot be exactly zero since the desired solutions are unstable, and therefore even

numerical error can destabilise them if the controls are not applied. Finally, we also showed

that the controls are robust with respect to variations in the parameters of the system. This

means that they are robust to uncertainties. In particular, these uncertainties can change the

number of unstable modes (by being present in the parameter ν or μ), and we showed that

we can still achieve stabilisation if the number of controls differs by the predicted number

by two. This is in agreement with the results by Armaou and Christofides [8] for the zero

solution of the KS equation, where the authors claim that they can use m = 5 controls as

long as ν ≥ 1
49

, which corresponds to 7 unstable eigenmodes.

Furthermore, we studied the optimal control problem for this equation by both proving

the existence of an optimal control when considering general distributed and periodic con-

trols f(x, t) ∈ L2(0, T ; L̇2(0, 2π)), and by developing an algorithm that enables us to com-

pute the optimal position for the control actuators, both for the zero solution and nontrivial

steady states. We consider three different cost functionals; all of the chosen cost functionals

penalised the L2 norm of the controls in time, while measuring the distance between the

current solution and the desired steady state in the L2, H1 and H2 norms. We found that,
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in general, the L2 norm is more efficient when stabilising the zero solution, while higher

regularity norms are better when stabilising nontrivial steady states. We also found that we

cannot usually do better than equidistant controls when we are trying to stabilise travelling

wave solutions, and we think that this is due to the fact that these only occur in very large

domains and have large flat regions that are susceptible to linear instabilities, and therefore

having equidistant controls increases our chances of suppressing these instabilities.

For the results presented here, we assumed that complete information about the solution

of the gKS equation is available. In e.g. [7], the authors considered that information about the

solution u(x, t) to the KS equation was only available at a finite number of points and proved

that one can still achieve stabilisation of the zero solution by approximating the solution

using these observations. They used static (that only use the latest information available) and

dynamic (which construct an approximation of the system that evolves in time) observers.

This extension is trivially valid for our case and therefore we chose not to apply it here.

However, we will use similar techniques in Chapter 3 for the control of more complicated

long wave models.

There are several directions in which the results presented here can be extended. Since

the KS equation is a simplified model for thin film flows obtained using weakly nonlinear

analysis and valid close to criticality [54, 120], we can apply the control methodologies

studied here to simplified long wave models that are closer to the full 2D Navier–Stokes

dynamics, such as the Benney equation and the weighted-residual model and we will do that

in Chapter 3. Similar controls are expected to work at least for the Benney equation, since

the linear operators of both equations have the same structure. However, we cannot apply the

controls derived here directly, since the KS equation sits in a moving frame, and having point

actuated controls in a moving frame is not realisable. Nevertheless, we find that proportional

controls (both distributed and point actuated) work surprisingly well in the Benney equation,

and the controls obtained for this equation can also be applied to stabilise solutions of the

weighted-residual model. A more detailed discussion will be given in Chapter 3. We will also

extend these techniques so that they apply to the stochastic KS equation. Given that the noise

itself can sometimes stabilise linearly unstable solutions [179, 180], the interaction between

noise and controls can lead to very interesting dynamic phenomena. We think that this

is a particularly interesting direction for further research, since the stochastic KS equation

is closely related to the KPZ equation, which is a universal model for weakly asymmetric
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processes [97], and we will present our results concerning this equation in Chapter 4. Finally,

we will also show how to extend our results to systems of coupled KS equations and systems

of conservation laws used to model interfaces of multi-phase flows in Chapter 5.
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Chapter 3

Control of long-wave models

The aim of this chapter is to study the application of feedback controls similar to those

obtained in Chapter 2 for weakly nonlinear models to long-wave models such as the first

order Benney equation or the first order weighted-residual model. These models are more

realistic and provide a good approximation for the Navier–Stokes equations in the long wave

limit, when modelling thin films flowing down inclined planes.

We will use feedback control in the form of perpendicular injection and suction of fluid

through the wall, and the feedback is based on observations of the film height. We study both

distributed and point actuated feedback controls when stabilising the solution corresponding

to a flat film and compare the results obtained between the two models and, in the distributed

control case, to the linear stability results for the Navier–Stokes equations. We also study

the effect of displacement between observers and actuators and show that when using a finite

number of point actuated controls the system can still be stabilised when only a small number

of observations are available, using static (where the controls are based on only the most

recent set of observations) and dynamic (where the controls are based on an approximation

of the system which evolves over time) control schemes. Furthermore, we study the effect

of distributed controls on the stabilisation of travelling wave solutions, steady states, and

non-solutions.

The main results of this chapter are published in [205]
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3.1 The Benney and weighted-residual equations

The next step towards controlling thin film flows is to go one step higher in our hierarchy

of models and control the solutions to long-wave approximations of such flows. Long-wave

models were developed in order to obtain a reduced-dimensional description of thin film

flows down inclined planes and they take advantage of the fact that the first instabilities

to develop in these flows are in the form of long-wave perturbations. The main difference

between the various models is in the manner in which inertial effects are incorporated.

The long-wave methodology was derived by Benney [21], but in his work the author ne-

glected the effects of surface tension; these were later included by Gjevik [85]. The Benney

equation captures the critical conditions for the onset of instability exactly, as well as the

neutral stability conditions and interfacial dynamics close to criticality. However, it fails to

describe the dynamics within the actual thin film; for example, the solutions exhibit unphys-

ical behaviour as the Reynolds number is increased. Eventually, the increase of Reynolds

number will lead to finite-time blow-up solutions. Some of these issues can be delayed

by introducing higher order terms in the derivation of the Benney equation, but cannot be

suppressed.

This motivated the need to develop models that are more accurate for moderate and high

Reynolds numbers. Several models are available in the literature (e.g. a very widely used

model, obtained using different scalings of the variables to that we will consider, is the well-

known Shkadov model), and here we choose to consider the first order weighted-residual

equations. The weighted-residual methodology was introduced by Ruyer-Quil and Man-

neville [187] and consists of expanding the velocity u in terms of basis functions satisfying

the boundary conditions at the interface and then obtaining the relevant coefficients by aver-

aging the bulk equations. This model is identical to the Benney equation at zero Reynolds

number and also captures the onset of instability exactly, but remains in good agreement

with the Orr-Sommerfeld linear stability results for the Navier–Stokes equations. It consists

of two coupled equations (higher order models will have more equations) for the interface

height, h and the flow rate q.

The methodologies for deriving both types of models (the Benney and first order weighted-

residual methodologies) are described in e.g. [120]. The application of suction/injection

controls for both models was introduced in [206] and we summarise the derivation of the

relevant equations in Chapter 1.
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We will now consider the controlled versions of these two models. Both models satisfy

a mass conservation equation

ht − F (x, t) + qx = 0, (3.1)

which is coupled with an equation for q(x, t). For the Benney equation, the equation for

q(x, t) is

q(x, t) =
h3

3

(
2− 2hx cot θ +

hxxx
C

)
+R

(
8h6hx
15

− 2h4F

3

)
= Z(h, F ), (3.2)

or, if we assume F to be small with respect to the long-wave scaling (see Section 1.2),

q(x, t) =
h3

3

(
2− 2hx cot θ +

hxxx
C

)
+

8Rh6hx
15

. (3.3)

Both these equations, when coupled with (3.1), yield an evolution equation for h(x, t). The

fact that the whole dynamics of the system are enclosed in one equation for h(x, t) is the

main reason why the Benney model fails to describe the physics of these flows for large

Reynolds numbers.

In the weighted-residual model, q(x, t) gains its own evolution equation

2

5
Rh2qt+q =

h3

3

(
2− 2hx cot θ +

hxxx
C

)
+R

(
18q2hx
35

− 34hqqx
35

+
hqF

5

)
= Z(h, q, F ),

(3.4)

which when coupled to (3.1) yields a closed system for h(x, t) and q(x, t).

As far as we are aware, no attempts of controlling long-wave models for falling film

flows using injection and suction were made before. However, our results for the weakly

nonlinear models in Chapter 2 motivated us to explore the same methodology here since,

when linearised, the Benney equation shows similar behaviour to that of the KS equation,

in the sense that its eigenvalues have the same structure. Therefore, the stabilisation of the

linear operator for the Benney equation using feedback controls such as the ones we derived

in Chapter 2 should be straightforward. We cannot simply apply the controls derived for the

weakly nonlinear models: the KS equation sits in a moving frame, and therefore, unless we

consider controls that are also moving, we cannot expect them to work without any change.

Moreover, the nonlinearities here are more complicated, and so there is no global existence

theory; this reduces our hopes to prove any analytical results concerning the controllability

of the full system, but nevertheless our numerical experiments show that we can achieve
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stabilisation of the flat state and other solutions using fairly simple controls. Another diffi-

culty is that the structure of the weighted-residual and Navier–Stokes models, when applied

at finite wavelength, is significantly different to that of the KS equation (and also the Ben-

ney equation). It is reasonable to suspect that a control strategy carefully optimised for one

model may be ineffective in another, and so we will focus on the use of relatively simple

control schemes, and investigate their robustness to variations in the model details.

3.1.1 Choice of controls

Our focus is on the application of suction as a linear control mechanism in response to

observations of the interface height. Given the fact that there are no existence or uniqueness

results for these models, and also that there is no reason why we should expect the behaviour

of the linear operator of these systems to govern the full nonlinear evolution, we do not know

a priori that linear proportional feedback controls will work for long-wave models. However,

since the Kuramoto-Sivashisnky equation is obtained as an approximation for these models

(see Section 1.2) and proportional feedback controls work remarkably well for all types of

solutions of this equation, we will explore several different control mechanisms based on our

experience with the weakly nonlinear models: our controls will be linear and proportional

to the difference between the current and desired solutions, but we will allow them to be not

only point actuated but also distributed throughout the whole domain. We will also consider

separately the cases of controlling towards the flat solution (h(x, t) = 1) and nontrivial

solutions such as travelling waves or nontrivial steady states (which are not solutions to

these equations in the absence of any kind of forcing). We will therefore begin in Sec. 3.2

by considering the case of controlling towards the uniform Nusselt state, based only on

observations of h, and using distributed controls. To achieve this, we set

F (x, t) = −α[h(x, t)− 1], (3.5)

where α is a real constant to be chosen; in most cases we find that the uniform state becomes

increasingly stable for large positive α. Note that if h = 1 everywhere, then the controls

have zero magnitude.

The control scheme (3.5) requires perfect knowledge of the instantaneous interface shape

h(x, t), and the ability to impose any continuous F (x, t). In practice, we expect neither of
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these assumptions to hold. Instead, fluid is injected via a number of localised actuators, or

slots, in the substrate, and interface observations are available at a small number of locations

in the flow domain. This, and our results for the weakly nonlinear models, motivated us to

investigate, in Section 3.3, control schemes based on point actuated controls

F (x, t) =
M∑

m=1

fm(t)bm(x). (3.6)

As discussed in Section 2.5, for the long-wave models we will consider both the case when

we have full information of the current system state, and also the case where the M coeffi-

cients fm(t) are to be determined from P discrete localised observations yp(t) of the interface

height:

yp(t) =

∫ L

0

Φp(x)(h(x, t)− 1) dx. (3.7)

Depending on the way we determine fm(t) from the observations, we will say that the control

scheme uses either static observations or dynamic observers.

We then will consider the stabilisation of nontrivial solutions. In Sec. 3.4, we consider

controlling towards either nonuniform travelling waves of permanent form or nonuniform

steady states. Travelling waves can be written as h = H(ζ), where ζ = x− Ut and U is the

constant propagation speed. By direct analogy to (3.5), we set

F (ζ, t) = −α[h(ζ, t)−H(ζ)]. (3.8)

We note that if h(x, t) = H(x − Ut) for all time, then F = 0, so that the travelling wave

h = H(x− Ut), is also a solution of the controlled equations.

Remark 8. We note that travelling waves with permanent shape and constant speed corre-

spond to both steady state and travelling wave solutions of the Kuramoto-Sivashinsky equa-

tion, since this model is obtained by a Galilean transformation from the long-wave models.

Steady states of the KS equation correspond to waves travelling at the same speed as that of

the moving frame of reference for the Galilean transformation, while travelling waves in the

weakly nonlinear framework are those which travel at a different speed than the Galilean

transformation one.

Nonuniform steady interface shapes H(x) are not steady states of the equations when

F = 0, but [206] showed that imposing a steady suction component S(x) enables non-
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uniform steady states. This is a similar approach to that taken in Section 2.2.1 and exempli-

fied for the gKS equation in Fig. 2.15. Combining with proportional controls, we obtain

F (x, t) = −α[h(x, t)−H(x)] + S(x). (3.9)

For non-uniform states, the calculation of S(x) to obtain an exact steady state, or of

the travelling wave solution H(ζ), requires detailed knowledge of the governing equations.

For example, these states differ even between the Benney and weighted-residual models, let

alone the Navier–Stokes equations. Therefore, we cannot expect that the controls obtained

for a specific solution for one of the models to work for another model. Nevertheless, we

will consider, in Section 3.4.3, the robustness of our control schemes when the model details

are not well known; we do so by controlling towards a finite-amplitude non-uniform state

H(x), but setting S(x) = 0, so that the target state is not a steady solution of any of our

models. As a result, the control parameter α has a role to play in setting both the shape of

any steady states obtained, as well as their stability.

3.2 The effect of proportional controls on the stability of a uniform film

The uniform film state h = 1, known as the Nusselt solution, is a steady solution to all three

sets of equations (Navier–Stokes, Benney and weighted-residual) in the absence of suction.

The base state is

h = 1, q = 2/3, u = y(2− y), v = 0, p = 2(1− y) cot θ. (3.10)

In 2-D Navier–Stokes [20, 233], Benney [21] and weighted-residual models [187], this solu-

tion is linearly stable to perturbations of all wavelengths if

R < R0 ≡
5

4
cot θ. (3.11)

As R is increased across this threshold, the first perturbations to become unstable are those

with infinite wavelength, and in fact the long-wavelength nature of the instability was the

physical motivation for the development of long-wave models.

The application of linear proportional controls F = −α(h−1) affects the linear stability

of the Nusselt solution. As the system is invariant under translation in x, the eigenmodes are
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proportional to exp(ikx), and so we write

h = 1 + εĥeikx+λt, q =
2

3
+ εq̂eikx+λt (3.12)

and seek a solution for ε	 1. We aim to compute λ(k); solutions are stable to perturbations

of all wavelengths if the real part of λ, �(λ), is negative for all real k. In what follows we

calculate λ for each of the models including linear proportional feedback control in order to

establish that the constant α can be chosen to stabilise the uniform flow (3.10). In the case

of Benney and weighted-residual models this can be performed analytically, whereas for the

Navier–Stokes equations we compute the eigenvalues numerically.

3.2.1 Benney equation

The linearised mass conservation equation (3.1) yields

λĥ+ αĥ+ ikq̂ = 0. (3.13)

Substituting (3.12) into (3.2) gives

q̂ =

(
2− 2ik cot θ

3
− ik3

3C
+

8ikR

15
+

2αR

3

)
ĥ, (3.14)

and combining (3.14) with (3.13) yields a single eigenvalue λ:

λ = −α
(
1 +

2Rik

3

)
− 2ik +

8k2

15

(
R− 5 cot θ

4
− 5k2

8C

)
. (3.15)

We assume that α is real and independent of k, and taking α > 0 in (3.15) is seen to have

a stabilising effect on the Benney system. If R < R0, the Nusselt solution is linearly stable

for all real k in the absence of controls, and becomes more so as α increases. However, if

R > R0, there is a finite k with maximum growth rate, and it is easy to show that

max
k

�(λ) = −α +
16C(R−R0)

2

75
. (3.16)

Hence we can stabilise the uniform film state against perturbations of all wavelengths by
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Figure 3.1: Real (left) and imaginary (right) part of the Benney eigenvalue λ as a function

of k, for R = 5, C = 0.05, θ = π/4 and α = 0 (black solid line), and α = αB = 0.15 (red

dashed line) from (3.17).

choosing α > αB, where

αB =
16C(R−R0)

2

75
. (3.17)

The dispersion relation (3.15) is plotted with and without controls in Fig. 3.1, for parame-

ters at which the uncontrolled solution is unstable. In the absence of controls, the real part of

λ is positive for small k, with a finite cutoff wavenumber k, above which the real part rapidly

becomes increasingly negative. Setting α = αB shifts the real part of the entire spectrum by

−αB. This means that perturbations of very small wavenumber decay with a finite growth

rate of approximately −αB, rather than having a small positive growth rate in the absence of

controls. The maximum growth rate occurs at the same k as in the absence of controls, and

for α = αB, this maximum growth rate is exactly zero. We can also compare the imaginary

part of λ; we find that setting α = αB slightly increases the magnitude of the imaginary part,

and hence the downstream propagation speed of small perturbations is slightly increased.

3.2.2 Weighted-residual equations

The linearised version of the weighted-residual equations (3.4) yields

2λR

5
q̂ + q̂ =

(
2− 2ik cot θ

3
− ik3

3C
+

8ikR

35
− 2Rα

15

)
ĥ− 68ikR

105
q̂. (3.18)

We combine (3.18) with (3.13) to obtain a quadratic equation for λ:

2Rλ2

5
+λ

(
1 +

68ikR

105
+

2αR

5

)
+α

(
1 +

18ikR

35

)
+2ik+

8k2RH

15
− 8k2R

35
= 0, (3.19)
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Figure 3.2: Real (left) and imaginary (right) part of both the weighted-residual eigenvalues λ
as a function of k, for R = 5, C = 0.05, θ = π/4 and α = 0 (black solid lines), and α = αB

(red dashed lines) from (3.17).

where

RH =
5

4
cot θ +

5k2

8C
= R0 +

5k2

8C
. (3.20)

The characteristic equation (3.19) has complex coefficients, and so its two roots for λ are not

complex conjugates. We calculate the two roots for λ numerically to determine the effect of

imposing controls; Fig. 3.2 shows λ as a function of k, with and without controls. The eigen-

values of the weighted-residual equation display relatively little variation with respect to k

in comparison to the Benney results, but the two systems share the same cutoff wavenumber

in the absence of feedback controls. With the addition of feedback controls, we find that

positive α decreases the real part of λ for both eigenvalues of the weighted-residual system,

with the exception of the most stable eigenmode at k = 0, which is independent of α (see

below). The effect of the controls in the imaginary part of λ is similar to that observed for the

Benney equation. Choosing the critical α = αB for the Benney equation, given by (3.17), is

more than sufficient to stabilise the uniform state against perturbations of all wavenumbers

in the weighted-residual equations.

In the long-wave limit k 	 1, (3.19) becomes

(λ+ α)

(
1 +

2Rλ

5

)
= 0 (3.21)

which has roots at λ = −α and λ = −5/(2R). Choosing non-zero α affects the stability of

the first root, and means that we must choose α > 0 to obtain a stable solution. The second

root is unaffected by α, and as a consequence, the maximum real part of λ across all k is

always greater than −5/(2R), regardless of the value of α.
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Although the effect of α on λ is more complicated than that for the Benney equation, we

can still calculate the critical control amplitude α needed to ensure that �(λ) ≤ 0 for all k.

Perturbations with very large wavenumber are always stabilised by surface tension, so have

negative real part. If the uniform state is unstable to perturbations for some k, then there is

at least one cutoff value of k for which �(λ) = 0. We therefore investigate the conditions

for which there is a purely imaginary root, writing for convenience λ = −2ikΩ. We solve

the imaginary part of (3.19) to obtain

Ω =
1 +

9αR

35

1 +
2αR

5

. (3.22)

Since Ω is independent of k, we can rewrite the real part of (3.19) as a quadratic equation in

k2:
k4

3C
+ k2

(
−8RΩ2

5
+

136RΩ

105
− 8R

35
+

8R0

15

)
+ α = 0. (3.23)

The roots of this equation correspond to wavenumbers where �(λ(k)) = 0. When α is

insufficient to stabilise perturbations of all wavelengths, there are two roots for k2, and one

root at the critical value of α. The uniform state is stable to perturbations of all wavelengths

if there are no real roots for k2, i.e. when (3.23) has negative determinant. This condition

can be rewritten using the definition of Ω to obtain that the uniform state is stable if

⎛⎜⎝R
⎡⎢⎣1 + 71αR

245
+

3α2R2

175

1 +
4αR

5
+

4α2R2

25

⎤⎥⎦−R0

⎞⎟⎠
2

<
75α

16C
. (3.24)

The term in square brackets is monotonically decreasing in αR for αR > 0. When α is

small, we find

R ≈ R0 +

√
75α

16C
, (3.25)

which is exactly the Benney result. At large α,

R ≈ 28

3

(
R0 +

√
75α

16C

)
(3.26)

and so the maximum R for which the uniform solution is stable at large, fixed α in the
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Figure 3.3: The boundaries for stability to perturbations of all wavelengths, for θ = π/4,

C = 0.05. The stable region emanates from the
√
α axis.

weighted-residual model is nearly 10 times larger than predicted by the Benney model.

The stability boundaries for the Benney and weighted-residual results are given by (3.17)

and (3.24), and are plotted in the
√
α-R plane in Fig. 3.3, together with the correspond-

ing Navier–Stokes results as we will discuss below; it appears that the stable region of the

Benney equation is always a subset of the stable region according to the weighted-residual

equation, so the critical α predicted by (3.17) is indeed a conservative estimate of the neces-

sary α required to stabilise the uniform film to perturbations of all wavelengths.

3.2.3 Navier–Stokes equations

We can compute the linear stability of the Nusselt state in the two-dimensional Navier–

Stokes equations, subject to distributed feedback controls, by a normal mode analysis. This

analysis is well known in the absence of controls [73]. The addition of suction controls

changes only one boundary condition in the resulting Orr-Sommerfeld system, and so only

a brief description of the equations is presented here.

We perturb about the uniform state, writing

h = 1 + εĤ exp(ikx+ λt)

u = ū(y) + εÛ(y) exp(ikx+ λt)

v = 0 + εV̂ (y) exp(ikx+ λt)

p = p̄(y) + εP̂ (y) exp(ikx+ λt),

(3.27)

where ū(y) = y(2− y) and p̄(y) correspond to the uniform film solution described in (3.10),
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and then linearise with respect to ε. The perturbation velocity components Û(y) and V̂ (y)

can be expressed in terms of a streamfunction ψ(y), so that

Û(y) = −ψ′(y), V̂ (y) = ikψ(y), (3.28)

which immediately satisfies the mass conservation equation (1.3). The two components of

the momentum equation (1.2a) and (1.2b) can then be combined to yield the Orr-Sommerfeld

equation, which is a linear ordinary differential equation for ψ in 0 < y < 1:

(
d2

dy2
− k2

)2

ψ = R[λ+ ikū(y)]

(
d2

dy2
− k2

)
ψ − ikū′′(y)Rψ. (3.29)

The boundary conditions at the free surface are unaffected by α, and after some manip-

ulation involving (1.2a) to eliminate the fluid pressure, we obtain three boundary conditions

at the free surface:

−ψ′′′(1) + (Rλ+ ikR− 3k2)ψ′(1) = 2ikĤ cot θ +
ik3Ĥ

C
, (3.30a)

ψ′′(1) = −2Ĥ − k2ψ(1), (3.30b)

ikψ(1) = (λ+ ik)Ĥ. (3.30c)

The no-slip boundary condition on the wall yields

Û(0) = −ψ′(0) = 0 (3.31)

and the responsive flux through the wall becomes the boundary condition

V̂ (0) = ikψ(0) = −αĤ. (3.32)

When k = 0, we can solve the system (3.29)-(3.32) for ψ(y) and λ analytically, and enu-

merate the eigenmodes. There is a single eigenmode that involves perturbations to the inter-

face height (i.e. Ĥ �= 0), and for this eigenmode λ = −α at k = 0. There are also an infinite

number of shear eigenmodes which leave the interface position unperturbed. These eigen-

modes are all stable, and the eigenvalue with the largest real part satisfies λR = −(π/2)2,

irrespective of α.

For k �= 0, we solve the system (3.29)-(3.32) numerically. We can formulate the system
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as a generalised eigenvalue problem for ψ, Ĥ and λ, discretise the derivative operators on

ψ using finite differences or Chebyshev polynomials, and solve the resulting generalised

eigenvalue problem using standard MATLAB routines.

Results for λ(k) are shown in Fig. 3.4 for the two least stable eigenmodes. In the absence

of controls, the Navier–Stokes results show a smaller cutoff wavenumber than the Benney

and weighted-residual results. As was the case for the weighted-residual equations, we find

that introducing positive α decreases the real part of both eigenvalues shown, but has van-

ishing effect when k = 0 on all but the least stable eigenmode. Furthermore, the critical α

computed according to the Benney result (3.17) is again sufficient to stabilise the uniform

state against perturbations of all wavelengths.
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Figure 3.4: Real (left) and imaginary (right) part of the two Navier–Stokes eigenvalues λ
with largest real part as a function of k, for R = 5, C = 0.05, θ = π/4, α = 0 (black solid

lines), and α = αB (red dashed lines) from (3.17).

In Fig. 3.3, we show the critical α required so that �(λ) ≤ 0 for all k in the Navier–

Stokes equations. This is computed in AUTO-07P, with the condition that �(λ) has both a

turning point and a zero at the same value of k. When α < 0.5, this stability boundary is

in good agreement with the weighted-residual results, with both predicting that the critical

Reynolds number is increased substantially, from its uncontrolled value of 1.25 to around 50.

Beyond this point, the weighted-residual results predict that the critical R should continue to

increase rapidly with α. However, the Navier–Stokes results show a turning point in R(α),

followed by a very slow decrease in R as α is increased. This eventual deviation is not

entirely unexpected, given the wide range of Reynolds numbers spanned in this calculation.
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3.2.4 Time dependent calculations

Although we have demonstrated that the control parameter α can be chosen to make the

uniform state linearly stable to perturbations of all wavelengths, it is not necessarily the case

that the system will converge to the uniform state in nonlinear simulations. In Fig. 3.5, we

show results of an initial value calculation of the weighted-residual system, starting from a

finite-amplitude state that is neither a steady nor travelling wave solution of the weighted-

residual equations. We initially allow this state to evolve without controls, and find that

Uncontrolled
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n
o
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1
)
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Figure 3.5: Results of an initial value calculation using the weighted-residual equations,

starting from a non-uniform, non-equilibrium state, which evolves without suction until t =
100. For t > 100, we enable feedback controls with F = −0.5(h − 1), and the system

converges towards the uniform state. Flow fields for the four instants marked with black dots

are shown in Fig. 3.6

the system moves towards a travelling wave state of finite amplitude. We then activate the

feedback controls with α = 0.5, which is large enough that the uniform state is linearly

stable. Instantaneous flow fields are shown in Fig. 3.6 just before and after the application of

controls. After the decay of transient behaviour, we observe that the distance of the solution

to the desired state decays exponentially with respect to time, which is consistent with the

expectation that the largest deviation is due to a single eigenmode which decays at constant

rate. As the imposed injection is proportional to h − 1, the control magnitude also decays

exponentially with time and the flow becomes increasingly laminar. However, although the

amplitude of the applied injection and suction becomes vanishingly small at late times, the

feedback control scheme is still required to suppress the growth of small perturbations, and

thus to ensure the linear stability of the system.
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Figure 3.6: Instantaneous flow fields at moments just before and after the application of

controls for the same calculation as Fig. 3.5. At t = 95, the system has reached a travelling

wave state. Controls are activated at t = 100, and the magnitude of controls is largest there.

At subsequent times, the interface is closer to the flat state, so smaller controls are needed.

3.2.5 Effect of phase-shifted controls

As an initial step towards designing a more efficient system for feedback control, we can

investigate the effect of shifting observations relative to actuators, still using a normal mode

analysis. We replace the control scheme (3.5) with a scheme based on shifted observers:

F (x, t) = −α[h(x− ξ, t)− 1]. (3.33)

Here the real parameter ξ is the distance between observer and actuator. Positive ξ means

that the observers are displaced upstream relative to the position at which the injection is

applied. This scheme introduces no favoured x locations, and so the eigenmodes can still be

written as

h = 1 + εĥ exp(ikx+ λt) +O(ε2), q = 2/3 + εq̂ exp(ikx+ λt) +O(ε2). (3.34)



Chapter 3. Control of long-wave models 107

We then find

F = −αe−ikξεĥ exp(ikx+ λt). (3.35)

We thus simply replace α by α exp(−ikξ) in (3.15) and (3.19) to understand the effect of

ξ on the eigenvalues of the Benney and weighted-residual models respectively. For both

models, we can perform a numerical search to calculate the boundary of the region in α-ξ

space where the uniform state is stable to perturbations of arbitrary wavelengths, as shown in

Fig. 3.7; for the parameters in this figure, we find that choosing ξ ≈ 2 has the best stabilising

effect in both models, in the sense that a stable uniform state is obtained at the lowest value of

α. There are some differences between the results for the two models: the effect of positive

ξ is less pronounced in the weighted-residual model than in the Benney equation, and in fact

for the weighted-residual model, choosing positive ξ eventually becomes less stabilising as

α is increased.
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Figure 3.7: Linear stability properties of the uniform state as a function of the control

strength α and the displacement ξ between observer and actuator, with the control scheme

(3.33) for R = 5, θ = π/4, C = 0.05. Stability results refer to perturbations of all wave-

lengths. The lowest α is required at a finite positive value of ξ. The dashed line shows the

O(k2) optimiser in the Benney equations: ξ = 2R/3.

In order to understand why the control scheme is most effective when actuators are dis-

placed upstream by a finite distance, we can expand the Benney eigenvalue under the as-

sumption that kξ is small, to reach

�(λ) = −α
(
1 + k2ξ

[
2R

3
− ξ

2

])
+

8k2

15

(
R− 5 cot θ

4
− 5k2

8C

)
. (3.36)

To maximise the effect of α, we should choose ξ = 2R/3, which provides a reasonable

estimate of the optimal ξ, as shown in Fig. 3.7. This should become a better estimate as
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R → R0, so that the unstable k move towards zero.

3.2.6 Linear stability for non translationally invariant systems

For a translationally invariant system, as occurs for distributed controls towards a uniform

film state, the linear stability of the uniform film state can be calculated via a normal mode

analysis, as was shown throughout this section. However, if the base state for the stability

analysis is not uniform, or the feedback control system has localised actuators or observers,

then the system is no longer translationally invariant, and so the eigenmodes of the system

are no longer normal modes. In that case, we can compute the discretised eigenmodes of the

system by formulation and numerical solution of a generalised eigenvalue problem for linear

stability, as described below.

We consider the evolution of a small perturbation ĥ:

h = H(x) + εĥeλt, q = Q(x) + εq̂eλt, F = S(x)− εeλtαĥ (3.37)

and recall the Benney equation:

ht + qx − F = 0, q = Z(h, F ), (3.38)

where Z(h, F ) is defined in (3.2), and expand for small ε. The equations at O(1) in ε must

be satisfied by the base state H(x), Q(x), S(x). At O(ε), we obtain a generalised eigenvalue

problem for ĥ, q̂ and λ:

λ

(
I 0

0 0

)(
ĥ

q̂

)
=

(
−αI −∂x

Zh − ZFαI −I

)(
ĥ

q̂

)
(3.39)

where ∂x is the derivative operator, I is the identity matrix, and the blocks Zh and ZF are

linear operators; for example from (3.2) we have

Zh =

[
H2

(
2− 2 cot θHx +

Hxxx

C

)
+

16RH5Hx

5
− 8H3RS

3

]
I+[

−2H3

3
cot θ +

8R

15
H6

]
∂x +

H3

3C
∂xxx. (3.40)
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We can eliminate q̂ to obtain a smaller eigenvalue problem for ĥ alone:

λĥ = −∂xZhĥ− [I − ∂xZF ]αĥ. (3.41)

For the uniform state, H = 1, Q = 2/3, and S = 0, the blocks Zh and ZF simplify

considerably; in fact, we can calculate the eigenvalues analytically in that case. For non-

uniform base states, we calculate the eigenvalues by replacing the derivative operators with

pseudo-spectral derivative matrices, and solving the eigenvalue problem numerically using

standard algorithms available in MATLAB.

We can also write the flux equation of the weighted-residual system in a similar form:

2

5
Rh2qt + q = Z(h, q, F ). (3.42)

We again obtain a generalised eigenvalue problem for ĥ, q̂ and λ in the weighted-residual

equations:

λ

(
I 0

0 2
5
RH2I

)(
ĥ

q̂

)
=

(
−αI −∂x

Zh − ZFαI Zq − I

)(
ĥ

q̂

)
, (3.43)

where the blocks Zh, Zq and ZF can be obtained by differentiating (3.4). We note that there

are twice as many eigenmodes in the weighted-residual equations as in the Benney equation.

3.3 Point actuated controls

The physically important question that we wish to address next is the application of suction

controls using point actuators, and based on a limited number of observations of the sys-

tem state. Here we consider only behaviour within a spatial period of length L, and only

stabilisation of the uniform state.

We are given the localised actuator functions bm(x), so that

F (x, t) =
M∑

m=1

fm(t)bm(x), (3.44)

where the M coefficients fm(t) are to be determined from P discrete observations yp(t) of

the interface height:

yp(t) =

∫ L

0

Φp(x)(h(x, t)− 1) dx. (3.45)
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We note that the explicit x-dependence of the system that arises from localised actuators

and observers means that the system is no longer translationally invariant in x, and so linear

stability properties of even a uniform film in the Navier–Stokes equations cannot be obtained

by a normal mode analysis. Instead, we derive most of our control strategies using the

Benney model, and use the weighted-residual model as a black box experiment to represent

the additional complexities of the full physical system subject to controls derived using a low

order model.

As a starting point, we suppose that the controls are a linear function of the observations

available at a given instant, which is known as a static observation scheme. In the most

general form, we can then write

F = BKΦ(h− 1). (3.46)

Here the operator Φ describes observations of the system, B represents the shape of the

actuators, and K is the control operator which we are free to choose based on our knowledge

of Φ, B and the system dynamics. We will use M linearly independent actuators and P

observations, which are the ranks of B and Φ respectively. In a discretised form, B and Φ

are matrices of size N ×M and P × N respectively. The matrix K has size M × P , and

we may choose all of its entries. Given this form for F , we can compute the linear stability

of a given steady state by replacing α with −BKΦ in the eigenvalue problems described in

Section 3.2.6.

3.3.1 Choice of point actuators and observers

We choose to use M equally-spaced actuators, which are each periodic with period L and

locally behave as Dirac δ-functions, so that

bm(x) = δ(x− xm), xm = mL/M. (3.47)

We similarly use P equally-spaced observer functions, which are displaced upstream by a

distance ξ from the actuator positions, so that

Φp(x) = δ(x− xp), xp = pL/P − ξ. (3.48)
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For our numerical calculations, we replace δ(x) in (3.47) and (3.48) by the smoothed,

periodic function d(x), defined by

d(x) = exp

[
cos(2πx

L
)− 1

w2

]
. (3.49)

One such actuator shape function is plotted in Fig. 3.8 for w = 0.1. We normalise the

smoothed functions d(x) so that each actuator and observer shape function has integral 1

over the interval [0, L], and so d(x) → δ(x) as w → 0.

x

Actuator (scaled for comparison)

Feedback gain from h − 1 for Benney

Feedback gain from h − 1 for simplified Benney

Feedback gain from h − 1 for WR

Feedback gain from q − 2/3 for WR

0 5 10 15 20 25 30

−0.05

0

0.05

0.1

Figure 3.8: A typical row of the matrixK, or feedback gain, obtained by the LQR algorithm,

with 5 equally spaced actuators, with shape smoothed according to (3.49) with w = 0.1, and

shown by the dotted line here. The cost parameter for (3.51) is ς = 0.1, and for the weighted-

residual equation, the same cost weighting is associated with q − 2/3 as for h− 1.

3.3.2 Proportional control

If the number of actuators is equal to the number of observers, one of the simplest methods

to choose the suction/injection profile is to link each actuator to a neighbouring observer,

setting

fm(t) = −αym(t) (3.50)

where the positive control amplitude α acts analogously to the control parameter α in Sec. 3.2.

In terms of the generalised eigenvalue problems, we simply set K = −αI . If all actuators,

and all observers, are equally spaced, the control scheme is specified entirely by α and the

displacement ξ between actuator and observer. In Sec. 3.2, we considered the continuous
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analogue of this scheme, with feedback at every point proportional to the interface height

at that point only. We found that positive α had a stabilising effect on the system dynamics

according to both long-wave models and also in the Navier–Stokes equations.

When applying the proportional control scheme (3.50) with localised observers and ac-

tuators, the eigenmodes are not sinusoidal, and so we calculate the linear stability properties

numerically by solving an eigenproblem; note that this calculation only allows for perturba-

tions with wavelength at most L. We find that increasing α has a stabilising effect on the

uniform film, and that the value of α required to obtain a linearly stable state decreases when

increasing the number of actuators M and observers P (see Fig. 3.9).

We can also investigate the effect of the displacement ξ between the observers and ac-

tuators on the linear stability of the uniform state. As discussed in Sec. 3.2.5, the uniform

state is most easily stabilised by distributed controls when ξ ≈ 2, and when R is close to R0,

this best choice for ξ is given by ξ ∼ 2R/3. However, the use of localised observers and

actuators introduces a natural lengthscale L/M , which is the distance between neighbouring

actuators or observers, and for the analysis in this section, we also have the lengthscale L of

the imposed periodicity. We can numerically calculate the effect of the displacement ξ on

the linear stability of the uniform film, subject to the control scheme (3.50), by solving an

eigenvalue problem for each ξ and α. Fig. 3.9 shows the stability boundaries in α-ξ space

for M = P = 3, 5, 7, 9. We find that a stable state can be obtained at the smallest α when

ξ ≈ 2, which is comparable to the results of the calculations for distributed controls and

observations shown in Fig. 3.7, despite the additional lengthscales present in the system with

localised observers and controls. The magnitude of α required to stabilise the uniform state

generally decreases as M = P is increased, but even for just three actuators, we can stabilise

the uniform film state by choosing a sufficiently large α with ξ ≈ 3.

3.3.3 Linear-quadratic regulator (LQR) with full observations

The control scheme described in the previous subsection only allows each actuator to com-

municate with a single observer. We should be able to obtain better control by allowing data

from all observers to be combined before determining the control amplitudes; we will still

consider linear control, but allow all entries of the M × P matrix K to be non-zero. This

more general scheme can also encompass situations where M �= P .

The statement that the full system state can be observed is a stringent constraint; for
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Figure 3.9: Stability results as the control amplitude α is varied, with a phase shift ξ between

actuator and observer. There are M equally-spaced actuators, and P = M equally-spaced

observers, each smoothed according to (3.49) with w = 0.1, and results are shown for M =
P = 3, 5, 7, 9. The largest stable region occurs for M = 9. As is the case for distributed

actuators (see Section 3.2.5 and Fig. 3.7), the best stabilisation occurs at a moderate, positive

value of ξ, so that the observers are positioned upstream relative to the actuators.

the weighted-residual model this requires simultaneous information regarding h(x, t) and

q(x, t), and in the Navier–Stokes system, the full system state includes two components of

the velocity field along with the interface height. Notwithstanding the difficulties of obtain-

ing full observations, if we are somehow able to observe the full system state, a variety of

algorithms from control theory can be used to compute the controls. Here we choose to use

the linear-quadratic regulator (LQR) algorithm [234] (see Appendix A.2 for a description

of the algorithm), which determines K so as to minimise a cost functional associated with

control amplitudes and the deviation of the system from the flat state.

We use the following cost functional, in terms of our variables,

κ =

∫ ∞

0

∫ L

0

{
ς(h− 1)2 + (1− ς)F 2

}
dx dt. (3.51)

For a given physical system, the control scheme is a function of the single parameter ς ∈
(0, 1). The choice of K and the resulting system eigenvalues are dependent on ς , but a stable

system should be obtained for any 0 < ς < 1. Row m of the matrix K determines the

amplitude of actuator m:

fm(t) =
N∑

n=1

Kmn(hn(t)− 1), (3.52)

where hn(t) is the value of h at the position xn.

Fig. 3.8 shows one such row, or feedback gain, computed using the LQR algorithm,
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as implemented using the MATLAB LQR function, for the Benney and weighted-residual

equations. The LQR algorithm gives very smooth control input functions for the Benney

equation. The largest part of the input function is localised slightly upstream of the actuator

location when using the full Benney equation (3.2), or more centrally when using the sim-

plified version (3.3). We can insert the Benney controls directly into the weighted-residual

model, and in fact still obtain a stable state.

We can also use the LQR algorithm to calculate controls for the weighted-residual model,

but the controls require observations of both h and q. We also note that the control input

functions (Fig. 3.8) have relatively sharp edges near the width of the actuator. The full LQR

controls are able to stabilise the uniform state in the weighted-residual model, and for our test

case the maximum real part of any eigenvalue is −5.62×10−2. Realistically, we are unlikely

to have access to observations of both h and q, and so it would be desirable to approximate q

from our observations of h using a low order model. The simplest method is to suppose that

q = 2/3, in effect discarding the control component from q. We find that this yields a linearly

stable system, but the maximum real part of any eigenvalue is then −5.09 × 10−3, so that

convergence towards the uniform state would be very slow. We can recover the information

regarding the q controls by supposing that q = 2h3/3 (which is the leading order term in the

long-wave flux (3.2)), and so q̂ = 2ĥ. The largest growth rate is then −5.64 × 10−2, which

is comparable to the growth rate obtained when the flux q can be fully observed.

3.3.4 Dynamical observers for a finite number of observations

For the LQR methodology described above, full observations of the system state are assumed

to be available. The system is specified by the interface shape in the Benney equation, but

in the weighted-residual equations we also require full knowledge of the total downstream

flux at each streamwise location. Furthermore, for the Navier–Stokes equation we would

need to know the instantaneous velocity at every point within the fluid. Such knowledge is

unrealistic, and so we now consider the case where the only system observations available

are those of the interface height, h, at only a finite number of points within the periodic do-

main. In the previous subsection, we showed that if full observations are available, standard

algorithms, such as LQR, can be used to construct a control matrix K for the instantaneous

control scheme (3.46) so that localised actuators can be used to stabilise the uniform state.

Alternatively, if distributed actuators can be applied, the LQR algorithm can also be used to
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calculate a control scheme subject to localised observers. However, if there are restrictions

on both actuators and observers, it is not always possible to construct a control scheme based

on (3.46) so that the uniform state is linearly stable. Instead, we turn to a system of dynam-

ical observers, in which both current and historical observations are used to determine the

controls.

The principle of the approach described here is to construct an approximation of the

system state which is continually corrected based on the observations available. We focus

our effort on approximating the coefficients of those modes which are unstable in the un-

controlled system. We use the dynamic method described by [234] and applied for the KS

equation in [9], where the predictions evolve in time according to our understanding of the

linearised system behaviour in the form of its Jacobian matrix, J , and the system amplitudes,

and the predicted amplitudes are corrected according to our observations. This is in contrast

to a static observation scheme (3.46), where the controls are calculated only from the most

recent set of observations.

After transformation to Fourier space, we can describe the evolution of a small perturba-

tion h̃ in the (simplified) Benney equation (3.3) by

dh̃

dt
= J̃ h̃+ F̃ . (3.53)

In the absence of controls, the system has no preferred positions, and so the eigenvectors

of J are Fourier modes, and the transformed Jacobian matrix J̃ is diagonal. We reorder the

wavenumbers so that the unstable eigenmodes of J appear first:

dh̃

dt
= J̃ h̃+ F̃ =

(
J̃u 0

0 J̃s

)
h̃+ F̃ , (3.54)

where the subscripts u and s correspond to unstable and stable modes, respectively. We wish

to control to the state h̃ = 0.

To stabilise the zero state of this system, we would ideally leave the stable modes un-

touched, while choosing F to react to the unstable modes. This can be achieved by letting

F̃ = B̃K̃h̃u =

(
B̃u

B̃s

)
K̃h̃u, (3.55)
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so that

d

dt

(
h̃u

h̃s

)
=

(
J̃u 0

0 J̃s

)(
h̃u

h̃s

)
+

(
B̃uK̃ 0

B̃sK̃ 0

)(
h̃u

h̃s

)
=

(
J̃u + B̃uK̃ 0

B̃sK̃ J̃s

)(
h̃u

h̃s

)
. (3.56)

The matrix on the right-hand side of this eigenvalue problem is lower triangular by blocks,

and the block J̃s is diagonal. The eigenvalues and eigenvectors corresponding to J̃s are thus

unchanged by F̃ .

The remaining task is to stabilise the subsystem

dh̃u
dt

= J̃uh̃u + B̃uK̃h̃u. (3.57)

To choose the matrix K̃, we use the LQR algorithm on the subsystem (3.57), which has size

equal to the number of unstable modes, M . However, to apply these controls, we need to

approximate z = h̃u based on our observations. We can write our discrete set of observations

as y = Φ(h− 1), ỹ = Φ̃h̃ = Φ̃uh̃u + Φ̃sh̃s.

We can obtain a good approximation of z by considering a set of ordinary differential

equations:

dz

dt
= (J̃u + B̃uK̃)z + L(y − ȳ) =

(
J̃u + B̃uK̃ − LΦ̃u

)
z + Ly, ȳ = Φuz. (3.58)

Here ȳ is the expected set of observations based on our current approximation to the system,

and the L(y− ȳ) term indicates a correction based on our actual observations. Once we know

z, we can set F̃ = B̃K̃z. However, we still need to choose the matrix L in order that z will

converge rapidly to h̃u. We define an error term: ẽ = h̃u − z, and after several substitutions

we find that ẽ is governed by

dẽ

dt
= Y ẽ− LΦsh̃s, Y = J̃u − LΦ̃u. (3.59)

To obtain rapid convergence of our estimator z towards the true system state, we need the

eigenvalues of the matrix Y to have large and negative real part, and we can use the LQR

algorithm to obtain a suitable matrix L to achieve this. If the conditions on the eigenvalues of

Y are satisfied, it can be proved that the solution z to equation (3.58) converges exponentially

to the true coefficients h̃u of h as long as the initial guess is sufficiently good. Furthermore,
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if the real part of these eigenvalues is sufficiently large (in absolute value), then we can write

Y = Ỹ /ε for small ε and, by multiplying (3.59) by ε, can obtain a system of equations in the

standard singularly perturbed form [129]. This system possesses an exponentially stable fast

subsystem (the equation for z) and an exponentially stable slow subsystem (the (stabilised)

linearised equation for h), which implies that the system (3.60) below is exponentially stable.

We can rewrite the complete system in real space, to determine the behaviour of the

nonlinear initial value problem:

ht + qx = F (x, t), (3.60a)

q(x, t) =
h3

3

(
2− 2hx cot θ +

hxxx
C

)
+

8Rh6hx
15

, (3.60b)

F (x, t) = F−1B̃K̃z, (3.60c)

dz

dt
=
(
J̃u + B̃uK̃ − LΦ̃u

)
z + Ly, (3.60d)

y = Φ(h− 1), (3.60e)

where F is the Fourier transform operator. It can be seen from equations (3.60c)-(3.60e) that

the feedback control F is calculated only from those observations of the true system state h

attainable through the matrix Φ.

It is necessary to alter, and hence approximate, all of the unstable eigenmodes of the

system in order to stabilise the uniform state, and so the size of z must be equal to or greater

than the number of unstable modes. We expect to achieve better performance as the num-

ber of tracked and stabilised modes is increased. The number of actuators M need not be

equal to the number of observers P , and Fig. 3.10 shows the system eigenvalues as P is

increased for M = 5 (note that P is odd). We find that choosing P = 7 gives much faster

convergence than P = 5, but further increases in P have negligible effect on the eigenvalues.

However, nonlinear initial value simulations of the system (3.60) benefit from taking P = 9.

In Fig. 3.11, we compare nonlinear initial value calculations for M = 5, based on P = 5

and on full observations. We find, not surprisingly, that much faster convergence is obtained

with full observations.

The system (3.60) is presented for the simplified Benney equation (3.3). The analysis can

be extended to include cross flow effects present in (3.2) by left-multiplyingB by (I−∂xZF )

before computing B̃u. The Benney control scheme can be implemented in the weighted-
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Figure 3.10: Distance between current solution and uniform film state as a function of time

forM = 5 actuators, with P observers (left) and maximum real part of the eigenvalues of the

system (3.60) as a function of P (right). The actuator and observer shapes are as described

by (3.49), with w = 0.1 and ξ = 0. The initial condition is h = 1 + 0.3 cos(2πx/L) +
0.1 sin(4πx/L), with L = 30.

residual equation by simply replacing equation (3.60b) by (3.4), but we cannot be certain

that the resulting system will be linearly stable. For our test case, we find that even the

linear stability of the uniform state in the weighted-residual equations is sensitive to P , with

P = 5 stable, but P = 7 unstable. A full analysis of the approximately-controlled weighted-

residual equation is a topic for future work.

3.4 Controlling to non-uniform solutions with distributed controls

Feedback controls of the form F = −α(h−H) can also be used to drive the system towards

non-uniform states, by setting the target state H to be spatially varying. We would like

to know whether the state h = H is always reached, and whether this state is stable. Small

perturbations aboutH are always affected by the feedback controls, and so α will change the

linear stability properties of the stateH . As F = 0 when h = H , the system can only remain

in this state if h = H is an exact solution of the equations in the absence of suction. We will

discuss the system dynamics when H is not an exact solution of the governing equations in

Sec. 3.4.3. The extension of the localised actuator control scheme developed in the previous

section to stabilise a non-uniform state is a non-trivial task, as discussed in Sec. 3.4.4, and is

left for future work.
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Figure 3.11: Semi-log plot of the distance between the current and flat states (left) and

amplitudes of controls as a function of time (right), for M = 5. For the upper row of figures,

we use P = 5 observations, while for the lower row, we use full knowledge of the interface

height h.

3.4.1 Travelling waves

The long-wave systems support non-uniform travelling wave solutions, of the form h =

H(x − Ut), where U is the propagation speed. Travelling waves undergo bifurcations (see

e.g. [165]), and may be stable or unstable in the corresponding moving frame. It is im-

portant to note that the shapes and bifurcation structure of travelling waves differ between

the models. If the target state H is an exact travelling wave solution to the equations in the

absence of suction, then the state H is also a travelling wave solution to the same equations

with F = −α[h−H(ζ)], and thus the application of controls affects the stability but not the

shape or speed of the targeted travelling wave.

Fig. 3.12(a) shows an unstable travelling wave solution to the Benney equation. For

simplicity, we limit perturbations to those periodic with the same spatial period as the trav-

elling wave. In order to compute the stability of travelling waves, we transform to the frame



3.4 Controlling to non-uniform solutions with distributed controls 120

moving at speed U , and then identify x with ζ . For the Benney equation, the generalised

eigenvalue problem (3.41) becomes

λĥ = {U∂ζ − ∂ζZh − [I − ∂ζZF ]α} ĥ. (3.61)

We note that if ZF = 0, which is the case for the simplified Benney equation (3.3), then

the eigenvalues λ are shifted by −α, and the eigenvectors of the system are unchanged from

those in the absence of controls. However, if we are using the standard Benney equation

(3.2) or the weighted-residual system, the effect of α on the eigenvalues is more complicated

than a simple shift, and we solve the eigenvalue problem numerically to determine the ef-

fect of α on the linear stability properties of the non-uniform travelling waves. Fig. 3.12(b)
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Figure 3.12: (a) A travelling wave solution to the Benney equation, for R = 2, θ = π/4,

C = 0.05, U = 2.82. (b) The real part of the seven complex eigenvalues with largest real

part, as α is increased. Real eigenvalues are shown by red dashed lines, while black solid

lines indicate the real part of complex conjugate pairs. Neutral stability occurs at α = 0.0434.

(c) Results from nonlinear initial value calculations, starting from close to a uniform film,

controlling towards the solution shown in (a), for α = 0, α = 0.05, α = 0.1, α = 0.15.

Convergence to H is only achieved in the two latter cases.

shows the real part of the seven most unstable eigenmodes as a function of α when consid-

ering the linear stability of the travelling wave shown in Fig. 3.12(a). When α = 0, this

travelling wave is unstable, with one eigenmode with a positive real eigenvalue. There are

two eigenmodes with eigenvalue zero; one corresponds to varying the mean film thickness,
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and the other to translational displacement of the travelling wave. The real part of the most

unstable eigenvalue decreases with α, until it collides with another eigenvalue while still

in the right half plane. These two eigenvalues then form a complex conjugate pair, which

eventually crosses the imaginary axis with a finite imaginary part, stabilising the system

for α > 0.0434. This stabilisation occurs via a Hopf bifurcation, and so we would expect

to observe small-amplitude limit cycles for α just below the critical value. Linear stability

alone does not mean that the travelling wave is necessarily an attractor when starting from

the uniform state, and indeed initial value calculations starting from the uniform film state,

as plotted in Fig. 3.12(c), do not reach the desired travelling wave when α = 0.05. How-

ever, the system successfully converges to the desired travelling wave when α = 0.1, and

converges more rapidly when α = 0.15. We note that even when the system is converging to

the travelling wave, the solution norms show evidence of decaying oscillations.

3.4.2 Non-uniform steady states

We do not know of any non-uniform steady states to the Benney, weighted-residual or

Navier–Stokes equations for flow down a planar, unpatterned wall in the absence of suc-

tion; instead structures are swept downstream by the underlying flow. However, as discussed

in [206], the application of steady non-zero suction gives rise to non-uniform steady states,

with their own bifurcation structure and stability properties. Moreover, we can often choose

the applied steady suction in order to make a given interface shape into a steady solution of

the equations.

In order to include both steady suction and feedback, we use an extension of the controls:

F = −α[h(x, t)−H(x)] + S(x). (3.62)

Here α is the control parameter, and S(x) is the steady component of F that we are free to

specify. If α = 0, S(x) must have zero mean to prevent growth in fluid mass, and thus to

allow steady solutions.

We choose the following non-uniform steady state as the target state for our calculations:

H(x) = 1 + 0.3 cos

(
2π

L

)
+ 0.2 sin

(
4π

L

)
+ 0.2 sin

(
6π

L

)
, L = 30, (3.63)

shown in Fig. 3.13, and set R = 5, C = 0.05, θ = π/4. For these parameters, the uniform
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Figure 3.13: Steady flux q and suction S for the steady state (3.63). The solid and dashed

lines correspond to Benney and weighted-residual results, respectively.

film state is unstable. The state h = H is not a steady solution of the equations when S = 0,

but we can calculate S(x) to make it so.

For h = H to be a steady solution of the Benney equation, we have

F = S = qx (3.64)

and

q =
H3

3

(
2− 2Hx cot θ +

Hxxx

C

)
R

(
8H6Hx

15
− 2H4F

3

)
. (3.65)

We can rearrange these two equations to obtain a single equation for S = F :

S +

(
2RH4S

3

)
x

=

[
H3

3

(
2− 2Hx cot θ +

Hxxx

C

)
+

8RH6Hx

15

]
x

, (3.66)

subject to periodic boundary conditions on S(x). The right hand side of (3.66) is known, and

the left hand side is linear in S(x). There is therefore a unique solution for S(x), givenH(x),

in the Benney model, and the equation has a solution for each smooth, non-zero H . We note

that the task of finding a suction profile to enable a particular steady solution is related to

inverse topography problems, in which the bottom profile is computed from observations of

the interface height [98] or surface velocity [99].

Perhaps unsurprisingly, the linearity with respect to S obtained in (3.66) does not apply
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in the weighted-residual model. Instead we must solve

F = S = qx (3.67)

and

q =
H3

3

(
2− 2Hx cot θ +

Hxxx

C

)
+R

(
18q2Hx

35
− 34Hqqx

35
+
HqF

5

)
, (3.68)

again subject to periodic boundary conditions on S and q. We can use F = qx to rewrite the

second equation as an equation for q alone:

q =
H3

3

(
2− 2Hx cot θ +

Hxxx

C

)
+R

(
18q2Hx

35
− 27Hqqx

35

)
, (3.69)

but this is nonlinear in the unknown q, and so we cannot guarantee existence or uniqueness of

solutions. However, solutions should still exist whenH is close to 1, and for the non-uniform

state (3.63), we obtain the solution shown in Fig. 3.13.

With the appropriate S for the corresponding model, as shown in Fig. 3.13, numerical

solutions of the discretised eigenvalue problems described in Sec. 3.2.6 show that the steady

state (3.63) is stable for α > 1.32 in the Benney model, and α > 1.39 in the weighted-

residual model. In both cases, the exchange of stability occurs via a Hopf bifurcation, so that

below the critical value of α, we would again expect to observe time-periodic limit cycles.

A second mechanism for exchange of stability involves real eigenvalues passing through

zero. In Fig. 3.14, we choose a steady flux S(x) which is known [206] to correspond to two

solutions H(x) when α = 0, one of which (H1) is stable, the other (H2) is unstable with one

positive real eigenvalue, and show the results of controlling towards the latter, unstable state,

H2. Each steady state at α = 0 gives rise to a solution branch for α > 0. The target state H2

is always a solution, and is stable for α > 1.92. For α < 1.92, H2 has a single eigenvalue

with positive real part, and this eigenvalue is exactly zero at α = 1.92. The exchange of

stability via a real eigenvalue passing through zero corresponds to a transcritical bifurcation,

and implies the local existence of a second solution branch, which here is the branch that

connects back to H1 at α = 0. The second branch diverges as α increases beyond 1.92, here

by the minimum film height tending to zero.
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Figure 3.14: Illustration of a transcritical bifurcation that occurs when controlling to an

unstable steady state, that has just one positive eigenvalue. Exchange of stability occurs

through a transcritical bifurcation at α = 1.92, necessitating the existence of another solution

branch, which connects to a stable steady solution for the same S at α = 0. The second

solution branch only persists slightly beyond the transcritical bifurcation, diverging through

the minimum layer height vanishing at a finite value of α. The parameters here are R = 0,

C = 0.05, θ = π/4, S = 0.7 cos(2πx/10), which matches the bifurcation structure for

α = 0 shown in Fig. 3 of [206].

3.4.3 Controlling towards non-solutions

In the previous subsection, we required that the target state H is an exact solution of the

equations, so that the system will remain at h = H if it ever reaches it, and the main ques-

tions surround linear stability, which can be directly modified by linear feedback controls.

However, in practice, the target state is highly unlikely to be an exact solution, due to dis-

cretisation error, imperfectly known parameters, or, more interestingly for our purposes,

discrepancies which arise due to calculating travelling waves or the steady flux S according

to a low-order model which only approximates the true system. We now investigate robust-

ness to model choice by analysing the behaviour of the system when feedback controls are

applied towards a state which is not a solution to the governing equations, and so can never

be more than transiently achieved.

We suppose that the system reaches an equilibrium state H∗, which will depend on the

target state H , the feedback control strength α, any patterning imposed on the system via S,

and the parameters of the uncontrolled system. We usually have a nonlinear system to solve

for H∗, which need not have unique solutions. In the Benney equation, the steady state H∗
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Figure 3.15: Steady solutions to the Benney equation and weighted-residual equations,

controlled towards h = H (shown in bold) using the control scheme (3.62), for α =
0, 0.125, 0.25, 0.5, 1, 2, and S = 0. Here R = 5, C = 0.05 and θ = π/4. Dashed lines

indicate unstable solutions.

must satisfy

F = −α[H∗ −H] + S, F = qx (3.70)

and

q =
H∗3

3

(
2− 2H∗

x cot θ +
H∗

xxx

C

)
+R

(
8H∗6H∗

x

15
− 2H∗4F

3

)
. (3.71)

These equations are nonlinear in H∗, and can have zero, one, or more solutions. Fig. 3.15

shows steady solutions to the nonlinear Benney system (3.70)-(3.71), and also the corre-

sponding weighted-residual system, for the case S = 0, withH given by the large-amplitude,

non-uniform state (3.63). We find that for both models, the numerical solutions for H∗ tend

towards H as α increases, and our linear stability calculations confirm that the states H∗ are

stable at large α. However, the value of α at which steady states become stable, and also the

extent to which the steady states deviate from H at a given α, are dependent on the choice

of model.

The linearity of the control scheme means that suction can be interpreted as feedback

controls towards the equilibrium state H∗, which is itself dependent on α and the original
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target state H . We define S∗ = −α(H∗ −H) + S, so that for general h, we can write

F = −α(h−H) + S = −α(h−H∗) + S∗, (3.72)

As a result, the system is indistinguishable from controlling to the state H∗ with feedback

control parameter α and steady suction component S∗.

For large α, we can find a simple asymptotic solution for the steady state H∗. If the

system tends towards a bounded steady state as α increases, then F must remain bounded,

and so the interface shape H∗ must tend towards H . Also, F tends towards S0(x), which

is defined to be the steady flux required to make the desired state H a steady solution of

the equations. Thus, without regard to the model details, but assuming only that a bounded

steady state H∗ exists for large α, we find that this state behaves as

H∗ = H +
S − S0

α
+O

(
1

α2

)
. (3.73)

The function S0, and subsequent terms in the expansion, will depend on the details of the

model, but in general we can move the equilibrium state H∗ closer to the desired state H

by increasing α. In Fig. 3.14, we show a system where there are two steady states for the

same parameters, and controls are applied towards one of these states. However, one of the

solution branches disappears at a finite α, so that for sufficiently large α, the only steady

state remaining is the one described by (3.73). More generally, branch divergence means

that unwanted solution branches can be eliminated by increasing the control amplitude.

3.4.4 Control towards non-uniform states with point actuators

In Sec. 3.3 we considered control schemes based on localised observers and actuators that

remain fixed in the laboratory frame, and showed that these schemes can be used to stabilise

the uniform film state. We then showed in Sec. 3.4 that distributed control schemes can

be used to stabilise non-uniform travelling waves, and to create and stabilise non-uniform

steady states. However, the extension of the point-actuator control schemes to non-uniform

travelling waves and non-uniform steady states faces significant difficulties.

Travelling waves are steady with respect to a moving coordinate ζ = x − Ut, and can

be written as h = H(ζ). However, if the observers and actuators are fixed in the labora-

tory frame, then these move relative to the travelling wave to be controlled. To calculate
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linear stability, we first transform to the moving frame, so that the base state h = H(ζ) is

a steady solution of the controlled equations. However, the evolution of small perturbations

is subject to the spatial structure of the control scheme, which in this moving frame is also

time-dependent. If the control scheme is spatially periodic in the laboratory frame, then it

is both spatially and temporally periodic in the travelling frame, and we must use Floquet

multipliers with respect to time to obtain eigenvectors. For a general control scheme, this

requires the computation of eigenfunctions that are explicitly dependent on both space and

time within periodic boundary conditions, which is left for future work.

Non-uniform steady interface shapes H(x) require a non-zero suction profile S0(x) in

order to be steady solutions of the governing equations. However, if suction must be deliv-

ered through a linear combination of M localised actuator shapes, it is very unlikely that the

exact profile S0(x) can be achieved. Thus we will no longer obtain the result that h→ H(x)

when strong controls are applied. It is easy to imagine situations where the interface shape

appears to be close to the desired state when viewed through localised observers, while di-

verging significantly at other positions, and so we leave the analysis of this system to future

work.

3.5 Discussion

In this chapter, we went one step higher in the hierarchy of models for thin films flowing

down inclined planes by analysing the effect of feedback controls on the dynamics of long-

wave models derived with the Benney and weighted-residual methodologies. The controls

were applied via injection and suction of fluid through the planar wall, with the required

injection/suction profile determined in response to observations of the height of the air-fluid

interface.

The simplest control scheme we considered was to suppose that the suction profile is

applied everywhere in the planar wall and is locally proportional to the deviation of the

interface profile from the desired state, so that fluid is injected where the film is particularly

thin, and removed from thicker regions. We used linear stability analysis to show that this

simple control scheme, governed only by the constant of proportionality α, has a stabilising

effect on the uniform film state for positive α in both Benney and weighted-residual models,

and also in the Navier–Stokes equations. We calculated the critical value of α needed to

stabilise the uniform state to perturbations of all wavelengths, and showed that the control
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scheme can significantly increase the critical Reynolds number for the onset of instability.

In a more realistic scenario, injection/suction can only be delivered via a small number

of localised actuators, corresponding for example to slots in the planar wall. Likewise, ob-

servations of the full state of the solution might not always be available. We considered this

case by using M point actuated controls and also a finite number of observations of the in-

terface height, P . The control system requiring the least amount of communication between

actuators and observers occurs when each actuator is connected to only one observer, and the

applied actuation is proportional to the deviation of the observation from the desired value.

For equally spaced actuators, our numerical calculations show that this singly-connected

control scheme has a stabilising effect on the uniform film state in both long-wave models.

The uniform state becomes more stable as the number of observers and actuators is increased.

We investigated the effect of displacing the observer relative to its linked actuator, and found

that the observer should ideally be positioned slightly upstream of the actuator to obtain the

best results. Displacement between observers and actuators can also be incorporated in the

fully distributed case, and we again find that the most efficient stabilisation occurs when the

observer is slightly upstream of the actuator.

In principle, we should be able to obtain better system performance by using all available

observations to compute the feedback controls. This corresponds to the same methodology

used for the Kuramoto-Sivashinsky equation in Chapter 2. The use of point actuators means

that the system is no longer translationally invariant, and so the linear stability of the Navier–

Stokes equations can no longer be studied by a normal mode analysis. Therefore, we derived

the controls for the Benney equation and used the weighted-residuals model as a test case. In

the case when observations of the entire interface are available, we used the linear quadratic

regulator (LQR) algorithm to find controls that minimise a cost functional defined in terms

of the deviation of the film from the flat state and the actuator amplitudes from zero, rather

than prescribing the desired eigenvalues of our system. We found that controls calculated

using the LQR algorithm for the Benney equation were able to stabilise the uniform state in

both the Benney and weighted-residual systems.

For the case where only a small number of observations are available, controls devel-

oped under the assumption of full observations can still be implemented by using dynamic

observers, and we exploited this strategy to control the Benney system. In this scheme,

the Benney system is augmented by a system of ordinary differential equations to create an
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evolving approximation of the magnitudes of the unstable eigenmodes, which evolves ac-

cording to our understanding of the underlying system, with corrections due to the available

observations. Our stability and initial value calculations confirm that this approach does

indeed stabilise the uniform state in the Benney system. For our test case, we found that

increasing the number of observations above the number of unstable modes initially yields

a significant increase in the overall convergence rate, but further increases have negligible

effect.

To test the robustness of the dynamical observer scheme in a proxy physical setting, we

inserted the Benney control scheme into the weighted-residual equations. We found that the

uniform state was sometimes stable, but this depended sensitively and non-monotonically on

the number of observations used to calculate the controls. The eigenvalues of the Benney

and weighted-residual equations behave differently, and so we might expect that the dynamic

approximations converge poorly to the true state. However, at least for stabilising the uni-

form state, we have the option of using the singly-connected control scheme with discrete

actuators and observers, which behaves similarly in both long-wave models, and so depends

relatively weakly on model details.

The thin-film systems can support non-uniform travelling waves, which propagate down

the slope at constant speed. These may be stable or unstable; and we found that the locally

proportional (distributed) controls can be used to stabilise unstable travelling waves. The

total magnitude of the imposed suction will vanish as the target state is approached if it is

an exact solution of the equations, so controls can in principle be used to physically verify

the shape of unstable states. If a steady suction profile is applied, the system can support

non-uniform steady states [206]. These steady states have their own bifurcation structure,

can be stable or unstable, and have a more complicated internal flow than that for a film of

uniform thickness. If the suction profile corresponding to a desired steady interface shape

is known exactly, we showed that the feedback control scheme can be used to stabilise the

steady state in a similar manner to that for stabilising travelling waves.

The shape and speed of travelling waves, and the suction profile corresponding to steady

states, differs between the two long-wave models here, and likely also the Navier–Stokes

equations. It is therefore unreasonable to assume that the target state is an exact solution of

the equations. However, we find that if distributed controls are applied with large positive α

towards an arbitrary state that is not an exact solution of the equations, the system will both
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move towards that state and become stable as α is increased, irrespective of the model used.

It is somehow unsurprising that simple control schemes can be used to linearly stabilise

the uniform state in the Benney equation, as the linear operator is similar to that for the

Kuramoto-Sivashinsky (KS) equation studied in Chapter 2. However, the results for the

KS equation provide no guarantee on the nonlinear behaviour, or on system dynamics away

from long-wave limits, and so our nonlinear initial value calculations and linear stability

calculations in the Navier–Stokes equations provide meaningful tests on the use of feedback

control for thin film flows.



131

Chapter 4

Controlling roughening processes in the

stochastic KS equation

In this chapter, we generalise the methodology derived in Chapter 2 for the deterministic KS

equation to the stochastic KS equation, which models various physical phenomena, such as

surface erosion by ion sputtering processes, fluid flow in porous media, fracture dynamics

and thin film dynamics under thermal fluctuations.

We use a splitting method in which the original equation is split into a linear stochastic

and a nonlinear deterministic equation so that we can apply linear feedback control methods

to first stabilise the zero solution of the deterministic part and second to control the roughness

of the stochastic linear equation.

We will consider both periodic and point actuated controls. In the latter case, this leads

to a matrix problem, which we solve by developing an algorithm that applies basic linear

algebra lemmas.

The main results of this chapter are available in [91] and the algorithm in Section 4.3.1

will be presented in [92].
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4.1 The sKS equation

We consider the stochastic Kuramoto-Sivashinsky (sKS) equation:

ut = −νuxxxx − uxx − uux + σξ(x, t), (4.1)

normalised to 2π domains (x ∈ [0, 2π]) with ν = (2π/L)2 > 0, where L is the size of

the system, with periodic boundary conditions and initial condition u(x, 0) = φ(x). ξ(x, t)

denotes Gaussian mean-zero spatiotemporal noise, which is taken to be white in time, and

whose strength is controlled by the parameter σ:

〈ξ(x, t)ξ(x′, t′)〉 = G(x− x′)δ(t− t′), (4.2)

where G(x−x′) represents its spatial correlation function. We can, in principle, consider the

control problem for SPDEs of the form (4.1) driven by noise that is coloured in both space

and time. Such a noise can be described using a linear stochastic PDE (Ornstein-Uhlenbeck

process) [181].

The noise term can be expressed in terms of its Fourier components as

ξ(x, t) =
∞∑

k=−∞
qk Ẇk(t) e

ikx, (4.3)

where Ẇk(t) is a Gaussian white noise in time and the coefficients qk are the eigenfunctions

of the covariance operator of the noise. For example, if G(x − x′) = δ(x − x′) (which

corresponds to space-time white noise), we have qk = 1. For the noise to be real-valued, we

require that the coefficients qk verify q−k = qk.

Proofs of existence and uniqueness of solutions to Eq. (4.1) under some appropriate

assumptions on G can be found in [62, 72], for example. In [72], the author also defines

the associated Markov semigroup in order to derive sufficient conditions for existence and

uniqueness of invariant measures, and presents regularity results on the solutions. Duan

and Ervin [62] prove existence and uniqueness of solutions in a similar manner, but by first

proving local existence and showing that the solution remains bounded for all T > 0; the

authors also establish a priori estimates for the solution. Yang [231] obtained a pull-back

random attractor for the sKS equation and proved that the Hausdorff dimension of a random
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attractor for the sKS equation is finite. Furthermore, the author extended these results for the

generalisation of the sKS equation that includes the nonlocal term that models the presence

of an electric field in [232].

We note that an alternative version of Eq. (4.1) is given by making the change of variable

u = −hx which gives rise to:

ht = −νhxxxx − hxx +
1

2
(hx)

2 + ση(x, t), (4.4)

where ξ(x, t) = ∂xη(x, t). The main effect of this transformation is to change the dynam-

ics of the mass of the solution u0(t) = 1
2π

∫ 2π

0
u(x, t) dx. As a result of this, while both

equations have received a lot attention over the last decades, Eq. (4.1) is used in mass-

conserved systems such as dynamics of thin liquid films [24, 60, 96, 120, 179], and Eq. (4.4)

is used to model surface growth processes such as surface erosion by ion sputtering pro-

cesses [31, 32, 55, 56, 135, 151, 186].

Our focus will be on the control of the second moment of the solutions to the sKS equa-

tion, i.e., its surface roughness, which is given by

r(t) =

√
1

2π

∫ 2π

0

[u(x, t)− u0(t)]
2 dx. (4.5)

We note that the solution u(x, t) can be written in terms of its Fourier representation:

u(x, t) =
∑
k∈Z

ûk(t)e
ikx, (4.6)

where ûk(t) are the Fourier components of u and therefore, by making use of Parseval’s

identity, we can compute the expected value of r(t)2 as follows:

〈
r(t)2

〉
=
∑
k∈Z

〈
(ûk(t))

2〉− 〈(u0(t))2〉 =:
∑
k∈Z

S(k, t)−
〈
(u0(t))

2〉 , (4.7)

where we have defined the power spectral density S(k, t) =
〈
(ûk(t))

2〉
. Therefore, if we

can control the Fourier coefficients of the solution u, we can control the surface roughness

to evolve to a desired target value rd, i.e. limt→∞
√
〈r(t)2〉 = rd.

The methodology we propose to control the roughness of the sKS solution consists of

two main steps. First, using a standard trick from the theory of semilinear parabolic SPDEs,
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see e.g. [72], we define w to be the solution of the linear sKS equation:

wt = −νwxxxx − wxx + σξ(x, t), (4.8)

and write the full solution u of Eq. (4.1) as u = w + v, so that v satisfies

vt = −νvxxxx − vxx − vvx − (vw)x − wwx. (4.9)

The important point here is to note that the above equation (4.9) is now a deterministic PDE

with random coefficients and so we are in a position where we can apply the methodology

for nonlinear deterministic PDEs we have presented for the gKS equation in Chapter 2 to

stabilise its zero solution - something possible as long asw and its first derivative are bounded

in an appropriate sense (see Section 4.2.2 below for a justification of this point). We therefore

introduce the controlled equation for v:

vt = −νvxxxx − vxx − vvx − (vw)x − wwx +

l1∑
n=−l1

bdetn (x)fdet
n (t), (4.10)

where m1 = 1+2l1 (with l1 = [1/
√
ν]) is the number of controls, and bdetn (x) are the control

actuator functions.

Once the zero solution of the equation for v has been stabilised, the second step is to con-

trol the roughness of the solution by applying appropriate controls on the linear SPDE (4.8)

for w so that the solution is driven towards the desired surface roughness rd. We will now

apply this methodology to the sKS equation, Eq. (4.1) or (4.4), by choosing two different

types of controls, namely periodic controls, when the controls are applied throughout the

whole domain and point actuated ones, when the control force is applied in a finite number

of positions in the domain.

4.2 Periodic controls

We start by deriving the controls in the case when the control actuator functions are dis-

tributed throughout the domain and periodic. This is the most common type of controls seen

in the literature. We note that, for convenience, we will now be using the Fourier transform of

the solution in our analysis . However, the same results are obtained if we use the solution’s
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Fourier series representation.

4.2.1 Derivation of the controlled equation

From Eq. (4.10), we write

v(x, t) =
∑
k∈Z

v̂ke
ikx, (4.11)

and take inner product with the basis functions eikx to obtain:

˙̂vk =
(
−νk4 + k2

)
v̂k + gk(v, w) +

l1∑
n=−l1

bdetnk f
det
n (t), (4.12)

with k ∈ Z, and where dot denotes time derivative. We have introduced bdetnk =
∫ 2π

0
bn(x)e

ikxdx

and gk are functions of the coefficients of v and w - see Appendices B.1 and B.3 for their

expressions for the Burgers and KPZ nonlinearities, respectively.

Next we define the following vectors and matrices. We denote zv = [zs− zvun z
v
s+]

T ,

where zvun = [v−l1 · · · v0 · · · vl1 ]T are the coefficients of the (slow) unstable modes, and

zvs− = [· · · v−l1−1]
T

and zvs+ = [vl1+1 · · · ]T are the coefficients of the (fast) stable modes;

we also take G = [· · · gk · · · ]T , F det =
[
fdet
−l1

(t) · · · fdet
l1

(t)
]T

,

A =

⎡⎢⎢⎣
As− 0 0

0 Au 0

0 0 As+

⎤⎥⎥⎦ and Bdet =

⎡⎢⎢⎣
Bdet

s−
Bdet

u

Bdet
s+

⎤⎥⎥⎦ ,
where

As− = diag(· · · ,−(l1 + 1)4ν + (l1 + 1)2, ),

Au = diag(0,−(−l1)4ν + (−l1)2, · · · ,−l41ν + l21),

As+ = diag(−(l1 + 1)4ν + (l1 + 1)2, · · · ),

and

Bdet
s− =

⎡⎢⎢⎣
... · · · ...

bdet−l1(−l1−2) · · · bdet,sl1(−l1−2)

bdet−l1(−l1−1) · · · bdet,cl1(−l1−1)

⎤⎥⎥⎦ ,
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Bdet
u =

⎡⎢⎢⎣
bdet−l1−l1

· · · bdetl1−l1
... · · · ...

bdetl1l1
· · · bdetl1l1

⎤⎥⎥⎦ , Bdet
s+ =

⎡⎢⎢⎣
bdet−l1(l1+1) · · · bdetl1(l1+1)

bdet−l1(l1+2) · · · bdetl1(l1+1)
... · · · ...

⎤⎥⎥⎦ .
With these definitions we rewrite the infinite system of ODEs (4.12) as:

żv = Azv +G+BdetF det. (4.13)

The key point now is to note that if there exists a matrix Kdet such that all the eigenvalues of

the matrix Au +Bdet
u Kdet have negative real part, then the controls given by

fdet
n (t) = Kdet

n zvun = Kdet
n (zuun − zwun), (4.14)

where Kdet
n is the n−th row of Kdet, stabilise the zero solution of Eq. (4.10). The proof of

this fact follows the same type of Lyapunov argument as for the deterministic KS equation

and is justified as long as we have nice bounds on w, something we will demonstrate below.

It should be emphasised that in Eq. (4.13) for v we have suppressed the influence of the

nonlinearity on the SPDE without assuming knowledge of its value at all times and without

changing the fundamental dynamics, in contrast to previous work [106, 110].

The next step is to control the stochastic linear equation for w such that the value of the

second moment evolves towards the desired target. To this end, we first write w as

w(x, t) =
∑
k∈Z

ŵk(t)e
ikx, (4.15)

and take the inner product with the basis functions to obtain an infinite system of ODEs

verified by the coefficients

˙̂w0 = ξ0,

˙̂wk = (−νk4 + k2)ŵk + ξk,
(4.16)

where k ∈ Z − {0}, ξ0 =
∫ 2π

0
ξ(x, t) dx, and ξk =

∫ 2π

0
ξ(x, t)eikx dx. The solution to this

system is

ŵ0(t) = ŵ0(0) +
∫ t

0
ξ0(t) dt,

ŵk(t) = e(−νk4+k2)tŵk(0) +
∫ t

0
e(−νk4+k2)(t−s)ξk(s) ds,

(4.17)
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and it easily follows that

〈
ŵk(t)

2
〉
= − σ2

2(−νk4 + k2)
(1− e−2(νk4−k2)t), k ∈ Z. (4.18)

We observe that in this case the expected surface roughness only depends on the eigenvalues

of the linear operator L = −ν∂4x − ∂2x; these can be controlled using feedback control to

direct the evolution towards the desired value of surface roughness rd. Hence we introduce

the controlled equation for w:

wt = −νwxxxx − wxx +

l2∑
n=−l2,n �=0

brandn (x)f rand
n (t) + σξ(x, t), (4.19)

where m2 = 2l2 is the number of controls (l2 needs to be larger than or equal to the number

of unstable modes and will be specified later) and we choose the functions brandn (x) = einx.

We also notice that we do not need to control the eigenvalue corresponding to the constant

eigenfunction (k = 0), since it does not contribute to the surface roughness.

By truncating the system intoN modes (withN sufficiently large so that the contribution

from higher modes can be neglected) and taking inner products with the basis functions, we

arrive at

˙̂w0 = ξ0
˙̂wk = (−νk4 + k2)ŵk + f rand

k + ξk, k = −l2, . . . , l2,
˙̂wk = (−νk4 + k2)ŵk + ξk, k = −N

2
, . . . ,−l2 − 1, l2 + 1, . . . , N

2
.

(4.20)

Remark 9. An important point to note is that because of the choice of periodic functions

for brandn , the system (4.20) is decoupled. In fact, with such choice of actuator functions, the

matrix Brand
u is the identity matrix, and Brand

s± are zero matrices. As will be shown in Section

4.3, this is not the case for point actuated controls.

The surface roughness for m2 = 2l2 controls is therefore given by

〈
r2(t)

〉
=

N/2∑
k=−N/2,k �=0

〈
û2k(t)

〉
=

l2∑
k=−l2,k �=0

〈
û2k(t)

〉
+

−l2−1∑
k=−N/2

〈
û2k(t)

〉
+

N/2∑
k=l2+1

〈
û2k(t)

〉
.
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If we denote the desired surface roughness as r2d = limt→∞ 〈r2(t)〉, we obtain

r2d =

l2∑
k=−l2,k �=0

−σ
2|qk|2
2λk

+

−l2−1∑
k=−N/2

− σ2|qk|2
2(−νk4 + k2)

+

N/2∑
k=l2+1

− σ2|qk|2
2(−νk4 + k2)

= −σ2

2

l2∑
k=−l2,k �=0

|qk|2
λk

+ σ2

N/2∑
k=l2+1

− |qk|2
−νk4 + k2︸ ︷︷ ︸

〈r2f〉

,

where we have used the fact that the coefficients qk are real with q−k = qk. The chosen

eigenvalues for the controlled modes are λk, and we take them to be λk = λ for all k to

arrive at

λ = −σ
2
∑l2

k=1 |qk|2
〈r2d〉 −

〈
r2f
〉 . (4.21)

To control the surface roughness we therefore define the controls f rand
k such that the new

eigenvalues verify the following relation:

f rand
k =

(
λ+ νk4 − k2

)
ŵk. (4.22)

Finally, putting equations. (4.10) and (4.19) together, yields the controlled equation for the

full solution u:

ut = −νuxxxx−uxx−uux+ ξ(x, t)+

l1∑
n=−l1

bdetn (x)fdet
n (t)+

l2∑
n=−l2

brandn (x)f rand
n (t). (4.23)

4.2.2 Proof of applicability of the control methodology

The aim of this subsection is to prove that the solution v can indeed be controlled to zero

even though Eq. (4.10) has random coefficients, i.e., the terms (vw)x and wwx. We will

show that by using a similar argument as used for the proof of existence and uniqueness of

solutions of the sKS equation (see [72]), we can apply a Lyapunov-type argument as in the

deterministic KS equation.

We use (4.22) to write the solution of Eq. (4.19) as

w(t) = eAtw(x, 0) + σ

∫ t

0

eA(t−s)dξ(s),
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where A = −(νA2 − A+ F ), A = −∂2x and F is an operator discretised as

F =

⎡⎢⎢⎣
0 0 0

0 diag(λ− νk4 + k2) 0

0 0 0

⎤⎥⎥⎦ .
We take G to be a trace class operator, so that it satisfies [72, Assumption (3.1)]. Writing

eA(t−s)ξ(s) = σ
∑
j,k∈Z

qke
−(νk4−k2+fk)(t−s) < ek, ej > βk(s)ej,

we have

E[w(t)] = eAtw(x, 0) = 0, (4.24a)

E[|w(t)− E[w(t)]|2] = σ2
∑
j,k∈Z

∫ t

0

e−2(νk4−k2+fk)(t−s)|qk|2| < ek, ej > |2,

=

l2∑
k=−l2

σ2|qk|2
λ

+
∑
|k|≥l2

σ2|qk|2
2(νk4 − k2)

= r2d, (4.24b)

where we used < ek, ej >= 0 and fk = λ + νk4 − k2. Since we are assuming that the

covariance matrix G is such that assumption (3.1) in [72] is satisfied, we have that w(t) ∈
L̇2(0, 2π), the space of mean zero L2 functions, almost surely, for any time t. This also

means [181] that there exists a continuous version of w that we shall consider from now on.

Now we define B(u, v) = uvx and b(u, v, w) =< B(u, v), w >=
∫ 2π

0
uvxw dx which

satisfy the following relations [72, 185]:

‖b(u1, u2, u3)‖L2 ≤ ‖u1‖L2‖u2,x‖L∞‖u3‖L2 ≤ c‖u1‖L2‖Au2‖L2‖u3‖L2 , (4.25a)

b(u, u, u) = 0, (4.25b)

b(u1, u2, u2) = b(u2, u2, u1) = −1

2
b(u2, u1, u2), (4.25c)

b(u1, u2, u3) = −b(u2, u1, u3)− b(u1, u3, u2). (4.25d)
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and ([72, Prop. 2.1]):

‖B(u, v)‖D(A−1) ≤ c‖Au‖L2‖v‖L2 , (4.26a)

‖B(z, v)‖D(A−1) ≤ c‖u‖L2‖Av‖L2 , (4.26b)

‖B(z, z)‖D(A−1) ≤ c‖z‖2L2 , (4.26c)

‖B(u, v)‖D(A−δ) ≤ c‖u‖
D
(
A

1
2−δ

)‖v‖
D
(
A

1
2−δ

). (4.26d)

On the other hand, we notice that the existence of the matrix Kdet implies that the operator

L such that Lv = −νvxxxx − vxx −
∑l1

n=−l1
bdetn (x)fdet

n (t) satisfies
∫ 2π

0
vLv dx ≤ −a‖v‖2L2

for some positive constant a, which in turn depends on the eigenvalues we choose for the

controlled operator. Therefore, multiplying equation (4.10) by v and integrating by parts,

yields

1

2

d

dt
‖v‖2L2 ≤ −a‖v‖2L2 −

=0︷ ︸︸ ︷
b(v, v, v)−b(v, w, v)− b(v, w, v)− b(w,w, v)

= −a‖v‖2L2 + b(w, v, v) +
1

2
b(w, v, w) ≤ −a‖v‖2L2 + c‖w‖L2‖v‖L2‖Av‖L2

+
c

2
‖w‖2L2‖Av‖L2 ≤ −

(
a− c

2
‖w‖2L2

)
‖v‖2L2 + c‖Av‖2L2 +

c

2
‖w‖4L2 , (4.27)

where we have used Young’s inequality and relations (4.25) and (4.26). The term c‖Av‖2L2

can be controlled using sufficiently strong controls and the last term in the right-hand-side is

a constant that depends on the desired surface roughness and that again can be controlled by

choosing large enough eigenvalues. Therefore, by choosing the controls such that a is large

enough, ‖v‖2L2 is a Lyapunov function for this system and the zero solution for the controlled

equation for v is stable.

4.2.3 Numerical results

We now apply the methodology presented above with periodic controls to the sKS equation

with either the Burgers nonlinearity (4.1) or the KPZ nonlinearity (4.4). For simplicity, we

consider white noise in both space and time (qk = 1).
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Figure 4.1: Squared value of the surface roughness of the solutions to the sKS equation

with Burgers nonlinearity (left) and the KPZ nonlinearity (right) for ν = 0.05, σ = 0.5 and

different values of the desired surface roughness, ranging from 1 to 10, and 20. The dashed

lines show the value of the uncontrolled roughness, and the straight dashed-line corresponds

to a guide-to-eye line with slope 0.85.

Controlling the roughening process

We solved Eqs. (4.1) and (4.4) for ν = 0.05 and σ = 0.5, controlling its solutions towards

various desired surface roughness values rd. The results are presented in Fig. 4.1. We observe

that in both cases the solution exhibits a power-law behaviour at short times of the form given

by Eq. (1.42) until the solution saturates to the desired value of roughness. It is interesting

to notice that the exponent in all cases is the same with β ≈ 0.43, independently of the

type of nonlinearity and desired surface roughness (note that the exponent in Fig. 4.1 is

≈ 0.85 = 2β, since we are plotting < r(t)2 >). This becomes even clearer if time and

surface roughness are rescaled by their saturation values, ts and rd, respectively. By noting

that rd ∼ tβs , Eq. (1.42) is rewritten as:

〈r(t)〉
rd

∼
{
xβ if x	 1,

1 if x� 1,
(4.28)

where x = t/r
1/β
d . Fig. 4.2 shows that all the different cases presented in Fig. 4.1 collapse

into a single curve which is given by the above equation with the universal value β = 0.43.

We also study the effect of changing the domain, by varying the parameter ν. Fig. 4.3

shows the numerical results obtained when we fix the target value rd and change the param-

eter ν. We observe that changing the domain does not change the growth rate (we observe
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Figure 4.2: Surface roughness rescaled by the target value rd against the rescaled time t/r
1/β
d

for all cases shown in Fig. 4.1. The dashed line corresponds to a guide-to-eye line with slope

0.43.
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Figure 4.3: Controlled roughness with same target value r2d = 20 and different values of ν -

the domain size increases as ν decreases.

the same growth exponent β ∼ 0.43) but it does slightly affect the final value of the rough-

ness; more precisely the results indicate that larger domains tend to exhibit larger values of

roughness.

Changing the shape of the solution

It is important to emphasise that in addition to controlling the roughness of the solution of

the sKS equation, we can also change its shape, something that could have ramifications in
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technological applications such as materials processing. We quantify this by considering the

surface roughness of the solution as its distance to the desired state. If ū(x) is the ultimate

desired shape of the solution, then the quantity we are trying to control now becomes

r(t) =

√
1

2π

∫ 2π

0

(u(x, t)− ū)2 dx. (4.29)

Using Parseval’s identity we compute the expected value of r(t)2:

〈
r(t)2

〉
=
∑

k∈Z,k �=0

〈
(uk(t)− ūk)

2〉 . (4.30)

To control the shape of the solution, we can therefore control the solution of equation (4.10)

for v to the desired shape rather than controlling it to zero. This in turn implies the use of

fdet
n (t) = Kdet

n (zvun − zūun) = Kdet
n (zuun − zwun − zūun). We use the steady states of the KS

equation for the chosen value of ν to define the desired shape ū. Results are shown in Fig. 4.4

for ν = 0.5, where we can see that the solution is fluctuating around the imposed shape.

4.3 Point actuated controls

We now consider controls that are point actuated and not distributed throughout the whole

domain, i.e. the functions bn(x) are now given by bn(x) = δ(x − xn), where δ(x) is the

Dirac delta function. By repeating the same procedure as with periodic controls, writing

w =
∑

k∈Z ŵke
ikz and taking the inner product with the eigenfunctions of the linear operator,

we obtain an infinite system of linear stochastic ODEs:

˙̂w0 = ξ0 +
∑m

n=1 b
0
nfn,

˙̂wk = (−νk4 + k2)ŵk ++
∑m2

n=1 b
k
nfn + ξk, k �= 0.

(4.31)

We can see that the difference between the above system and the periodic controls one given

by (4.20) is that now the system is coupled. In fact the coupling matrix is not symmetric,

and most importantly, it does not commute with its transpose. Therefore the solution does

not follow directly and we cannot easily write the second moment of the coefficients as a

function of the eigenvalues as in the previous section. To obtain the controlled equation we

thus need to apply a different approach.



4.3 Point actuated controls 144

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

u
(x

,t
)

t = 20 desired shape

r2d = 2

r2d = 10

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

u
(x

,t
)
−

ū
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Figure 4.4: Snapshots of the sKS equation solution controlled to the shape of one of the

steady states of the KS equation (left panels) and difference between current solution and

desired shape for two different desired surface roughness (right panels). Parameters are

ν = 0.5, σ = 0.5, r2d = 2 (blue) and r2d = 10 (red) with T = 100 and dt = 5× 10−3.

Let the controls F = [f1, · · · , fm] be such that F = Kŵ where ŵ is a vector containing

the Fourier coefficients of w, and the matrix K is to be determined. Since the equations are

not decoupled, we cannot multiply by w and integrate to find directly the second moment

of the coefficients. However, we can make use of results derived in [116] which provide



Chapter 4. Controlling roughening processes in the stochastic KS equation 145

simplified formulas for the first and second moments of systems analogous to (4.31). Let Ξ

be the vector Ξk = ξk and C = A+ BK where A = diag−νk4 + k2 and Bkn = bkn, so that

we can write the truncated system (4.20) as

˙̂w = Aŵ +BKŵ + Ξ = Cŵ + Ξ.

We also assume without loss of generality that m(0) = E(ŵ(0)) = 0 and P(0) = E(ŵ(0)ŵ(0)T ) =

0. Then Theorem 4 in [116] states that

m(t) = E(ŵ(t)) = 0 and P(t) = E(ŵ(t)ŵ(t)T ) = H1F
T
1 + F1H

T
1

where F1 and H1 are the (1, 1) and (1, 3) blocks of the matrix eMt where in the case of

space-time white noise, M is

M =

⎡⎢⎢⎢⎢⎢⎣
C 0 σ2

2
I 0

0 0 0 0

0 0 −CT 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

I is an appropriately sized identity matrix and the zeros stand for zero matrices of the appro-

priate size. We compute eMt and conclude that

F1 = eCt,

and

H1 =
σ2

2

[
It+ (C − CT )

t2

2
+ (C2 − CCT + (CT )2

t3

3!

]
+
σ2

2

[
(C3 − C2CT + C(CT )2 − (CT )3

t4

4!
+ · · ·

]
.

Since F1H
T
1 = (H1F

T
1 )

T and (H1F
T
1 )

T = H1F
T
1 , we have H1F

T
1 +F1H

T
1 = 2H1F

T
1 , from
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which we obtain

P(t) = σ2

(
It+ (C + CT )

t2

2
+
(
C2 + 2CCT + (CT )2

) t3
3!
+

+
(
C3 + 3C2CT + 3C(CT )2 + (CT )3

) t4
4!
+

+
(
C4 + 4C3CT + 6C2(CT )2 + 4C(CT )3 + (CT )4

) t5
5!

+ · · ·
)
. (4.32)

Remark 10. In the periodic case, the matrix C is diagonal, so CCT = CTC, and this is

exactly the same as

P(t) = σ2

∞∑
n=1

(
C + CT

)n−1 tn

n!
. (4.33)

In addition, when choosing the eigenvalues of C, we can ensure that it is invertible and

therefore C + CT = 2C is also invertible, which gives

P(t) = −σ2
(
C + CT

)−1
+ σ2e(C+CT )t, (4.34)

so as t→ ∞, P(t) → −σ2
(
C + CT

)−1 and

< r(t)2 >= tr(P(t)) →
∑

k∈Z−{0}
− σ2

2λk
, (4.35)

where λk are the chosen eigenvalues of C, and we recover the same result as before.

It is important to note that the matrix C is not normal, i.e. it does not commute with its

transpose, and the eigenvalues of C+CT do not satisfy the useful properties that allow us to

get (4.34). However, we are not interested in knowing the full matrix P(t), but only its trace

tr(P(t)) = tr

(
σ2

(
It+ (C + CT )

t2

2
+
(
C2 + 2CCT + (CT )2

) t3
3!
+

+
(
C3 + 3C2CT + 3C(CT )2 + (CT )3

) t4
4!
+

+
(
C4 + 4C3CT + 6C2(CT )2 + 4C(CT )3 + (CT )4

) t5
5!

+ · · ·
))

. (4.36)

By now making use of the linearity of the trace and its continuity to pass it inside the infinite
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sum, we get

tr(P(t)) = σ2

(
tr(I)t+ tr(C + CT )

t2

2
+ tr

(
C2 + 2CCT + (CT )2

) t3
3!
+

+ tr
(
C3 + 3C2CT + 3C(CT )2 + (CT )3

) t4
4!
+

+ tr
(
C4 + 4C3CT + 6C2(CT )2 + 4C(CT )3 + (CT )4

) t5
5!

+ · · ·
)
. (4.37)

We also note that, since tr(AB) = tr(BA), we have

tr
(
C2 + 2CCT + (CT )2

)
= tr

(
C2 + CCT + CTC + (CT )2

)
= tr(C + CT )2.

Similarly we can prove that the terms multiplied by tn

n!
are of the form tr

(
(C + CT )n−1

)
and

we finally obtain

tr(P(t)) = σ2

(
tr(I)t+ tr(C + CT )

t2

2
+ tr

(
C + CT

)2 t3
3!
+

+ tr
(
C + CT

)3 t4
4!

+ tr
(
C + CT

)4 t5
5!

+ · · ·
)
. (4.38)

We proceed by assuming that C + CT is invertible, so that we can multiply by I = (C +

CT )−1(C + CT ) and add and subtract pertinent terms to obtain

tr(P(t)) = −σ2 tr
(
C + CT

)−1
+ σ2 tr

((
C + CT

)−1
∑
n∈N

(
C + CT

)n tn
n!

)
. (4.39)

Remark 11. This does not change the proof provided in Section 4.2.2, it only changes the

formula for the covariance so that the bounds are still valid.

Remark 12. We emphasise that the following assumptions were made here:

(a) C + CT needs to be invertible.

(b) In order for the surface roughness to converge to a finite value, we require all of the

eigenvalues of C + CT to be negative, so that the exponential part disappears.
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4.3.1 Computation of the matrix K

We note in equation (4.39) that we now need to control the trace of D−1 = (C +CT )−1 and

we can do that by prescribing the eigenvalues of D. Therefore, we can control the surface

roughness by finding a matrix K such that the eigenvalues of

D = C + CT = A+BK + AT + (BK)T = 2A+BK +KTBT (4.40)

are a given set {μ1, . . . , μN}. This is a matrix problem, and even though its structure is

similar to that of the well known Sylvester equation [201],

AX +XB = C,

or the Lyapunov equation [18],

AX +XAT− = C

where in both problems we seek for the matrix X , and which have been solved before, there

is, to our knowledge, no previous work done for equation (4.40).

Since we only wish to prescribe the eigenvalues of D, rather than knowing all of its

entries, we can tackle this problem by using the information provided by the characteristic

polynomial, χD, of D. We have that

χD(t) =
N∏
i=1

(t− μi) =
N∑
k=0

(−1)k
∑

J :|J |=k

∏
j∈J

μjt
N−k, (4.41)

where J is a subset of {1, . . . , N}. Equivalently, we can express χD in terms of the sum over

all its diagonal minors, i.e.

χD =
N∑
k=0

(−1)kςkt
N−k, (4.42)

where ςk is the sum over all of the diagonal minors of size k of the matrix D = 2A+BK +

KTBT . This translates into a system of N nonlinear algebraic equations,

ςk =
∑

J :|J |=k

∏
j∈J

μj,

for m×N variables, which are the entries of the matrix K.
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We can use a nonlinear solver (e.g., MATLAB’s fsolve) to obtain the matrix K directly,

or obtain closed formulas for ςk. For the first case, given the structure of the matrix B

and the fact that the system is underdetermined, convergence is rather slow when solving

the problem directly. We overcome this problem by performing a change of variables: we

obtain the SVD decomposition of B by finding matrices X and Y such that B̃ = XBY T

and multiply equation (4.40) by XT on the left and by X on the right. We then define

K̃ = Y TKX , Ã = XTAX and D̃ = XTDX , so that we obtain the equation

D̃ = 2Ã+ B̃K̃ + K̃T B̃T . (4.43)

This is of the same form as (4.40), but where the matrix B̃ is diagonal. We find that this

accelerates the convergence of the system (for moderate values of N ) and we were able to

get satisfactory numerical results.

For the latter case, we can apply the Matrix Determinant Lemma (see Appendix A.4)

twice to obtain:

det(2A+BK +KTBT ) = det(2A+BK) det(Im +BT (2A+BK)−1KT )

= det(2A) det(Im +K(2A)−1B) det(Im +BT (2A+BK)−1KT ).

(4.44)

We now use the Woodbury Matrix Identity to expand the inverse in the third determinant

around 2A and obtain

det(2A+BK +KTBT ) = det(2A) det(Im +K(2A)−1B) det(Im +BT (2A)−1KT

− BT (2A)−1B(Im +K(2A)−1B)−1K(2A)−1KT ). (4.45)

When m = 1 this formula can be simplified to obtain

det(2A+BK +KTBT ) = det(2A)
(
(1 +K(2A)−1B)2 −K(2A)−1BK(2A)−1KT

)
.

(4.46)

Multiplying this expression out and writing it in component form, we obtain the nonlinear
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system of equations

∑
J : |J |=l

∏
j∈J

μj = 2l
∑

J : |J |=l

∏
j∈J

aj

⎛⎝1 +
∑
p∈J

bpkp
ap

+
∑
p∈J

∑
q∈J\{p}

bpkq
4apaq

(bqkp − bpkq)

⎞⎠ ,

(4.47)

for l = 1, . . . , N . Form ≥ 2 we use equation (4.45), which gives an expression for det(2A+

BK + KTBT ) in terms of determinants of m × m matrices. We consider this expression

for all the principal minors with entries in J ⊂ {1, . . . , N}, considering that the indices of

matrix multiplication inside each determinant are also from j ∈ J . Writing equation (4.45)

in component form, we notice that the second determinant is given by Δ(m,J), where

Δ(m,J) : = det(δij + η
(J)
ij )1≤i,j≤m (4.48a)

η
(J)
ij : =

∑
l∈J

kilblj
2al

(4.48b)

β
(J)
ij : =

∑
l∈J

bliblj
2al

, (4.48c)

κ
(J)
ij : =

∑
l∈J

kilkjl
2al

. (4.48d)

Using Cramer’s rule, we see that the last entry in the third determinant is given by

m∑
p,q=1

βipτpqκqj

Δ(m,J)

,

where

τ (J)pq := (adj(δij + ηij))pq . (4.49)

We therefore factorise 1
Δ(m,J)

out of the determinant, to give the expression:

det
J
(2A+BK +KtBt) = 2|J |

∏
j∈J

aj
det(γ

(m,J)
pq )

Δm−1
(m,J)

, (4.50)

where

γ
(m,J)
ij := Δ(m,J)(δij + ηji)−

m∑
p,q=1

β
(J)
ip τ

(J)
pq κ

(J)
qj . (4.51)
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We therefore arrive at the following system of nonlinear equations:

∑
J⊆[N ]
|J |=l

∏
j∈J

μj = 2l
∑
J⊆[N ]
|J |=l

((∏
j∈J

aj

)
det(γ

(m,J)
ij )

Δm−1
(m,J)

)
. (4.52)

We tested this algorithm for matrices related to the sKS equation and also for randomly

generated matrices, obtaining satisfactory results - see Appendix C. We found that this al-

gorithm gives satisfactory results, and also performs faster than solving the system directly

using MATLAB’s fsolve for small N .

4.3.2 Numerical results

We apply the methodology presented in the previous subsection with point actuated controls

to the sKS with the Burgers nonlinearity (4.1) (similar results are expected for the KPZ

nonlinearity (4.4)).
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Figure 4.5: Squared value of the surface roughness of the solutions to the sKS equation

with Burgers nonlinearity for ν = 0.04, σ = 0.5 and different values of the desired surface

roughness, ranging from 2 to 6. Left: using space time white noise; Right: using coloured

noise described by the coefficients qk = |k|−1. We applied m = 3 point actuated controls,

which were located at the positions x1 =
π
3
, x2 = π, x3 =

5π
3

.

We solved Eq. (4.1) for ν = 0.4 and σ = 0.5. For this value of ν the linear operator has

3 unstable modes and we apply m = 3 controls. We note that even though we do not need

to control the mode corresponding to the first moment of the solution when using periodic

controls, we benefit from doing so in this case, since the matrix D would not be invertible

if we allowed for a zero eigenvalue. We consider either space-time white noise (qk = 1) or
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coloured noise with qk = |k|−1 (which is chosen to decay at a fast rate so that the system

can be truncated at a smaller value of N ), and control the solution towards various desired

values rd of the surface roughness.

The results are depicted in Fig. 4.5 where we observe that the solution still exhibits a

power-law behaviour with similar exponent as in the periodic case (there we found β ≈ 0.43)

until it saturates at the desired value of the surface roughness. We note that even though we

obtained satisfactory results for the range of values of r2d selected in Fig. 4.5, further increase

of rd does not lead to the expected saturated results. This may be due to the relatively small

system truncation value N = 21 that was found necessary in order to obtain convergence of

the problem to find the entries of the matrix K. Further work is required in this direction that

is beyond the scope of the present study.

4.4 Discussion

In this chapter, we generalise the methodology derived in Chapter 2 for the deterministic

KS equation to the stochastic KS equation. We used a splitting method to separate the sKS

equation into a linear stochastic PDE, which we use to control the suface roughness, and a

nonlinear deterministic PDE with random coefficients. We show that when using periodic

controls we can control the deterministic PDE to either zero (which will make us able to

choose the surface roughness of the system) or some predetermined shape, given by steady

states of the deterministic KS equation, thus allowing us to control the shape of the interface

we are modelling. We find that the solution to the controlled problem exhibits a power-law

behaviour with exponent β ≈ 0.43, which is not affected by changes in the length of the

domain, and is independent of the type of nonlinearity of the sKS equation. Our analytical

results are valid for the sKS equation with Burgers nonlinearity, but we show numerically

that they can be applied to the sKS equation with KPZ nonlinearity.

When using point actuated feedback controls, the problem becomes considerably harder

to solve, due to the fact that the resulting system of linear stochastic ODEs is not decoupled.

This leads to the need to solve a new matrix problem, which is similar to a matrix Lyapunov

equation, but that to our knowledge has not been solved before. We derived an algorithm

to tackle this matrix problem and obtained satisfactory results when controlling towards a

range of surface roughness values. However, the complexity of this problem makes it harder

to solve for a large N , and therefore we only present results for small N , which is possibly
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the reason why we can only control the system towards a small range of surface roughness

values. The study of this matrix problem, in particular of extensions to make it efficient for

larger N or converge faster to the values of N that it deals with is an interesting problem that

we leave for future work.

We believe that our framework offers several distinct advantages over other approaches.

First, the controls we derived are linear functions of the solution u, and this in turn decreases

the computational cost of their determination. Second, our splitting methodology allows us

to deal with the nonlinear term directly rather than including it in the controls, thus rendering

the resulting equation essentially linear and easier to handle.

One interesting observation is that feedback control methodologies can be used, in prin-

ciple, in order to accelerate the convergence of infinite dimensional stochastic systems such

as the sKS and the KPZ equations to their steady state. This might prove to be a useful com-

putational tool when analysing the equilibrium properties of such systems, e.g. calculating

critical exponents, studying their universality class etc. Accelerating convergence to equilib-

rium and reducing variance by adding appropriate controls that modify the dynamics while

preserving the equilibrium states has already been explored for Langevin-type samplers that

are used in molecular dynamics [64, 137]. We plan to return to this issue for the sKS and the

KPZ equations in future work.
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Chapter 5

Systems of coupled

Kuramoto-Sivashinsky type equations

In this chapter we will be concerned with two related problems. In the first part, we will

study the problem of controlling and stabilising solutions to systems of coupled Kuramoto-

Sivashinsky equations, which are weakly nonlinear models of multiphase flow systems. The

case we present was derived in [169] and models the two interfaces between three fluids

confined between two parallel inclined planes. The coupling between the two equations

is linear and is through the second derivative, but the general case considers coupling also

through the fourth order derivatives. We will start by obtaining bounds for the solutions

of this system, which we need for the analytical results concerning feedback and optimal

control, and then we generalise our results in feedback and optimal control for the gKS

equation to this coupled system.

More generally, the coupling is also present via the nonlinear terms and this can cause

hyperbolic-elliptic transitions by supporting complex eigenvalues of the nonlinear flux func-

tions, see [168]. This is a harder system to study, and we present an initial attempt to obtain

analytical results towards bounding the solutions of these systems, by considering a different

type of coupling, which can then be generalised to be nonlinear. This particular system can

be seen as a system of conservation laws.

The results concerning the feedback and optimal control of systems of coupled KS equa-

tions are published in [89]
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5.1 Systems of coupled KS equations and conservation laws

The methodology developed and implemented in Chapter 2 can also be applied to sys-

tems of nonlinear coupled PDEs. Of particular interest are systems of coupled Kuramoto-

Sivashinsky equations that arise in the weakly nonlinear asymptotic analysis of a three layer

flow of immiscible viscous fluids stratified in a channel and driven by gravity and/or a stream-

wise pressure gradient. Such equations were derived systematically using asymptotic meth-

ods in [169].

u1(x, t)

u2(x, t)

θ

Figure 5.1: Sketch of a three layer flow down an inclined channel. The fluid interfaces are

located at y = u1(x, t) and y = u2(x, t) and their evolution can be described by systems of

PDEs such as (5.1).

The ensuing dynamics is very rich and in fact instabilities can emerge even in the absence

of inertia, unlike analogous two-fluid flows. This is due to additional physical parameters,

and also because the systems support a resonance mechanism between the two interacting

interfaces. As a result, coupled nonlinear systems are mathematically significantly more

challenging than scalar PDEs since analytical results on global existence and estimates of

solution norms, for example, are poorly understood. Detailed computational results into the

complexity of the solutions (especially their zero diffusion limits) of such coupled systems

of KS equations can be found in [168].

In this chapter, we will be concerned about two problems regarding these systems. First,

we will consider a system of two coupled KS equations, where the coupling is through the

second derivatives alone. This is a special case but arises in the derivation of the equations

- see [169]. In this case, we were able to obtain bounds on the solutions for the relevant

system, System (5.1) below, which will enable us to prove analytical results concerning the
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feedback and optimal control for this problem, which are presented in Section 5.2.

More generally, the nonlinear terms are also coupled and can cause hyperbolic-elliptic

transitions by supporting complex eigenvalues of the nonlinear flux functions, see [168]

where the authors performed extensive numerical computations and found that despite the

existence of hyperbolic-elliptic transitions, the solution to the system remains bounded, even

in the zero diffusion limit. This motivated us to study the boundedness of this type of systems

analytically. We present here a case where there are no second derivatives involved, but both

the coupling and the dynamics of each interface are affected via first order derivatives. Even

though we were not able to find the desired bounds, we were still able to extend most of the

results in [84] to this case and we present these results in Section 5.3.

5.2 Systems of coupled Kuramoto-Sivashinsky equations

We consider systems of coupled Kuramoto-Sivashinsky equations, which were derived in

[169] to model three layer flows driven along an inclined channel by gravity and a pressure

gradient, such as the one depicted in Fig. 5.1. In the general case, the system allows coupling

through first, second, and fourth order derivatives, as well as via the nonlinearities, which

are of the form βijuixujx. This results in a complicated dynamical behaviour: even when the

flux matrices governing the system - see [169] for definitions of these matrices - have real

and distinct eigenvalues, which correspond to the case when the system is hyperbolic, the

interaction between the nonlinearities and, e.g., surface tension terms introduces instabilities,

known as Majda-Pego type instabilities [154].

We consider a particular case of these systems, which consist of two coupled Kuramoto-

Sivashinsky equations with coupling through the second derivatives alone:

{
u1,t = −νu1,xxxx − u1,xx − u1u1,x − α1u2,xx

u2,t = −νu2,xxxx − u2,xx − u2u2,x − α2u1,xx,
(5.1)

where the equations are valid in the interval (0, 2π) with periodic boundary conditions and

initial conditions u1(x, 0) = u10(x) and u2(x, 0) = u20(x) and u10, u20 ∈ Ḣ2
p (0, 2π). This

is a simplified version of the general system, which arrives in the derivation. However, it

still exhibits very rich dynamics, and its simplicity allows us to obtain analytical results on

its solutions; in particular we can bound the solutions and analyse their regularity. We will
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use these facts in our analysis of feedback and optimal control for this system.

5.2.1 Bounds on the solutions of System (5.1)

In order to prove any analytical results concerning feedback and optimal control for this

problem, we must first obtain bounds on the solutions that enable us to prove that they belong

to the relevant functional space, so that we can obtain inequalities such as equation (2.26) or

convergence results such as (2.50). We can prove, using the background flow method [50,

159, 218] that the solutions to System (5.1) are bounded:

Proposition 5. Assume that u10, u20 ∈ Ḣ2
p (0, 2π). Then there exists a constant C0 =

C0(ν, α1, α2) such that the solutions of System (5.1) verify

‖u1‖L2 + ‖u2‖L2 ≤ C0. (5.2)

Proof. We will reproduce the argument in [50] and use the background flow method to find

the desired bounds, and therefore only the main steps, and the main differences with the orig-

inal paper will be presented. We write U(x, t) = [u1(x, t) u2(x, t)]
T , consider a 2π−periodic

function Φ = [φ1(x) φ2(x)]
T and define V (x, t) = [v1(x, t) v2(x, t)]

T such that U = V +Φ.

We can then write the system as

Vt = LV + LΦ− F (V,Φ), (5.3)

where

LU =

[
−νu1,xxxx − u1,xx − α1u2,xx

−νu2,xxxx − u2,xx − α2u1,xx

]
,

and

F (V,Φ) =

[
v1v1,x + v1φ1,x + φ1v1,x + φ1φ1,x

v2v2,x + v2φ2,x + φ2v2,x + φ2φ2,x

]
.

Multiplying the equation by V T in the left and integrating in space, we obtain:

1

2

d

dt
‖V ‖2 = 1

2

d

dt

∫ 2π

0

v21 + v22 dx =

∫ 2π

0

V TLV + V TLΦ− V TF (V,Φ) dx.
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We first simplify the nonlinearity:

∫ 2π

0

V TF (V,Φ) dx =

∫ 2π

0

(
v21v1,x + v22v2,x

)
dx

+

∫ 2π

0

(
v21φ1,x + v1φ1v1,x + v1φ1φ1,x + v22φ2,x + v2φ2v2,x + v2φ2φ2,x

)
dx. (5.4)

The terms given by v2i vi,x, i = 1, 2 vanish due to periodicity. We can also simplify the terms

given by viφivi,x to obtain

∫ 2π

0

V TF (V,Φ) dx =
1

2

∫ 2π

0

(
v21φ1,x + v22φ2,x

)
dx+

∫ 2π

0

(v1φ1φ1,x + v2φ2φ2,x) dx.

(5.5)

We now define, for A, B and Φ ∈ Ḣ2
p (0, 2π), γ ∈ R,

(A,B)γΦ =

∫ 2π

0

(A′′)TB′′ dx−
∫ 2π

0

(A′)T
[

1 α1

α2 1

]
B′ dx+γ

∫ 2π

0

AT

[
Φ′

1 0

0 Φ′
2

]
B dx,

(5.6)

where the prime denotes derivative with respect to x, so that we can write, after integrating

by parts,
1

2

d

dt

∫ 2π

0

(
v21 + v22

)
dx = −(V, V )Φ/2 − (V,Φ)Φ.

First step: Antisymmetric case

We consider, for now, that the solutions for system (5.1) are antisymmetric and define

the quadratic forms

RγΦ(U) = (U,U)γΦ,

Q(U) = ν
4

∫ 2π

0
(U ′′)T (U ′′) dx+ (1+

√
α1α2)2

4ν

∫ 2π

0
UTU dx.

(5.7)

Following [50], we want to prove that

RγΦ(V ) ≥ Q(V ) (5.8)

and

RγΦ(Φ) ≤ C1(ν, α1, α2), (5.9)
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and therefore

lim sup
t→∞

‖V (·, t)‖ ≤ C2(ν, α1, α2) (5.10)

where C1 and C2 are constants that depend on ν, α1 and α2.

Equation (5.10) follows from (5.8) and (5.9) by using Young’s inequality with an appro-

priate choice of ε and the definitions of R(V ) and Q(V ), and choosing γ ≥ 1
4
, much like the

proof presented in [50].

We can write V and Φ in terms of the eigenfunctions of the linear operator of System (5.1)

- see Appendix D. Since V is antisymmetric, we can write

V (x) = i
∑
k∈Z

vke
ikx

[ √
α1

√
α2

]

where vk = vk(t). We have v0 = 0 and vk = −v−k so that the solution is real valued and has

mean zero. Moreover,

Φ(x) = i
∑
k∈Z

Φke
ikx

[ √
α1

√
α2

]
,

and writing ϕk = kΦk (notice that ϕ−k = ϕk), we can write Φ′:

Φ′(x) = −
∑
k∈Z

ϕke
ikx

[ √
α1

√
α2

]
.

Proof of the bounds

We have, using similar arguments to those in [50],

∫ 2π

0

V T

[
Φ′

1 0

0 Φ′
2

]
V dx =

=

∫ 2π

0

∑
j,k,l∈Z

vjvkϕl [
√
α1

√
α2]

[ √
α1 0

0
√
α2

][ √
α1

√
α2

]
ei(j+k+l)x dx =

=
(
α
3/2
1 + α

3/2
2

)
︸ ︷︷ ︸

K1

∑
j+k+l=0

vjvkϕl = 2K1

∑
j,k∈N

vjvk
(
ϕ|j+k| − ϕ|j−k|

)
. (5.11)
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Similarly,

∫ 2π

0

(V ′′)T (V ′′) dx =

∫ 2π

0

∑
j,k∈Z

j2k2vjvke
i(j+k)x(α1+α2) dx = 2(α1+α2)

∑
j>0

(j2vj)
2,

(5.12)

and

∫ 2π

0

(V ′)T
[

1 α1

α2 1

]
(V ′) dx =

∫ 2π

0

∑
j,k∈Z

jkvjvke
i(j+k)x [

√
α1

√
α2]

[
1 α1

α2 1

][ √
α1

√
α2

]
dx

=
∑

j+k=0

jkvjvk(α1 + α2) (1 +
√
α1α2) = 2(α1 + α2) (1 +

√
α1α2)

∑
j>0

j2v2j , (5.13)

and therefore

(V, V )γΦ = 2

K2︷ ︸︸ ︷
(α1 + α2)

∑
j∈N

(
νj4 − j2(1 +

√
α1α2)

)
v2j+2γK1

∑
j,k∈N

vjvk
(
ϕ|j+k| − ϕ|j−k|

)
=

= 2

[∑
j∈N

[
K2

(
νj4 − j2(1 +

√
α1α2)

)
+K1γϕ2j

]
v2j + 2γK1

∑
j>k>0

vjvk
(
ϕ|j+k| − ϕ|j−k|

)]
.

(5.14)

In order to obtain equation (5.8), we need to bound this quantity from below and we do

that by choosing the appropriate function Φ. We consider γ ≥ 1
4

and define

ϕ2j =
4K2

νK1

(1 +
√
α1α2)

2,

so that we obtain

K2

(
νj4 − j2(1 +

√
α1α2)

)
+K1γϕ2j = K2

[(
νj4 − j2(1 +

√
α1α2)

)
+

4γ

ν
(1 +

√
α1α2)

2

]
≥ K2

2

(
νj4 +

(1 +
√
α1α2)

2

ν

)
=: τ 2j . (5.15)
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Now we set wj = vjτj so that we have

RγΦ = (V, V )γΦ ≥
∑
j∈N

w2
j + 2γ

∑
j>k>0

wk

ϕ|j+k| − ϕ|j−k|
τjτk

wj = (w, (I + 2γΓ)w) (5.16)

where I is the identity function. If we prove that

(w, (I + 2γΓ), w) = (w,w) + 2(w, γΓw) ≥ 1

2
(w,w),

we obtain estimate (5.8). For this, we need to choose the remaining coefficients of Φ in

order to verify that the norm of the operator 2γΓ is less that 1
2
, which, considering that

γ ≥ 1
4
. means that

‖Γ‖22 =
∑

j>k>0

∣∣∣∣ϕ|j+k| − ϕ|j−k|
τjτk

∣∣∣∣2 < 1

16
. (5.17)

Furthermore, if, when choosing the coefficients ϕk of Φ, we also minimise (Φ,Φ)γΦ, we

obtain estimate (5.9) and the proof (for the case of antisymmetric functions) is complete.

In order to keep the norm of Φ finite, we cannot have constant coefficients ϕk. In fact, the

coefficients need to decrease sufficiently fast with k. Therefore, we choose, for a constant

M that we will define later,

ϕj =

{
4K2

νK1
(1 +

√
α1α2)

2, 1 ≤ |j| ≤ 2M

4K2

νK1
(1 +

√
α1α2)

2f( |j|
2M

− 1), 2M ≤ |j|
, (5.18)

where f is a non-increasing C1 function satisfying f(0) = 1, f ′(0) = 0, f ≥ 0, sup |f ′| < 1

and ∫ ∞

0

(1 + x2)|f(x)|2 dx <∞. (5.19)

Using this definition for ϕj , we can easily check that |ϕj−k − ϕj+k| = 0, if j + k ≤ 2M ,

and, using the mean value theorem and sup |f ′| < 1,

|ϕj−k − ϕj+k| =
4K2

νK1

(1 +
√
α1α2)

2

∣∣∣∣f ( |j − k|
2M

− 1

)
− f

( |j + k|
2M

− 1

)∣∣∣∣
≤ 4K2

νK1

(1 +
√
α1α2)

2 k

M
, ∀j > k. (5.20)
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Now we can bound the norm of Γ:

‖Γ‖22 ≤
16K2

2

M2ν2K2
1

(1 +
√
α1α2)

2
∑

j>k>0

k2

τ 2j τ
2
k

.

We have

∑
j>k>0

k2

τ 2j τ
2
k

=
∞∑
k=1

∞∑
j=k+1

k2τ−2
k τ−2

j =
M∑
k=1

k2τ−2
k

∞∑
j=2M−k+1

τ−2
j +

∞∑
k=M+1

k2τ−2
k

∞∑
j=k+1

τ−2
j .

(5.21)

Taking integrals as upper bounds for the sums, and using similar arguments as in [50,

217], we obtain, for k ≤M ,

∞∑
j=2M−k+1

τ−2
j ≤

∫ ∞

2M−k

τ−2
j dj ≤ 2

3νK2

1

M3
, (5.22)

and for k > M ,
∞∑

j=k+1

τ−2
j ≤

∫ ∞

k

τ−2
j dj ≤ 2

3νK2

1

k3
, (5.23)

so equation (5.21) becomes

∑
j>k>0

k2

τ 2j τ
2
k

≤ 2

3
(νK2)

−1M−3

M∑
k=1

k2τ−2
k +

2

3
(νK2)

−1

∞∑
k=M+1

k−1τ−2
k . (5.24)

Using the same argument again,

M∑
k=1

k2τ−2
k ≤

∫ M

0

k2τ−2
k dk ≤

∫ ∞

0

k2τ−2
k dk ≤ 2

K2

∫ ∞

0

(
ν2k4 + (1 +

√
α1α2)

2
)−1/2

dk.

(5.25)

For a > 0, this is

2

K2

∫ a

0

(
ν2k4 + (1 +

√
α1α2)

2
)−1/2

dk +
2

K2

∫ ∞

a

(
ν2k4 + (1 +

√
α1α2)

2
)−1/2

dk

≤ 2

K2

∫ a

0

(1 +
√
α1α2) dk +

2

K2

∫ ∞

a

1

νk2
dk =

2a(1 +
√
α1α2)

K2

+
2

aνK2

. (5.26)
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For the other integral, we obtain

∞∑
k=M+1

k−1τ−2
k ≤

∫ ∞

M

k−1τ−2
k dk =

2

K2

∫ ∞

M

(
νk5 + (1 +

√
α1α2)

2
k
)−1

dk

≤ 2

K2

∫ ∞

M

1

νk5
dk =

1

2K2ν
M−4. (5.27)

Adding equations (5.22)-(5.27) together, we arrive at

‖Γ‖22 ≤
32

3ν3K2
1M

5
(1 +

√
α1α2)

2

[(
a(1 +

√
α1α2) +

1

aν

)
+

1

4νM

]
, (5.28)

and choosing a = ν−1/2(1 +
√
α1α2)

−1/2 yields

‖Γ‖22 ≤
8(1 +

√
α1α2)

2

3ν4K2
1M

6

[
8ν1/2(1 +

√
α1α2)

1/2M + 1
]
. (5.29)

Since the right-hand side of equation (5.29) is a positive and monotonically decreasing

function of M , we can choose M such that ‖Γ‖22 ≤ 1
16

, which proves (5.8).

To prove (5.9), we notice that

(Φ,Φ)γΦ = (Φ,Φ)0 = 2K2

∑
j∈N

(
νj4 − j2(1 +

√
α1α2)

)(ϕj

j

)2

≤ 2νK2

∑
j∈N

j2ϕ2
j . (5.30)

Using our definition of ϕ, and taking integrals as upper bounds for the sums again, we obtain

(Φ,Φ)γΦ ≤ 32K3
2

νK2
1

(1 +
√
α1α2)

4

[
8

3
M3 +

∫ ∞

2M

f 2

( |j|
2M

− 1

)
j2 dj

]
. (5.31)

Now we change variables to k = j
2M

− 1, so that we can use equation (5.19):

(Φ,Φ)γΦ ≤ 256K2
2

νK1

(1 +
√
α1α2)

4M3

[
1

3
+

∫ ∞

0

f 2 (k) (1 + k)2 dk

]
. (5.32)

Since
∫∞
0
f 2 (k) (1 + k)2 dk < ∞, we can certainly bound (Φ,Φ)0 by a constant that

only depends on ν, α1 and α2.

Second step: The general case

In the general case, the solution is no longer antisymmetric, and therefore the functions

V and Φ are not antisymmetric either. To overcome this, we define the following set of



5.2 Systems of coupled Kuramoto-Sivashinsky equations 164

translation invariant functions

S = {ψ : ∃a such that ψ(x) = Φ(x+ a)} ,

and define

F [U ] = dist2(U, S) = inf
ψ∈S

‖U − ψ‖22 = ‖U(x, t)− Φa(x)‖22, (5.33)

where Φa(x) = Φ(x+a(t)), and a(t) is chosen such that Φa realises the infimum in equation

(5.33). This means that dF/da|a=a(t) = 0, which is equivalent, because of the periodicity of

Φ, to ∫ 2π

0

UTΦ′
adx

∣∣∣∣
a=a(t)

= 0,

or even ∫ 2π

0

V TΦ′
adx

∣∣∣∣
a=a(t)

= 0, (5.34)

where we write U(x, t) = V (x, t) + Φa(t)(x). Equation (5.1) becomes

Vt + Φ′
a

da

dt
= LV + LΦa − F (V,Φa) (5.35)

Multiplying equation (5.35) by V on the left and integrating, we obtain

1

2

d

dt

∫ 2π

0

v21 + v22 dx+
da

dt

∫ 2π

0

v1φ
′
a,1 + v2φ

′
a,2 dx =

=

∫ 2π

0

V TLV + V TLΦa dx−
∫ 2π

0

V TF (V,Φa) dx (5.36)

Noticing that F [U ] = ‖V ‖22, the above equation becomes

1

2

d

dt
F [U ] =

1

2

d

dt

∫ 2π

0

v21+v
2
2 dx =

∫ 2π

0

V TLV +V TLΦa−
1

2

∫ 2π

0

(
v21φ1a,x + v22φ2,x

)
dx

−
∫ 2π

0

(v1φ1φ1,x + v2φ2φ2,x) dx− a′(t)
∫ 2π

0

v1φ
′
a,1 + v2φ

′
a,2 dx. (5.37)

The last term of this equation is zero, due to equation (5.34). So we can write equation (5.37)

in terms of our functional defined in equation (5.6) as

1

2

d

dt
F [U ] = −(V, V ) 1

2
Φa

− (V,Φa)Φa .
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We want to prove a result similar to the antisymmetric case. LetW = [w1w2]
T ∈ (Ḣ2

p (0, 2π))
2;

we can decompose W in the following way:

W (x) = W (0) +
1

2
[W (x) +W (−x)− 2W (0)]︸ ︷︷ ︸

Ws(x)

+
1

2
[W (x)−W (−x)]︸ ︷︷ ︸

Wa(x)

,

where Ws is an even 2π−periodic function of x that verifies Ws(0) = 0 and Wa is an odd

2π−periodic function of x. Let us consider

T [f ](x) =

{
f(x), if x ∈ [0, π],

−f(x) if x ∈ (π, 2π].

For simplicity, we assume that all the functions are π−periodic instead of 2π−periodic,

and then T [Ws] is an odd 2π−periodic function. We also have thatRαΦa(Ws) = RαΦa(T [Ws])

and Q(Ws) = Q(T [Ws]) and therefore bounds (5.8) and (5.9) hold for both Ws and Wa.

Since it can be easily shown that

RαΦa(W ) = RαΦa(Wa) +RαΦa(Ws) (5.38)

and

Q(W ) = Q(Wa) +Q(Ws)−
π(1 +

√
α1α2)

2ν
W 2(0), (5.39)

we have

RαΦa(W ) ≥ Q(W ) +
π(1 +

√
α1α2)

2ν
W 2(0) ≥ Q(W ),

which means that the bounds we obtained for antisymmetric functions holds in the general

case.

Prop. 5 proves that the solutions to System (5.1) are bounded in (L̇2
p(0, 2π))

2. However,

we need them to be bounded in Ḣ1
p and Ḣ2

p in order to extract the necessary L∞ bounds. The

proof of this fact will be given in Prop. 6 below.

Proposition 6. Under the same assumptions as in Prop. 5, there exist constants C1 and C2,

which are functions of ν, α1 and α2, such that

‖u1,x‖L2 + ‖u2,x‖L2 ≤ C1, (5.40)
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and

‖u1,xx‖L2 + ‖u2,xx‖L2 ≤ C2. (5.41)

Proof. If we multiply equation (5.1) by UT
xxxx on the left and integrate by parts, we obtain

1

2

d

dt

(
‖u1,xx‖22 + ‖u2,xx‖22

)
+ ν
(
‖u1,xxxx‖22 + ‖u2,xxxx‖22

)
=

= −
∫ 2π

0

[(u1,xx + α1u2,xx + u1u1,x)u1,xxxx + (u2,xx + α2u1,xx + u2u2,x)u2,xxxx] dx.

(5.42)

Using Young’s, Hölder’s, Triangle, and Nirenberg-Gagliardo interpolation inequalities,

we can estimate the right-hand side integral as follows:

−
∫ 2π

0

[(u1,xx + α1u2,xx)u1,xxxx + (u2,xx + α2u1,xx)u2,xxxx]

≤ ‖u1,xx + α1u2,xx‖2‖u1,xxxx‖2 + ‖u2,xx + α2u1,xx‖2‖u2,xxxx‖2

≤ ε1‖u1,xxxx‖22 +
ε−1
1

4
‖u1,xx + α1u2,xx‖22 + ε1‖u2,xxxx‖22 +

ε−1
1

4
‖u2,xx + α2u1,xx‖22

≤ ε1(‖u1,xxxx‖22 + ‖u2,xxxx‖22) +
ε−1
1

4

(
(1 + α2)‖u1,xx‖22 + (1 + α1)‖u2,xx‖22

)
, (5.43)

and, for i = 1, 2,

−
∫ 2π

0

uiui,xui,xxxx dx ≤ ‖ui‖∞‖ui,x‖2‖ui,xxxx‖2 ≤
√
2‖ui‖1/22 ‖ui,x‖3/22 ‖ui,xxxx‖2

≤
√
2C0‖ui,x‖3/22 ‖ui,xxxx‖2 ≤

√
2C0

(
C2‖ui,xx‖1/22 ‖ui‖1/22 ‖

)3/2
‖ui,xxxx‖

≤
√
2C

5/4
0 C3/2

p ‖ui,xx‖3/42 ‖ui,xxxx‖2 ≤
√
2C

5/4
0 C3/2

p

(
ε2‖ui,xxxx‖22 +

ε−1
2

4
‖ui,xx‖3/22

)
≤

√
2C

5/4
0 C3/2

p

(
ε2‖ui,xxxx‖22 +

ε−1
2

4

(
3

4
‖ui,xx‖22 +

1

4

))
. (5.44)

where C0 is the constant obtained in Prop. 5 and Cp is the Poincaré constant (that comes

from the Poincaré inequality). Defining A1 =
√
2C

5/4
0 C

3/2
p and A2 =

√
2

16
ε−1
2 C

5/4
0 C

3/2
p yields

−
∫ 2π

0

uiui,xui,xxxx dx ≤ ε2A1‖ui,xxxx‖22 + 3A2‖ui,xx‖22 + A2
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and we obtain

1

2

d

dt

(
‖u1,xx‖22 + ‖u2,xx‖22

)
+ ν
(
‖u1,xxxx‖22 + ‖u2,xxxx‖22

)
≤ (ε1 + ε2A1) (‖u1,xxxx‖22 + ‖u2,xxxx‖22)+(

ε−1
1

4
(1 + max(α1, α2)) + 3A2

)(
‖u1,xx‖22 + ‖u2,xx‖22

)
+ A2. (5.45)

Choosing ε1 and ε2 such that ε1+ ε2A1 ≤ ν, and defining A3 =
ε−1
1

4
(1+max(α1, α2))+3A2,

we obtain
1

2

d

dt

(
‖u1,xx‖22 + ‖u2,xx‖22

)
≤ A3

(
‖u1,xx‖22 + ‖u2,xx‖22

)
+ A2.

From here, we just need to apply Gronwall’s inequality to conclude that ‖Uxx(·, t)‖2 is

bounded in a finite time interval. Using Poincaré’s inequality, we conclude that ‖Ux(·, t)‖2
is also bounded in that interval and therefore U(·, t) ∈ Ḣ2

p (0, 2π)× Ḣ2
p (0, 2π). Theorem 2.3

in [218] guarantees that this interval is infinite.

Using these bounds, we can easily conclude, by using the Sobolev embedding theorem,

that

‖U‖∞ ≤ C‖U‖H2 , ‖Ux‖∞ ≤ C‖Ux‖H1 , (5.46)

where C is a constant (different in each case), which are the bounds we need for our analyt-

ical results.

Remark 13. In the general case presented in [169], the coupling is linear but it is also

allowed to act through the fourth derivatives. This presents an extra difficulty by adding

terms that depend on j4 multiplying by (α1 + α2) in equation (5.12). We believe, however,

that a similar result can be proved for the case when the coupling comes only through the

fourth order derivatives (i.e. there is a non-diagonal negative definite fourth order viscosity

matrix), and having these bounds, it should be possible to obtain bounds for the fully coupled

system, with non-diagonal second as well fourth order viscosity matrices.

Our goal here is only to prove the applicability of the methods we derived in Chapter 2

for systems of coupled Kuramoto-Sivashinsky equations, and therefore we only studied the

simplest case, and leave the more general case for future work.
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5.2.2 Feedback control for the coupled KS equations

Since Equations (5.1) are coupled linearly and we obtained the necessary bounds on its

solutions, we can now derive analogous results to the ones presented in Chapter 2 for the

scalar Kuramoto-Sivashinsky equation. First, we can prove that it is possible to stabilise any

steady state solution (either the zero solution or any nontrivial steady state) for this system.

We proceed in the same way as for the scalar KS equation and write the controlled system

{
u1,t = −νu1,xxxx − u1,xx − u1u1,x − α1u2,xx +

∑m
j1=1 bj1(x)fj1(t),

u2,t = −νu2,xxxx − u2,xx − u2u2,x − α2u1,xx +
∑m

j2=1 bj2(x)fj2(t),
(5.47)

where bjk(x) = δ(x− xjk). Defining

U(x, t) =

[
u1(x, t)

u2(x, t)

]
=

∞∑
n=1

[
us1n(t)

us2n(t)

]
sin(nx)√

π
+

∞∑
n=0

[
uc1n(t)

uc2n(t)

]
cos(nx)√

π
, (5.48)

and taking the inner product with the functions 1√
2π

,
sin(nx)√

π
and

cos(nx)√
π

yields the following

infinite system of ODEs

{
u̇sin = (−νn4 + n2) usin + αin

2usjn + gsin +
∑m

ji=1 b
s
jin
fji(t) n = 1, . . . ,∞,

u̇cin = (−νn4 + n2) ucin + αin
2ucjn + gcn +

∑m
ji=1 b

c
jin
fji(t) n = 0, . . . ,∞,

(5.49)

where i, j = 1, 2, i �= j, and the functions b and g are defined in Chapter 2. We truncate the

system at N modes and define

zU = [uc10 u
s
11 u

c
11 · · · us1N uc1N uc20 u

s
21 u

c
21 · · · us2N uc2N ]

T ,

G = [0 gs11 g
c
11 · · · gs1N gc1N 0 gs21 g

c
21 · · · gs2N gc2N ]

T ,

F = [f11(t) f12(t) · · · f1m(t) f21(t) f22(t) · · · f2m(t)]T .

Next we write

A =

[
A0 A1

A2 A0

]
, B =

[
B1

B2

]
,

where

A0 = diag(0,−ν + 1,−ν + 1, · · · ,−νn4 + n2,−νn4 + n2, · · · ),
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Ai = diag(0, αi, αi, · · · , αin
2, αin

2, · · · )

and

Bi =

⎡⎢⎢⎢⎢⎢⎣
bc1i0 bc2i0 · · · bcmi0

bs1i1 bs2i1 · · · bsmi1

bc1i1 bc2i1 · · · bcmi1

...
... · · · ...

⎤⎥⎥⎥⎥⎥⎦ ,
for i = 1, 2. Hence the infinite system of ODEs can be written as

żU = AzU +G+BF. (5.50)

We can prove a result similar to Proposition 1.

Proposition 7. Let Ū =

[
ū1

ū2

]
be an unstable steady state solution of (5.1), and let l =

l1 + l2 be the number of unstable eigenvalues of the linearised system, i.e. l21 <
1+

√
α1α2

ν
<

(l1+1)2 and l22 <
1−√

α1α2

ν
< (l2+1)2. If m = 2(l+1) and there exists a matrixK such that

all of the eigenvalues of the matrix A+BK have negative real part, then the state feedback

controls

[f11(t) f12(t) · · · f1m(t) f21(t) f22(t) · · · f2m(t)]T = F = K(zU − zŪ), (5.51)

stabilise this nontrivial steady state solution of system (5.1).

The proof of this result follows the same steps as the proof of Proposition 1, by replacing

the matrices that discretise all of the terms and reordering the modes so that the unstable

eigenmodes appear first. The estimates throughout the proof are obtained by left-multiplying

the resulting equation for a perturbation V on the left by V and integrating, and thus we prove

that E(V ) = ‖V ‖22 = ‖v1‖22 + ‖v2‖22 is a Lyapunov function for the obtained system.

We present in Figs. 5.2 and 5.3 the numerical results of the stabilisation of the zero

solution and a steady state solution, respectively, for system (5.1) with ν = 0.5, α1 = 0.8

and α2 = 0.5. In both figures, we used random initial conditions, and m = 4 equidistant

controls to control each solution, corresponding physically to applying 4 controls in each

wall. Upper panels correspond to the uncontrolled solution, and lower panels correspond to

the stabilised solution. We clearly observe in both figures the fast stabilisation of the desired
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steady state.

Figure 5.2: Uncontrolled solution (vi, i = 1, 2) and controlled zero solution (ui, i = 1, 2) of

the system of coupled KS equations for ν = 0.5, α1 = 0.8 and α2 = 0.5.

Figure 5.3: Uncontrolled solution (vi, i = 1, 2) and stabilised steady state solution (ui,
i = 1, 2) of the system of coupled KS equations for ν = 0.5, α1 = 0.8 and α2 = 0.5.

5.2.3 Optimal control for the system of coupled KS equations

Similarly to the scalar KS equation, we can consider the problem of controlling an arbitrary

steady state Ū = [ū1 ū2]
T in an optimal way. Here we will generalise the proof of existence
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of an optimal control for this system of coupled Kuramoto-Sivashinsky equations.

We introduce the cost functional

C (U, F ) =
1

2

∫ T

0

(
‖u1(·, t)− ū1‖2L2 + ‖u2(·, t)− ū2‖2L2

)
dt

+
1

2

(
‖u1(·, T )− ū1‖2L2 + ‖u2(·, T )− ū2‖2L2

)
+
γ

2

∫ T

0

(
‖f1(x, t)‖2L2 + ‖f2(x, t)‖2L2

)
dt.

(5.52)

The optimisation problem that we have to solve takes the form

minimise C (U, F ) (5.53a)

subject to u1,t + νu1,xxxx + u1,xx + u1u1,x + α1u2,xx = f1(x, t), (5.53b)

u2,t + νu2,xxxx + u2,xx + u2u2,x + α2u1,xx = f2(x, t), (5.53c)

ui(x, 0) = u0,i(x), i = 1, 2, (5.53d)

∂jui
∂xj

(x+ 2π) =
∂jui
∂xj

(x), j = 0, 1, 2, 3, i = 1, 2, (5.53e)

fi ∈ Fad, i = 1, 2. (5.53f)

Here, u0,i ∈ Ḣ2
p (0, 2π) and Fad is a bounded, closed and convex subset of L2((0, 2π) ×

(0, T )).

We can prove the following theorem.

Theorem 2. If Fad ⊂ L2((0, T ); L̇2(0, 2π)), the optimal control problem (5.53a)-(5.53f) has

at least one optimal control F ∗ = [f ∗
1 f

∗
2 ]

T with associated optimal state U∗ = [u∗1 u
∗
2]

T .

Sketch of the proof.

The proof follows the same steps as that of Theorem 1 for the scalar KS equation. For the

coupled system, we need to consider the state space X =
(
H1(0, T ; Ḣ2

p (0, 2π))
)2

× (Fad)
2
,

and redefine e(·, ·; ·, ·):

e(u1, u2; f1, f2) =

⎡⎢⎢⎢⎢⎢⎣
u1,t + νu1,xxxx + u1,xx + u1u1,x + α1u2,xx − f1(x, t)

u2,t + νu2,xxxx + u2,xx + u2u2,x + α2u1,xx − f2(x, t)

u1(·, 0)− u0,1(x)

u2(·, 0)− u0,2(x)

⎤⎥⎥⎥⎥⎥⎦ . (5.54)

The rest of the proof follows Theorem 1, but accounting for the fact that for every t ∈ [0, T ]
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we have U∗(·, t) ∈
(
Ḣ2

p (0, 2π)
)2

, and then U∗(·, t) ∈ (C([0, 2π]))2 and therefore if ϕi ∈ X ,

(u∗iϕi)(·, t) ∈ L2([0, 2π]) for i = 1, 2.

Finally, we also need the estimates in Proposition 5 to establish that ‖uni,x‖L2 is bounded,

and since H2 is compactly embedded in L2, we deduce that

∫ T

0

∫ 2π

0

(uni − u∗i )u
n
i,xϕi dx dt ≤ ‖uni − u∗i ‖L2‖uni,x‖L2‖ϕi‖L∞ −−−→

n→∞
0 ∀ϕi ∈ Ḣ2

p (Ω).

(5.55)

Remark 14. For the general case, when coupling is allowed to act through the fourth deriva-

tives also, since these are still linear, all the feedback and optimal control results presented in

this section are valid, as long as the solutions of the corresponding system and their deriva-

tives are bounded in (Ḣ2
p (0, 2π))

2. Even though we were not able to obtain these bounds, we

performed numerical experiments that suggest that we can achieve stabilisation in this case.

We do not present numerical results for the problem of optimising the position of the

control actuators, but we expect to obtain similarly satisfactory results in this case also.

5.3 Systems of conservation laws in the vanishing viscosity limit

In this section, we will consider a different particular case of multiphase flows driven along

an inclined channel, which is given by systems of the form

Ut + f(U)x +AUx + IUxxxx = 0, (5.56)

for x ∈ (0, L), t > 0 and spatially periodic boundary conditions. We have that U = [u1 u2]
T

,

A is a matrix of coefficients, I is the identity matrix and f(U) = 1
2
[u21 u

2
2]

T
. We note we can

write it as Ut + (f(U) + AU + IUxxx)x.

This is a particular case of the mixed hyperbolic-elliptic systems studied in detail in

[168]. It is the particular case presented in Section 4 of this reference, in which the au-

thors performed extensive numerical studies which suggest that, despite the existence of

hyperbolic-elliptic transitions, the solutions of System (5.56) exhibit vanishing viscosity

limits. This means that the solutions remain bounded despite the existence of elliptic re-

gions, which is due to the existence of linear terms in the flux function, that we include here

with the nonzero matrix A. This motivated us to study the boundedness of the solutions to



Chapter 5. Systems of coupled Kuramoto-Sivashinsky type equations 173

System (5.56) analytically.

The background flow method used for the particular case studied in the previous section

is not straightforward to use here, since the existence of first order derivatives introduces

complex eigenvalues, associated with complicated eigenfunctions. The fact that there is no

second derivative term also complicates the analysis. Therefore, we are going to adapt the

techniques presented in [84] to this case.

In [84], the authors obtain bounds for the scalar Kuramoto-Sivashinsky equation using

the entropy method. They first prove that one can write the KS equation as an entropy

solution of a perturbed Burgers equation, and then use properties of these solutions (namely,

the existence of a viscosity solution for the Burgers equation, associated with the entropy

solution) to prove the desired bounds. Most of the results on [84] extend naturally to systems

of coupled KS equations, and we will present these below. However, the concept of viscosity

solutions does not extend to higher dimensions, which is the reason we cannot conclude that

the solutions to System (5.56) are bounded. We will finish this section with ideas of how to

overcome this difficulty.

5.3.1 A priori energy bounds

Following [84] we start by obtaining energy bounds for System (5.56). We can obtain bounds

for
∫ L

0
u41 + u42 dx, which is the norm of U in L4. We notice that we can use these bounds of

U for each of its components separately, by using the fact that
∫ L

0
u4i dx ≤

∫ L

0
u41 + u42 dx.

If we multiply equation (5.56) in the left by UT and integrate by parts (using the period-

icity of U ), we obtain

d

dt

∫ L

0

u21 + u22
2

dx+

∫ L

0

(
u21,xx + u22,xx

)
dx = −

∫ L

0

(A12u1u2,x + A21u2u1,x) dx. (5.57)

Using Young’s inequality and Poincaré’s inequality, we can write for i, j = 1, 2, i �= j,

−
∫ L

0

uiuj,x ≤ 1

2ε

∫ L

0

u2i dx+
ε

2

∫ L

0

u2j,x dx ≤ 1

2εij

∫ L

0

u2i dx+ CL
εij
2

∫ L

0

u2j,xx dx,

where CL is the constant from the Poincaré’s inequality and depends on L. Choosing εij
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appropriately (and noticing it is different in the two cases), we obtain

d

dt

∫ L

0

u21 + u22
2

dx ≤ CL

2
max(A2

12, A
2
21)

∫ L

0

u21 + u22
2

dx, (5.58)

which proves that for T > 0 and s ≥ 0 we have

sup
t∈(s,s+T )

∫ L

0

(
u21 + u22

)
dx ≤ C exp

(
T

2
C2

L max(A2
12, A

2
21)

)∫ L

0

(
u21(s) + u22(s)

)
dx,

(5.59)

where C is a constant. On the other hand, if we apply Hölder’s inequality to (5.57), followed

by Poincaré’s inequality and Young’s inequality with ε, we obtain

d

dt

∫ L

0

u21+u
2
2 dx+

∫ L

0

(
u21,xx + u22,xx

)
dx ≤ max(A2

12, A
2
21)C

2
L

∫ L

0

(
u21 + u22

)
dx. (5.60)

Integrating in time, we obtain

∫ L

0

(
u21(T ) + u22(T )

)
dx+

∫ T

0

∫ L

0

(
u21,xx + u22,xx

)
dx ≤

≤
∫ L

0

(
u21(0) + u22(0)

)
dx+

max(A2
12, A

2
21)C

2
L

2

∫ T

0

∫ L

0

(
u21 + u22

)
dx

which, using equation (5.59), proves that for T > 0 and s ≥ 0 we have

∫ s+T

s

∫ L

0

(
u21,xx + u22,xx

)
dx ≤ C exp

(
T

2
C2

L max(A2
12, A

2
21)

)∫ L

0

(
u21(s) + u22(s)

)
dx.

(5.61)

Finally, this also implies that

∫ s+T

s

∫ L

0

(
u21,x + u22,x

)
dx ≤ C exp

(
T

2
C2

L max(A2
12, A

2
21)

)∫ L

0

(
u21(s) + u22(s)

)
dx.

(5.62)

Furthermore, we also need estimates in |ui,x|3. We obtain these by observing that

sup
x∈(0,L)

|ui,x| ≤ C

(∫ L

0

u2i,x dx

) 1
4
(∫ L

0

u2i,xx dx

) 1
4
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and therefore

∫ L

0

|ui,x|3 dx ≤ C

(∫ L

0

u2i,x dx

)1+ 1
4
(∫ L

0

u2i,xx dx

) 1
4

≤ C

(∫ L

0

u2i dx

) 1
2
(∫ L

0

u2i,x dx

) 1
4
(∫ L

0

u2i,xx dx

) 3
4

, (5.63)

where we have used periodicity of u and Hölder’s inequality in

∫ L

0

u2x dx = −
∫ L

0

uuxx dx.

This yields

∫ T

0

∫ L

0

|u1,x|3 + |u2,x|3 dx dt ≤ C

(
sup

t∈(0,T )

∫ L

0

u21 + u22 dx

) 1
2

×

×
(∫ T

0

∫ L

0

u21,x + u22,x dx

) 1
4
(∫ T

0

∫ L

0

u21,xx + u22,xx dx

) 3
4

, (5.64)

and we can apply the previous estimates. We summarise our a priori estimates in Prop. 8

below.

Proposition 8. If U = [u1 u2]
T is a solution of System (5.56), then for T > 0 and s ≥ 0 we

have

sup
t∈(s,s+T )

∫ L

0

(
u21 + u22

)
dx ≤ C exp

(
T

2
C2

L max(A2
12, A

2
21)

)∫ L

0

(
u21(s) + u22(s)

)
dx,

∫ s+T

s

∫ L

0

(
u21,xx + u22,xx

)
dx dt ≤ C exp

(
T

2
C2

L max(A2
12, A

2
21)

)∫ L

0

(
u21(s) + u22(s)

)
dx,

∫ s+T

s

∫ L

0

(
u21,x + u22,x

)
dx dt ≤ C exp

(
T

2
C2

L max(A2
12, A

2
21)

)∫ L

0

(
u21(s) + u22(s)

)
dx.

and

(∫ s+T

s

∫ L

0

(
|u1,x|3 + |u2,x|3

)
dx dt

) 2
3

≤ C exp

(
T

2
C2

L max(A2
12, A

2
21)

)∫ L

0

(
u21(s) + u22(s)

)
dx.

where C is a constant that is different in each case.
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5.3.2 Uniform integrability of solutions

We will now prove uniform integrability of solutions to system (5.56), that is, that the L4

integral of U is bounded by its L2 integral. In order to do that, we define

V =

⎡⎢⎢⎢⎢⎢⎣
1
2
u21

1
2
u22

1
3
u31 +

A11

2
u21 + u1u1,xxx − u1,xu1,xx + A12u1u2

1
3
u32 +

A22

2
u22 + u2u2,xxx − u2,xu2,xx + A21u2u1

⎤⎥⎥⎥⎥⎥⎦
and H = [h1 h2]

T such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
h1,t = −

(
1
2
u21 + A11u1 + u1,xxx + A12u2

)
+ g(t),

h2,t = −
(
1
2
u22 + A22u2 + u2,xxx + A21u1

)
+ g(t),

h1,x = u1,

h2,x = u2,

(5.65)

where g(t) = 1
2

∫ L

0
(u21(x, t) + u22(x, t)) dx. We have that

(∂t, ∂t, ∂x, ∂x) · V = −
(
u21,xx + u22,xx

)
+ A12u1,xu2 + A21u2,xu1, (5.66)

where · denotes inner product, and

V ·(h1,t, h2,t, h1,x, h2,x) =
1

12

(
u41 + u42

)
+
1

2

(
u21u1,xxx + u22u2,xxx

)
+
1

2

(
A12u

2
1u2 + A21u

2
2u1
)

+
g

2

(
u21 + u22

)
− u1u1,xu1,xx − u2u2,xu2,xx. (5.67)

Now, let ζ ∈ C∞
c ((0,∞)), where C∞

c ((0,∞)) is the space of infinitely differentiable

functions with respect to time with compact support. We have, integrating by parts and

using Equation (5.66),

∫ ∞

0

∫ L

0

V · (h1,t, h2,t, h1,x, h2,x) dx ζ dt = −
∫ ∞

0

∫ L

0

(
−u21,xx + A12u2u1,x

)
h1 dx ζ dt

−
∫ ∞

0

∫ L

0

(
−u22,xx + A21u1u2,x

)
h2 dx ζ dt−

∫ ∞

0

∫ L

0

1

2

(
u21h1 + u22h2

)
dx ζt dt. (5.68)
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On the other hand, using (5.67) directly gives

∫ ∞

0

∫ L

0

V · (h1,t, h2,t, h1,x, h2,x) dx ζ dt =
1

12

∫ ∞

0

∫ L

0

(
u41 + u42

)
dx ζ dt+

1

4

∫ ∞

0

(∫ L

0

u21 + u22 dx

)2

ζ dt+
1

2

∫ ∞

0

∫ L

0

(
u21u1,xxx + u22u2,xxx

)
dxζ dt

+
1

2

∫ ∞

0

∫ L

0

u1u2 (A12u1 + A21u2) dx ζ dt−
∫ ∞

0

∫ L

0

(u1u1,xu1,xx + u2u2,xu2,xx) dx ζ dt,

(5.69)

where we used the definition of g(t). Now we notice that, integrating by parts and using the

periodicity of u, we have

∫ L

0

(
1

2
u2iui,xxx − uiui,xui,xx

)
dx = −2

∫ L

0

uiui,xui,xx dx =

∫ L

0

u3i,x dx, i = 1, 2.

Substituting this in (5.69) and putting (5.68) and (5.69) together, we obtain

1

12

∫ ∞

0

∫ L

0

(
u41 + u42

)
dx ζ dt+

1

4

∫ ∞

0

(∫ L

0

u21 + u22 dx

)2

ζ dt+

∫ ∞

0

∫ L

0

(
u31,x + u32,x

)
dx ζ dt

= −1

2

∫ ∞

0

∫ L

0

u1u2 (A12u1 + A21u2) dx ζ dt+

∫ ∞

0

∫ L

0

(
u21,xx − A12u2u1,x

)
h1 dx ζ dt

+

∫ ∞

0

∫ L

0

(
u22,xx − A21u1u2,x

)
h2 dx ζ dt−

∫ ∞

0

∫ L

0

1

2

(
u21h1 + u22h2

)
dx ζt dt. (5.70)

We will use this identity to prove uniform integrability of U . We first normalise H so

that
∫ T

0

∫ L

0
hi dx dt = 0, i = 1, 2. Since ui, i = 1, 2, has zero mean, we have

d

dt

∫ L

0

h1 + h2 dx = −
∫ L

0

1

2

(
u21 + u22

)
dx+ g(t) = 0,

which means that ∫ L

0

(h1 + h2) dx = 0, 0 ≤ t ≤ T.

This leads to

sup
x∈(0,L)

|hi| ≤
∫ L

0

|hi,x| dx =

∫ L

0

|ui| dx ≤
(
L

∫ L

0

u2i dx

) 1
2

,
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where we used Hölder’s inequality in the last step, and therefore

sup
x∈(0,L), t∈(0,T )

|hi| ≤
(
L sup

t∈(0,T )

∫ L

0

u2i (t) dx

) 1
2

, i = 1, 2. (5.71)

Choosing ζ(t) = χ(0,T )(t), which is 1 in t ∈ (0, T ) and 0 elsewhere, we obtain

1

12

∫ T

0

∫ L

0

(
u41 + u42

)
dx dt+

1

4

∫ T

0

(∫ L

0

u21 + u22 dx

)2

dt+

∫ T

0

∫ L

0

(
u31,x + u32,x

)
dx dt

=
1

2

∫ T

0

∫ L

0

u1u2 (A12u1 + A21u2) dx dt+

∫ T

0

∫ L

0

(
u21,xx − A12u2u1,x

)
h1 dx dt

+

∫ T

0

∫ L

0

(
u22,xx − A21u1u2,x

)
h2 dx dt

− 1

2

(∫ L

0

(
u21(T )h1(T ) + u22(T )h2(T )

)
dx−

∫ L

0

(
u21(0)h1(0) + u22(0)h2(0)

)
dx

)
.

(5.72)

Now we use inequality (5.71) to obtain

1

12

∫ T

0

∫ L

0

(
u41 + u42

)
dx dt ≤

∫ T

0

∫ L

0

(
|u1,x|3 + |u2,x|3

)
+
|u1u2|
2

(A12|u1|+ A21|u2|) dx dt

+

(
L

∫ L

0

sup
t∈(0,T )

(
u21(t) + u22(t)

)
dx

) 1
2

×

×
[∫ T

0

∫ L

0

(
u21,xx + u22,xx + A12|u2u1,x|+ A21|u1u2,x|

)
dx dt+

(
sup

t∈(0,T )

∫ L

0

u21(t) + u22(t) dx

)]
.

(5.73)

We now use Hölder’s, Young’s and Poincaré’s inequalities to obtain

Aij

∫ L

0

|ujui,x| dx ≤ Aij

2

(
CL

∫ L

0

u2i,x dx+

∫ L

0

u2j,x dx

)
(5.74)

and

Aij

∫ L

0

|u2iuj| dx ≤ 1

24

∫ L

0

u4i dx+ 6A2
ijCL

∫ L

0

u2j,x dx. (5.75)
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Substituting (5.74) and (5.75) in (5.73), we arrive at

1

24

∫ T

0

∫ L

0

(
u41 + u42

)
dx dt ≤

∫ T

0

∫ L

0

(
|u1,x|3 + |u2,x|3

)
dx dt

+3CL max
(
A2

12, A
2
21

) ∫ T

0

∫ L

0

(
u21,x + u22,x

)
dx dt+

(
L

∫ L

0

sup
t∈(0,T )

(
u21(t) + u22(t)

)
dx

) 1
2

×

×
[

sup
t∈(0,T )

∫ L

0

(
u21(t) + u22(t)

)
dx+

∫ T

0

∫ L

0

(
u21,xx + u22,xx + C1u

2
1,x + C2u

2
2,x

)
dx dt

]
,

(5.76)

where C1 = A12CL+A21

2
and C2 = A12+A21CL

2
. Using Prop. 8 and translation invariance in

time, we obtain the following result:

Proposition 9. Let L� 1 and let U be a solution of (5.56). Then, for all s ≥ 0 and T > 0,

∫ s+T

s

∫ L

0

(
u41 + u42

)
dx dt ≤ CL

1
2

(
exp

(
T

2
C2

L max(A2
12, A

2
21)

)∫ L

0

(
u21(s) + u22(s)

)
dx

) 3
2

,

where C is a constant that depends on A12, A21 and CL.

5.3.3 Hölder continuity, compactness and strong convergence

We now consider H as defined in (5.65), with g(t) = 0 and define

M = exp

(
T

2
C2

L max(A2
12, A

2
21)

)∫ L

0

(
u21(s) + u22(s)

)
dx (5.77)

to obtain, for a given t0 ∈ (0, T ) and x1, x2 ∈ (0, L),

|hi(t0, x1)− hi(t0, x2)| ≤
∫ x2

x1

|ui(x, t0)| dx ≤ |x1 − x2|
1
2

(
sup

t∈(0,T )

∫ L

0

u2i (x, t) dx

) 1
2

≤ |x1 − x2|
1
2

(
sup

t∈(0,T )

∫ L

0

u21(x, t) + u22(x, t) dx

) 1
2

≤M
1
2 |x1 − x2|

1
2
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and therefore the functions hi, i = 1, 2 are Hölder continuous in space. We can also prove

Hölder continuity in time, by defining ϕδ(s) =
1
δ
ϕ
(
s
δ

)
, where

ϕ(s) =
1

C
χ(−1,1)(s)e

− 1
1−s2 ,

so that
∫
Rϕδ(s) ds = 1. We have, for a given x0 ∈ (x− δ, x+ δ),

∣∣∣∣∫
R
ϕδ(x− x0)hi(x, t) dx− hi(x0, t)

∣∣∣∣ = ∣∣∣∣∫
R
ϕδ(x− x0) (hi(x, t)− hi(x0, t)) dx

∣∣∣∣
≤
∫

R
ϕδ(x− x0)|hi(x, t)− hi(x0, t)| dx ≤M

1
2

∫
R
ϕδ(x− x0)|x− x0|

1
2 dx ≤M

1
2 δ

1
2 ,

(5.78)

so, by adding and subtracting terms of the form
∫
Rϕδ(x − x0)hi(x, tj) dx, j = 1, 2, and

using equation (5.78), we have, for i = 1, 2,

|hi(x0, t1)− hi(x0, t2)| ≤ 2M
1
2 δ

1
2 +

∣∣∣∣∫ t2

t1

∫
R
ϕδ(x− x0)hi,t dx

∣∣∣∣ . (5.79)

We now use the definition of H and integration by parts to obtain, for i, j = 1, 2, i �= j,

∣∣∣∣∫ t2

t1

∫
R
ϕδ(x− x0)hi,t dx

∣∣∣∣ ≤ |t1 − t2|
1

2
sup |ϕδ| sup

t∈(0,T )

∫ L

0

u2i (x, t) dx

+ |t1 − t2|
(∫

R
ϕ2
δ,xxx(x− x0) dx

) 1
2
(∫ L

0

u2i dx

) 1
2

+ |t1 − t2|
(∫

R
ϕ2
δ(x− x0) dx

) 1
2

(
Aii

(∫ L

0

u2i dx

) 1
2

+ Aij

(∫ L

0

u2j dx

) 1
2

)
. (5.80)

Now, since sup |ϕδ| = 1
δ
,
∫
Rϕ

2
δ dx ≤ sup |ϕδ|

∫
Rϕδ dx = 1

δ
and
∫
Rϕ

2
δ,xxx dx = δ−7, we

obtain∣∣∣∣∫ t2

t1

∫
R
ϕδ(x− x0)hi,t dx

∣∣∣∣ ≤ |t1−t2|
(
δ−1M + δ−7/2M1/2 + Aiiδ

−1/2M1/2 + Aijδ
−1/2M1/2

)
,

and therefore we have

|hi(x0, t1)− hi(x0, t2)| ≤ 2M1/2δ1/2 + |t1 − t2|
(
δ−1M + δ−

7
2M

1
2 + (Aii + Aij)δ

− 1
2M

1
2

)
.
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Choosing δ = max
(
|t1 − t2|2/3M1/3, |t1 − t2|1/4, |t1 − t2|(Aii + Aij)

)
we arrive at

|hi(x0, t1)−hi(x0, t2)| ≤ C
(
M

2
3 |t1 − t2|

1
3 +M

1
2 |t1 − t2|

1
8 +M

1
2 |t1 − t2|

1
2 (Aii + Aij)

1
2

)
.

Using translation invariance in time, we prove the following result:

Proposition 10. Let U be a solution to (5.56) and H be defined in (5.65) with g(t) = 0.

Then hi, i = 1, 2, verifies

|hi(x1, t1)− hi(x2, t2)| ≤

≤ C
(
M

1
2

(
|x1 − x2|

1
2 + |t1 − t2|

1
8 + |t1 − t2|

1
2 (Aii + Aij)

1
2

)
+M

2
3 |t1 − t2|

1
3

)
, (5.81)

for all x1, x2 ∈ R , s ≥ 0, T > 0 and t1, t2 ∈ (s, s+ T ), where M is defined in (5.77).

Boundedness in an initial layer

We choose any 0 < T ≤ 1, introduce the function

f(s) = f1(s)+f2(s) =

∫ s+T

s

∫ L

0

u21(x, s+T ) dx dt+

∫ s+T

s

∫ L

0

u22(x, s+T ) dx dt (5.82)

and use Prop. 8 to show that f is comparable with
∫ L

0
u21(x, s) + u22(x, s) dx:

T

∫ L

0

u21(x, s+ T ) + u22(x, s+ T ) dx =

∫ s+T

s

∫ L

0

u21(x, s+ T ) + u22(x, s+ T ) dx dt

≤ C1

∫ s+T

s

∫ L

0

u21(x, t) + u22(x, t) dx dt = C1f(s), (5.83)

where C1 is a constant. Using Hölder’s inequality, adding the positive quantity u4i , i = 1, 2,

when necessary and using Proposition 9, we obtain

f(s) ≤ L
1
2T

1
2

[(∫ s+T

s

∫ L

0

u41 dx dt

) 1
2

+

(∫ s+T

s

∫ L

0

u42 dx dt

) 1
2

]

≤ CL
3
4T

1
2 exp

(
T

2
C2

L max
(
A2

12, A
2
21

)) 3
4
(∫ L

0

u21(x, s) + u22(x, s) dx

) 3
4

, (5.84)
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where, again, C is a constant. Now, using (5.83) we have that

∫ L

0

u21(x, s) + u22(x, s) dx = −f ′(s) +
∫ L

0

u21(x, s+ T ) + u22(x, s+ T ) dx

≤ −f ′(s) + C1T
−1f(s), (5.85)

and using (5.84) we obtain the differential inequality

f(s) ≤ L
3
4T

1
2C2

(
−f ′(s) + C1T

−1f(s)
) 3

4 ,

where C2 = C(T,CL, A12, A21) is a constant. Defining h(s) = e−C1s/Tf(s), we obtain

eC1s/Th(s) ≤ C2L
3/4T 1/2

(
−eC1s/Th′(s)

)3/4
,

or (
3

h1/3(s)

)′
= − h′(s)

h4/3(s)
≥ C3

eC1s/(3T )

LT 2/3
.

We integrate to obtain

1

h1/3(s)
≥ 1

h1/3(s)
− 1

h1/3(0)
≥ C4

T 1/3

C2L

(
eC2s/(3T ) − 1

)
,

or

h(s) ≤ C4
L3

T (eC2s/(3T ) − 1)
3 .

Going back to f , this yields

∫ L

0

u21(x, s+ T ) + u22(x, s+ T ) dx ≤ C1

T
f(s) ≤ C5

L3

T 2

eC2s/T

(eC2s/(3T ) − 1)
3 , (5.86)

for 0 < T ≤ 1 and s ≥ 0. Now, if t ≤ 1, we choose s = T = t/2 so that

∫ L

0

u21(x, t) + u22(x, t) dx ≤ C
L3

t2
, (5.87)

where C is a constant and if t > 1 we choose T = 1/2 and s = t− 1/2 so that

∫ L

0

u21(x, t) + u22(x, t) dx ≤ CL3. (5.88)
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This proves the following:

Proposition 11. If U is a solution to (5.56), there exists a constant C > 0 such that∫ L

0

u21(t) + u22(t) dx ≤ CL3

(
1 +

1

t2

)
, ∀t > 0.

Weak convergence of the solution to (5.56)

We will now prove that the solutions to System (5.56) converge weakly to a vector valued

function, Û , and identify this limit. We consider a sequence of domain lengths {Ln}n∈N

such that Ln
n→∞−→ ∞, let Un be a solution to (5.56) in the domain (0, Ln) and let Ûn be the

correspondent rescaled solution to the spatial domain (0, 1), i.e., x = Lx̂, t = t̂ and

Û =
1

L
U
(
x̂, t̂
)
. (5.89)

We aim to show that there exists a subsequence of
{
Ûn

}
n∈N

associated with {Ln}n∈N

that converges strongly to some limit Û in a suitable space and to identify this limit. In

order to do that, we choose the temporal domain t ∈ (T−1, T ), T > 1, and notice that

Proposition 11 implies that, for i = 1, 2,

∫ Ln

0

u2n,i(T
−1) dx ≤

∫ Ln

0

u2n,1(T
−1) + u2n,2(T

−1) dx ≤ CL3
nT

2 ≤ C∗L3
n, (5.90)

where C∗ is a constant that is independent of n but depends on T . We also have, from

Proposition 9 and Equation (5.90),

∫ T

T−1

∫ Ln

0

u4n,i dx dt =

∫ T

T−1

∫ Ln

0

(
u4n,1 + u4n,2

)
dx dt

≤ CL
1
2
n

(
exp

(
T

2
C2

Ln
max(A2

12, A
2
21)

)∫ Ln

0

(
u21,n(T

−1) + u2,n(T
−1)
)
dx

) 3
2

≤ CL5
n,

and using the rescaling above, we obtain

∫ T

T−1

∫ 1

0

û4n,i dx̂ dt̂ ≤
∫ T

T−1

∫ 1

0

(
û4n,1 + û4n,2

)
dx̂ dt̂ ≤ C.

This means that both {û1,n}n∈N and {û2,n}n∈N are bounded sequences inL4 and therefore

there exist functions û1, û2 and subsequences, again labelled by û1,n and û2,n that are weakly
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convergent to û1 and û2 respectively, that is

ûi,n ⇀ ûi in L4((T−1, T ); L̇4
p([0, 1])),

û2i,n ⇀ ûi in L2((T−1, T );L2
p([0, 1])),

û3i,n ⇀ ûi in L4/3((T−1, T );L
4/3
p ([0, 1])),

û4i,n
∗
⇀ ûi in

(
C0([T−1, T ];C0

p([0, 1]))
)∗
,

(5.91)

for i = 1, 2, where the second, third and fourth weak convergences are up to oscillations

- see Appendix A.1. Furthermore, ûi has mean zero. Using the rescaling, equation (5.56)

becomes

Ûn,t̂ +

(
f(Ûn) +

A
Ln

Ûn +
I

L4
n

Ûn,x̂x̂x̂

)
x̂

= 0, x̂ ∈ (0, 1), t > 0 (5.92)

and the weak convergence of the solution for n→,∞ yields the distributional identity

û1,t̂ +
(

1
2
û21

)
x̂
= 0,

û2,t̂ +
(

1
2
û22

)
x̂
= 0,

(5.93)

which we can write as

Ût̂ +

(
Û2

2

)
x̂

(5.94)

We now define the function a(U) = 1
2
(u21 + u22) so that ∇a = U . Taking the inner

product of ∇a with equation (5.56) we obtain

(
u21 + u22

2

)
t

+

(
u31 + u32

3

)
x

+ u1u1,xxxx + u2u2.xxxx

+ A11u1u1,x + A12u1u2,x + A21u2u1,x + A22u2u2,x = 0, (5.95)

where Aij , i, j = 1, 2 are the entries of the matrix A. We note that

uuxxxx = (uuxxx)x − uxuxxx = (uuxxx)x − (uxuxx)x + u2xx,
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and therefore we obtain

(
u21 + u22

2

)
t

+

(
u31 + u32

3
+
A11u

2
1 + A22u

2
2

2
+ u1u1,xxx − u1,xu1,xx + u2u2,xxx − u2,xu2,xx

+(A12 + A21)u1u2)x = −u21,xx − u22,xx + A12u2u1,x + A21u1u2,x

= −u21,xx − u22,xx −
u21
4

− u22
4

−A2
12u

2
1,x −A2

21u
2
2,x +

(u2
2

+ A12u1,x

)2
+
(u1
2

+ A21u2,x

)2
≤
(u2
2

+ A12u1,x

)2
+
(u1
2

+ A21u2,x

)2
. (5.96)

We now consider equation (5.96) for the sequence of domains {Ln}n∈N and its solutions

{Un}n∈N and define a sequence of measures {μn}n∈N:

μn := μ1,n + μ2,n = −u21,n,xx −
u22,n
4

− A2
12u

2
1,n,x +

(u2,n
2

+ A12u1,n,x

)2
+

− u22,n,xx −
u21,n
4

− A2
21u

2
2,n,x +

(u1,n
2

+ A21u2,n,x

)2
≤
(u2,n

2
+ A12u1,n,x

)2
+
(u1,n

2
+ A21u2,n,x

)2
. (5.97)

We extend the rescaling (5.89) to the measures, by defining

μ̂n =
μn

L2
n

. (5.98)

We notice that this changes inequality (5.97); we now have

μ̂n ≤
(
û2,n
2

+
A12

Ln

û1,n,x

)2

+

(
u1,n
2

+
A21

Ln

û2,n,x

)2

.

We use Triangle inequality to obtain

∫ T

T−1

∫ 1

0

|μ̂n| dx̂ dt̂ = L−3
n

∫ T

T−1

∫ L

0

|μn| dx dt

≤ C1L
−3
n

∫ T

T−1

∫ L

0

u21,n,xx + u22,n,xx + u21,n + u22,n + u21,n,x + u22,n,x,

where C1 is a constant that depends on A12 and A21. Using Prop. 8 in all of the terms, we

obtain ∫ T

T−1

∫ 1

0

|μ̂n| dx̂ dt̂ ≤ C1C2L
−3
n

∫ T

T−1

u2n(T
−1) dt,
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where C2 is a constant that depends on the constants obtained from Prop. 8. We finally use

equation (5.90) and obtain

∫ T

T−1

∫ 1

0

|μ̂n| dx̂ dt̂ ≤ C1C2L
−3
n CL3

n = C∗, (5.99)

for a constant C∗, which proves that the sequence of measures {μ̂n}n∈N is bounded, and this

means that it has a weakly-∗ convergent subsequence:

μ̂n
∗
⇀ μ̂ in

(
C0
(
[T−1, T ];C0

p([0, 1])
))∗

. (5.100)

We can now apply the rescaling (5.89) to equation (5.96) and obtain

(
û21,n + û22,n

2

)
t̂

+

(
û31,n + û32,n

3
+
A11û

2
1,n + A22û

2
2,n

2Ln

+
A12 + A21

Ln

û1,nû2,n

)
x̂

+
1

L4
n

∑
i=1,2

(ûi,nûi,n,x̂x̂x̂ − ûi,n,x̂ûi,n,x̂x̂)x̂ = μ̂n,

or

(
û21,n + û22,n

2

)
t̂

+

(
û31,n + û32,n

3
+
A11û

2
1,n + A22û

2
2,n

2Ln

+
A12 + A21

Ln

û1,nû2,n

)
x̂

+
1

L4
n

(
û21,n + û22,n

2

)
x̂x̂x̂x̂

− 4

L2
n

(
û21,n,x + û22,n,x̂

)
x̂x̂

= μ̂n, (5.101)

where we left the last term in the left hand side partially rescaled, following [84]. This is

because then we can bound the sequence
{
u2i,n,x

}
n∈N

, i = 1, 2 in the following way:

∫ T

T−1

∫ 1

0

û2i,n,x dx̂ dt̂ = L−3
n

∫ T

T−1

∫ L

0

u2i,n,x dx dt ≤ CL−3
n

∫ L

0

u2i,n(T
−1) dx ≤ C, (5.102)

where C is a constant and we used Prop. 8 and inequality (5.90). We can similarly bound the

term
∫ T

T−1

∫ 1

0
u1,nu2,n dx̂ dt̂. This proves that all of the terms involving û in Equation (5.101)

are bounded and therefore possess a weakly convergent subsequence. This allows us to pass

to the limit n → ∞, when Ln → ∞, which gives us the distributional equation for the limit

Û : (
û21 + û22

2

)
t̂

+

(
û31 + û32

3

)
x̂

= μ̂. (5.103)
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We have now identified the limit towards which the solutions of System (5.56) converge

weakly. It remains to show that the convergence is strong. Once we have shown that, we will

also have ruled out oscillations, and therefore shown that the solutions of System (5.56) are

equivalent to the entropy solution of the following modified system of Burgers equations:

û1,t +

(
û21
2

)
x̂

= 0 (5.104a)

û2,t +

(
û22
2

)
x̂

= 0 (5.104b)(
û21 + û22

2

)
t

+

(
û31 + û32

3

)
x̂

≤
(
û2,n
2

+
A12

Ln

û1,n,x

)2

+

(
u1,n
2

+
A21

Ln

û2,n,x

)2

. (5.104c)

Remark 15. We notice that since all the weak convergence and boundedness resultses are

valid for ui and hi individually, we can use the same techniques to prove the convergence of

eah μi individually obtaining: (
û2
1

2

)
t̂
+
(

û3
1

3

)
x̂

= μ̂1,(
û2
2

2

)
t̂
+
(

û3
2

3

)
x̂

= μ̂2.
(5.105)

Strong convergence of the solutions to (5.56)

In order to prove strong convergence of the solutions to (5.56) to entropy solutions of (5.104),

we will follow [84] and use a standard compensated compactness argument based on the

div-curl structure of (5.56). We define Hn associated with the sequence {Ln}n∈N of do-

main lengths and the correspondent solutions {Un}n∈N using (5.65) with g(t) = 0, again

normalised so that ∫ T

T−1

∫ L

0

hi,n dx dt = 0. (5.106)

We rescale H: Hn = L2
nĤn, so that equations (5.65) become

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ĥ1,n,t̂ = −
(

1
2
û21,n +

1
Ln

(A11û1,n + A12û2,n) +
1
L4
n
û1,n,x̂x̂x̂

)
,

ĥ2,n,t̂ = −
(

1
2
û22,n +

1
Ln

(A22û2,n + A21û1,n) +
1
L4
n
û2,n,x̂x̂x̂

)
,

ĥ1,n,x̂ = û1,n,

ĥ2,n,x̂ = û2,n.

(5.107)
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Repeating the proof of Prop. 10 for the rescaled equation, we obtain

|ĥi,n(x1, t1)− ĥi,n(x2, t2)| ≤

≤ C
(
|x1 − x2|

1
2 + |t1 − t2|

1
2 (Aii + Aij)

1
2 + |t1 − t2|

1
3 + L

− 1
2

n |t1 − t2|
1
8

)
, (5.108)

which means that the sequence of functions
{
ĥi,n

}
n∈N

, i = 1, 2 is equicontinuous. From

equation (5.106) we know that it is also uniformly bounded and therefore we can apply the

Ascoli-Arzelá theorem - see Appendix A.1 - and prove strong convergence of Ĥ:

ĥi,n −−−→
n→∞

ĥi, in C0
(
[T−1, T ];C0

p([0, 1])
)
. (5.109)

Using (5.91), the system (5.107) turns into the distributional identity⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ĥ1,t̂ = − û2

1

2
,

ĥ2,t̂ = − û2
2

2
,

ĥ1,x̂ = û1,

ĥ2,x̂ = û2.

(5.110)

We now recall equation (5.70) with g(t) = 0. We have, after rescaling some of the terms,

1

12

∫ T

T−1

∫ 1

0

(
û41,n + û42,n

)
dx̂ ζ dt̂+ L−5

n

∫ T

T−1

∫ L

0

(
u31,n,x + u32,n,x

)
dx ζ dt

+
L−5
n

2

∫ T

T−1

∫ L

0

u1,nu2,n (A12u1,n + A21u2,n) dx ζ dt = −
∫ T

T−1

∫ 1

0

μ̂1,nĥ1,n dx̂ ζ dt̂

−
∫ T

T−1

∫ 1

0

μ̂2,nĥ2,n dx̂ ζ dt̂−
∫ T

T−1

∫ 1

0

1

2

(
û21,nĥ1,n + û22,nĥ2,n

)
dx̂ ζt dt̂. (5.111)

We can bound the term involving |ui,n,x|3 using Prop. 8 and equation (5.90), in the same

way as in [84]:

L−5
n

∫ ∞

0

∫ L

0

(
|u1,n,x|3 + |u2,n,x|3

)
dx ζ dt ≤ CL

− 1
2

n .

In order to be able to pass to the limit, we need the terms of the form u2i,nuj,n to converge
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weakly. This can be shown using Hölder’s inequality

L−5
n

∫ L

0

u2i,nuj,n dx ≤ L−5
n

(∫ L

0

u4i,n dx

) 1
2
(∫ L

0

u2j,n dx

) 1
2

(5.112)

combined with Prop. 9 and Prop. 8:

L−5
n

∫ T

T−1

∫ L

0

u2i,nuj,n dx ≤ L−5
n

(∫ T

T−1

∫ L

0

u41,n + u42,n dx

) 1
2

(
sup

t∈(T−1,T )

∫ L

0

u21,n + u22,n dx

) 1
2

≤ L−5
n CL

1
4
n

(∫ L

0

u21,n(T
−1) + u22,n(T

−1) dx

) 3
4
(∫ L

0

u21,n(T
−1) + u22,n(T

−1) dx

) 1
2

≤ C∗L−5
n (L3

n)
3
4 (L3

n)
1
2 = C∗L−1

n , (5.113)

where C∗ is a constant that depends on T and on the constants obtained from the various

inequalities. Therefore we can pass to the limit in equation (5.111) and obtain

1

12

∫ T

T−1

∫ 1

0

(
û41 + û42

)
dx̂ ζ dt̂ = −

∫ T

T−1

∫ 1

0

μ̂1ĥ1 dx̂ ζ dt̂−
∫ T

T−1

∫ 1

0

μ̂2ĥ2 dx̂ ζ dt̂

−
∫ T

T−1

∫ 1

0

1

2

(
û21ĥ1 + û22ĥ2

)
dx̂ ζt dt̂.

Using equation (5.105), we obtain

1

12

∫ T

T−1

∫ 1

0

(
û41 + û42

)
dx̂ ζ dt̂ = −

∫ T

T−1

∫ 1

0

[(
û21
2

)
t̂

+

(
û31
2

)
x̂

]
ĥ1 dx̂ ζ dt̂

−
∫ T

T−1

∫ 1

0

[(
û22
2

)
t̂

+

(
û32
2

)
x̂

]
ĥ2 dx̂ ζ dt̂−

∫ T

T−1

∫ 1

0

1

2

(
û21ĥ1 + û22ĥ2

)
dx̂ ζt dt̂.

The rest of the proof follows [84] exactly: f we write (ûi,n− ûi)4 = û4i,n−4û3i,nûi+6û2i,nû
2
i −

4ûi,nû
3
i + û

4
i and use the distributional identity (5.110), we can prove that each ûi,n converges

to ûi in norm in L4, which means that the solutions to System (5.56) converge strongly to

the solution of the modified System (5.104).
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5.3.4 Boundedness of the solutions to a system of inviscid Burgers equa-

tions

We now turn to a special case of equation (5.104), when the measure is actually zero valued:

û1,t +

(
û21
2

)
x̂

= 0 (5.114a)

û2,t +

(
û22
2

)
x̂

= 0 (5.114b)(
û21 + û22

2

)
t

+

(
û31 + û32

3

)
x̂

≤ 0. (5.114c)

We notice that in this case, the equations are decoupled. This means that essentially we

have two independent systems of Burgers equations and the proof of boundedness of this

system follows the same argument as the one given in [84, Prop. 2.3]. The proof is based on

defining H as in equation (5.65) and exploring the div-curl structure of the system to prove

uniform integrability and a priori energy estimates for its solutions. We then only need to

repeat the proof of Prop. 11 for this case, to prove that there exists a constant C such that the

solution the solutions of (5.114) rescaled to x ∈ (0, 1) satisfy

∫ 1

0

û21(x̂, t̂) + û22(x̂, t̂) dx̂ ≤ C

t
,

for all t > 0.

Equivalence between System (5.104) and a system of inviscid Burgers equa-

tions

The last step of the proof of boundedness of the solutions to System (5.104) would be to

use the bounds on System (5.114) to our advantage. In the scalar KS equation case, it is

possible to show ([138, Cor. 2.5], [84, Thm. 2.2]) that solutions of the system corresponding

to (5.104) are also solutions to the system corresponding to (5.114). However, the proof uses

the fact that, for scalar equations, the existence of an entropy solution of a system implies

the existence of a viscosity solution for an associated system, a fact which is not possible to

show in our case.
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A proof of this fact would provide us with the last tool we would need for proving that

the solutions to system (5.56) are bounded and therefore we believe that this is a project of

interest, to study in the future. Possible ways of addressing it would be to use the gener-

alisation of viscosity solutions for systems of equations [143] or to make use of a Green’s

function of the linear operator, if it exists.

5.4 Discussion

In this chapter we have analysed two particular cases of the general system of coupled

Kuramoto-Sivashinsky equations that was studied in [168, 169]. These systems are weakly

nonlinear models for three layer flows of immiscible viscous fluids stratified in a channel

and driven by gravity and/or a streamwise pressure gradient. Due to the additional complex-

ity that comes from the coupling, either through linear terms (first, second or fourth order

derivatives) or the nonlinearities, the dynamics of these systems is very rich and in fact in-

stabilities can emerge even in the absence of inertia, unlike analogous two-fluid flows. As

a result, analytical results on global existence and estimates of solution norms, for example,

are poorly understood.

We therefore started by looking at the possible bounds of the solutions to these systems.

Computational studies in [168] suggest that the solutions to these systems are bounded and

that these bounds do not depend on the domain length L. We took two particular cases: the

first, simpler, case is the most similar to the scalar Kuramoto-Sivashinsky equation studied

in Chapter 2 - the coupling comes only through the second order derivatives; and the second

is a more realistic model for three layer flows in the vanishing viscosity limit, where there

are no second order derivatives, and instead the coupling is via first order derivatives.

In the first case, we used the well-known background flow method ([50, 159]), which

was the first successful method to obtain bounds for the scakar KS equation. This consists

in defining a function Φ, called the background flow, in an appropriate manner, and using its

properties, associated with a Lyapunov type argument to obtain bounds on the solutions to

the equation/system of equations and its derivatives. The bounds obtained with this method

are not optimal, but nevertheless they gives us an insight not only on the boundedness of the

solutions but also on their regularity, given appropriate regularity in the initial conditions. We

were successful in obtaining bounds for the particular case presented here, and anticipate that

the same method can be used in the case where the coupling is through even order derivatives
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(either fourth order, or second and fourth order simultaneously).

Having these bounds on the solutions to System (5.1) and its derivatives, we were in

a position where we could generalise our results for the scalar KS equation presented in

Chapter 2 to this case. We proved that we can stabilise all the solutions to System (5.1),

either the zero solution or any steady state or travelling wave solution. We show results for

the first two cases and anticipate similar numerical results for travelling waves. Finally, we

also show how to extend the proof of existence of an optimal (distributed) control for this

problem, by extending the proof of Theorem 1 to systems of coupled KS equations. We did

not generalise the algorithm presented in Section 2.4.2 to this case, but we expect it to work

similarly well here too.

In the second case, the coupling through the first derivatives makes the system harder to

analyse using the background flow method, due to the existence of complex eigenvalues as-

sociated with complicated eigenfunctions. We therefore used the entropy method presented

in [84] for the scalar KS equation. This method uses the fact that we can write the KS equa-

tion as a perturbation of an inviscid Burgers equation. This equation possesses an entropy

solution and this fact, together with the fact that modified systems of the same form are all

equivalent, is crucial for the proof of the bounds. We found that we can extend most of the

results presented in this reference to our case, but we cannot prove the equivalence between

different systems of entropy solutions to the Burgers equations. This is the only remaining

step to prove boundedness of System (5.56) and we leave it for future work.

More generally, the nonlinear terms are also coupled and can cause hyperbolic-elliptic

transitions by supporting complex eigenvalues of the nonlinear flux functions, see [168]. The

study of this case would be a nice extension of the results proved in Section 5.3.
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Chapter 6

Conclusions

This chapter provides a summary of the work presented in this thesis. We discuss the results

obtained in each chapter, for weakly nonlinear models, long-wave models and stochastic

equations. Finally, we discuss possible future directions for each problem.
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6.1 Summary of results and main findings

In this thesis, we studied the problem of controlling the solutions of various nonlinear PDE

models that describe the evolution of the free interface in thin liquid films flowing down

inclined planes. We use a variety of models, ranging from weakly nonlinear models such as

the Kuramoto-Sivashinsky equation and reduced-order long-wave models (Benney equation

and weighted-residual model) and, when possible, the 2-D Navier–Stokes equaions; and also

add the effects of noise. The problem is addressed analytically, and when this is not possible

we perform extensive numerical calculations using spectral methods or finite differences for

the space discretisation and a second order BDF method for time-stepping.

For the particular case of weakly nonlinear models (the KS equation and its generalisa-

tions), it is possible to obtain analytical results on the controllability of the whole range of

regimes that the equations allow. We show, using a Lyapunov argument, that we can use

point actuated controls to drive the solution of this equation towards any desired state: the

zero solution, nontrivial steady states, and travelling wave solutions. If we allow the controls

to have a distributed component, we can also drive the system towards any periodic state of

our choosing. We have also shown that the controls are robust with respect to uncertainty in

the parameters of the model, and also to small changes in the number of control actuators

we apply. Finally, we prove the existence of a distributed optimal control and propose an

algorithm based on gradient descent methods to compute the optimal positions of the con-

trol actuators. We note that we assumed that complete information about the solution of the

gKS equation is available in these models. This is not realistic, but we feel that this would

be a trivial generalisation of [7], and therefore decided not to do it here and apply it to the

long-wave models instead.

Due to the complicated nonlinearities present in the long-wave models, it is not possible

to obtain analytical results on controllability of the fully nonlinear systems and therefore

we started by considering distributed controls, which are proportional to the deviation be-

tween the current state and the desired state of the system. We performed a linear stability

analysis to show that this simple control scheme has a stabilising effect on the uniform film

state in both Benney and weighted-residual models, and also in the Navier–Stokes equations.

Furthermore, we found that proportional controls can also be used to stabilise unstable trav-

elling waves and non-uniform steady states. We proceeded to apply the controls in nonlinear

simulations and found that the controls indeed stabilise the fully nonlinear system. In the
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more realistic scenario, where the controls can only be delivered via a small number of lo-

calised actuators and full observations of the full state of the solution are not available, we

use dynamic observers to estimate the full solution and use this estimate for the design of the

controls. We find that this point actuated control strategy is quite efficient for the stabilisation

of the flat solution, but not immediately generalisable for nontrivial solutions.

We then proceeded to study the control of these equations in the presence of noise. The

models we consider are variations of the stochastic Kuramoto-Sivashinsky equation, arising

in thin films with thermal fluctuations or surface roughening by ion sputtering processes. For

these equations, the goal is usually to be able to control some face value such as its surface

roughness. We proposed a splitting method that turns the nonlinear stochastic PDE into a

linear stochastic PDE coupled to a nonlinear deterministic PDE with random coefficients.

We show that using this method we can use periodic controls to drive the system to a trajec-

tory that has any desired surface roughness and furthermore we can also control its shape.

When using point actuated feedback controls, the problem is harder to solve but we show

that we can still drive the system to a range of desired surface roughness values. In order to

solve this problem, we also had to formulate and solve a matrix problem, similar to a matrix

Lyapunov equation and we developed an algorithm to do so.

Finally, we studied systems of coupled Kuramoto-Sivashinsky equations. We considered

two particular cases of a general system of conservation laws: in the first case, we were able

to obtain bounds on the solutions of the system, and also on their derivatives. This in turn

allowed us to extend the results obtained for the generalised Kuramoto-Sivashinsky equation

to this problem: we proved that we can use point actuated feedback controls to stabilise

the full range of solutions to this system and exemplified it with numerical simulations.

Furthermore, we extended the proof of existence of optimal controls to this case. In the

second particular case, the proof of boundedness of the solutions is considerably harder, due

to the nature of the coupling. We were able to generalise most of the results available for the

scalar KS equation when using the entropy method to bound its solutions, and the only thing

we fail to show is the equivalence between two systems of inviscid Burgers equations.

6.2 Current and future work

One of the objectives of this thesis was to design a control system that is valid in the full 2-D

Navier–Stokes equations and therefore can be used in thin film experiments. While we have
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derived controls that are effective at least in the linear stability analysis of these equations,

there are still a few obstacles we need to overcome before we can be sure that the controls

will work in a physical system and that we would like to be able to address.

First of all, it would be interesting and useful to investigate analytically the effect of the

feedback controls derived here on nonlinear stability and blow up phenomena in the Benney

equation and the weighted-residual model. We also do not know that the controls will sta-

bilise the solutions in nonlinear simulations of the Navier–Stokes equations, and therefore

applying our controls in Direct Numerical Simulations (DNS) of the Navier–Stokes equa-

tions is something we wish to do in the future. Another barrier to the application of these

controls is that real experiments are nearly always performed in channels with rigid bounding

side walls. Side walls are responsible for the appearance of curved wave fronts [224] even

for channels much wider than the fluid depth, and the stability boundary can be surprisingly

sensitive [175] to the conditions governing the three-phase contact line where air, liquid and

wall meet. Furthermore, if the control actuation is applied close to the walls, we might also

expect complex interactions.

Our analysis has also assumed either a domain of infinite extent in the streamwise di-

rection or periodic boundary conditions. However, experiments are actually performed on a

wall of finite extent. Fluid enters the domain at an inlet at which periodic perturbations can

be applied. It then takes some distance for the waves to reach their fully developed state,

and eventually the fluid is allowed to fall from the plane at the outlet. This case is a more

realistic possibility for future work, and in fact it has already been studied for weakly non-

linear models including the KS equation and also the well-known Korteweg-de-Vries (KdV)

equation (see, e.g., [38], where the authors explore the controllability of the system using

both distributed controls and controls acting in the inlet, or both in the inlet and outlet walls).

For practical implementation, we would envisage observing the interface in the developed

region, and also applying feedback there. It is therefore important that feedback is quickly

applied, so that it is able to take effect before waves pass out of the region of interest. We

note that it is possible to simulate the whole system, including inflow and outflow regions,

in both Navier–Stokes and long-wave computations.

In addition to exploring the effects of side walls and inlet and outlet regions, future work

could also include assessing the effect of noise and uncertainty in the long-wave and Navier–

Stokes models, either in a similar manner to what was done in Chapter 2 for the robustness
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study of the controls applied to the Kuramoto-Sivashinsky equation, or by considering ver-

sions of the long-wave models that include the effects of noise. These were derived for the

case when the noise is provenient from thermal fluctuations in [60, 96].

Other interesting case studies would be to consider numerical experiments incorporating

restrictions on the control scheme to reflect latency in flow visualization, data processing,

and the application of feedback, but overall, we are hopeful that practical implementation of

feedback control for thin film flow can soon be achieved.

6.2.1 Using temperature as the actuation method

The focus of the current work was on using feedback controls applied via blowing and suc-

tion at the wall, but the methodology developed here could be extended to other types of

actuation, such as substrate heating, which would be easier to implement in practice. This is

a subject that we are actively exploring.

In this case, we wish to apply the controls via prescribing the temperature or heat flux

at the wall, which will in turn react to the evolution of the fluid flow, ideally to observa-

tions of its interface. The first step is, therefore, to derive evolution equations that account

for nonuniform wall temperature that varies in both space and time. Non isothermal flows

introduce extra non dimensional parameters, such as the Péclet number, that measures the

relative importance between convection and diffusion of the temperature, the Biot number,

which measures how temperature is lost to the wall and/or the air, and the Marangoni number,

which prescribes how the evolution of the temperature affects surface tension and therefore

the evolution of the interface.

The first problem we encounter is that in this case we cannot restrict ourselves to first

order long-wave models. For example, the first order Benney equation does not even account

for the effects of large Péclet numbers on the temperature evolution equation and therefore

will not give accurate results. Furthermore, in the weighted-residual model we find that for

large Péclet numbers, prescribing distributed proportional controls stabilise long-waves but

have a destabilising effect in short waves, and therefore we run the risk of obtaining an ill-

posed model. Trevelyan and Kalliadasis [210] developed a high-order Galerkin projection

model for the temperature equation which solves this problem for constant heating at the wall

and we are studying variations of this model to account for spatiotemporal variation of the

prescribed temperature. We obtained several models, using a Benney-type approach, as well



6.2 Current and future work 198

as a weighted-residual approach and a single integral approach. In the latter case, we obtain

an equation for the evolution of the interface temperature in which the wall temperature only

appears as a forcing term and which gives satisfactory results for the case of a flat film which

is decoupled from the evolution of the interface temperature. This can be achieved by setting

the Marangoni number to zero.

We aim to generalise this model to nonuniform films and to the case when the system

is fully coupled, and to validate our models with direct numerical simulations. Once this is

done, we can study the effects of different types of controls in this model. There are still a few

challenges in the derivation of these controls: the first one being the fact that temperature is

advected within the fluid, and therefore heating effects are felt downstream of its actuation.

This is particularly important for point actuated heating. Furthermore, there is a time lag

between the actuation and the instant when the interface feels the effects of the controls. We

can see these as shifts, in time and space, and take them into account on the derivation of the

controls: the first shift needs to be taken into account in the position of the control actuators

and the time shift needs to be taken care of via, e.g., delayed control effects [158].

This is work in progress, in collaboration with Dr Alice Thompson, Dr Michael Dallaston

and Dr Fabian Denner.

6.2.2 Non-normal operators

Another characteristic of the linear operators of the PDEs we considered is that they are

mostly self-adjoint, or at least normal operators. We have seen in the context of the stochas-

tic Kuramoto-Sivashinsky equation that non-normal operators can lead to complications in

the analysis of stochastic systems, and in fact this is also true for deterministic systems.

It is known [22] that non-normal operators are responsible for transient growth similar to

that obtained from nonlinear interactions and this lead to the study of generalised stability

theory [69, 70] and optimal perturbations [59, 71].

Non-normal operators arise, for example, in the modelling of a counter-current gas-liquid

film flow. Models for this particular physical phenomenon were derived by Tseluiko and

Kalliadasis [215], where the authors obtain a weakly nonlinear model of the interface, by

isolating the gas problem. They obtain a modified Kuramoto-Sivashinsky equation with an

extra dispersion term (which is given in terms of its Fourier representation) that gives rise to

the non-normal aspect of the operator. This problem was studied numerically in [140] and
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the study of its absolute and convective instabilities can be found in [221]. In the case of

co-current gas-liquid flow, the problem was studied experimentally in [235].

This is an interesting future problem, to which we expect our control methodology to

extend naturally.
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Appendix A

Background

Throughout this thesis, we use some well-known results in functional analysis, (feedback

and optimal) control theory and linear algebra. Here we will state the relevant results, and

also the relevant literature concerning these topics.

A.1 Functional analysis

Here we state some basic definitions and properties of functional spaces that will be useful

throughout our analysis of the proposed feedback control problems. This will be splitted

in three sections: first we define the functional spaces of interest to us, followed by the

definition of functional derivatives and finally by the definition and properties of the Hilbert

transform operator. Further details can be found in nonlinear functional analysis textbooks,

and we suggest [47, 185, 236].

A.1.1 Functional spaces

Throughout this thesis, we make use of the properties of some appropriate functional spaces.

We particularly use the following spaces:

- L̇2
p(0, 2π), the space of periodic, mean zero functions f(x) in L2(0, 2π),

- Ḣs
p , the periodic, mean zero Sobolev space of order s, which is the space of all

functions f(x) in L̇2
p(0, 2π) which possess weak derivatives of order up to s also in

L̇2
p(0, 2π).
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- L2(0, T ;X) (or Hs(0, T ;X)), where X is either L̇2
p(0, 2π) or Ḣs

p(0, 2π) is the space

of all functions f(x, t) which are L2 (or Hs) functions of time.

The following inequalities are valid in the aforementioned spaces, for I = [0, L]:

Poincaré’s inequality: if u ∈ Ḣ1
p (I), then

‖u‖L2(0,L) ≤
L

2π
‖ux‖L2(0,L);

Gronwall’s inequality: Let x(t) ∈ R satisfy the differential inequality

dx

dt
≤ g(t)x+ h(t).

Then

x(t) ≤ x(0)eG(t) +

∫ t

0

eG(t)−G(s)h(s) ds,

where

G(t) =

∫ t

0

g(s) ds.

Hölder’s inequality: let 1 < p < ∞ and 1
p
+ 1

q
= 1 and suppose that f ∈ Lp(I) and

g ∈ Lq(I). Then fg ∈ L1(I) and

‖fg‖L1(I) ≤ ‖f‖Lp(I)‖g‖Lq(I);

Nirenberg-Gagliardo interpolation inequality: Fix 1 ≤ q, r ≤ ∞ and a natural num-

ber m and suppose that there exist α ∈ R and j ∈ N such that

1

p
= j +

(
1

r
−m

)
α +

1− α

q
,

with
j

m
≤ α ≤ 1.

If u ∈ Lq(R) and Dmu ∈ Lr(R), then Dju ∈ Lp(R) and there exists a constant C depending

only on m, j, q, r and α such that

‖Dju‖Lp ≤ C‖Dmu‖αLr‖u‖1−α
Lq ,



A.1 Functional analysis 224

where Dku stands for the k−th derivative of u.

We also huse Young’s inequality: if a, b ≥ 0 and p, q > 1 with 1
p
+ 1

q
= 1, then

ab ≤ εap + ε−
q
p bq.

The Sobolev embedding theorem is helpful when obtaining L∞ bounds. For functions

of one variable, it reads: Let Ω be a bounded Ck domain in R and suppose that u ∈ Hk(Ω).

(a) if k < 1
2

then u ∈ L
2

1−2k (Ω) and there exists a constant C such that

‖u‖
L

2
1−2k

≤ C‖u‖Hk ,

(b) if k = 1
2

then u ∈ Lp(Ω) for 1 ≤ p < ∞ and for each p there exists a constant

C = C(p) such that

‖u‖Lp ≤ C‖u‖Hk ,

(c) if k > j + 1
2

then u ∈ Cj(Ω̄) and there exists a constant Cj such that

‖u‖Cj(Ω̄) ≤ Cj‖u‖Hk .

Since Ω is bounded, it follows trivially that u ∈ Lp(Ω) for 1 ≤ p ≤ ∞.

For periodic functions, this means, in particular, that: if u ∈ Hs(I) (where I = (0, L)) with

s > 1
2

then u ∈ C0(Ī) and there exists a constant Cs such that

‖u‖∞ ≤ Cs‖u‖Hs .

Furthermore, if s > j + 1
2

then u ∈ Cj(Ī) and

‖u‖Cj ≤ C‖u‖Hs .

The Ascoli-Arzelá theorem allows us to extract strongly convergent subsequences from

sequences of functions: let X be a compact subset of Rm1 and let {fn} be a sequence of

continuous functions from X into Rm2 . If fn is uniformly bounded, that is, there exists a

constant M such that

‖fn‖∞ ≤M, ∀n,
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and equicontinuous, that is, for every ε > 0 there exists a δ > 0, independent of n, such that

|x− y| ≤ δ ⇒ |fn(x)− fn(y)| ≤ ε,

then {fn} has a subsequence that converges uniformly in X .

Finally, we also use some properties of weak and weak-∗ convergence. We say that a

sequence {xn} of elements of a Banach space X converges weakly to x̂ ∈ X , and write

xn ⇀ x̂ if f(xn) → f(x̂) for every f ∈ X∗, where X∗ is the dual space of X . It is known

that:

- strong convergence implies weak convergence, and weak limits are unique,

- bounded sequences have a weakly convergence subsequence,

- linear functionals f of weakly convergent sequences {xn} converge weakly to f(x̂).

The concept of weak-∗ convergence is useful for elements of the dual space X∗: a sequence

{fn} of elements in X∗ converges weakly-∗ to f̂ ∈ X∗, and write fn
∗
⇀ f̂ , if fn(x) →

f̂(x), ∀x ∈ X . It is known that weak-∗ limits are unique, weak convergence implies weak-∗

convergence, and if X is reflexive, weak-∗ convergence implies weak convergence.

In Chapter 5, we prove that nonlinear (continuous) functionals f of the sequences ui,n

(e.g. u2i,n), converge to a correspondent function f(ûn) (e.g. û2n). These functions are de-

fined using the Young measure associated with the sequence. These are defined as fol-

lows: let {un}∞n=1 be a bounded sequence of L∞ functions. Then there exists a subsequence{
unj

}∞
j=1

⊂ {un}∞n=1 and for almost every x a Borel probability measure μx on R such that

for each f ∈ C(R) we have f(unj
)

∗
⇀
∫
R f(y)dμx(y) in L∞. The measures μx are called the

Young measures generated by the sequence {un}∞n=1.

A.1.2 Functional derivatives

In the context of optimal control for systems governed by PDEs (see below), in order not only

to obtain solutions for these problems, but also to be able to prove existence of such solutions

and study their regularity properties, there is the need to generalise the notion of derivative

of a real-valued function to that of functional derivatives. Here we state the definition of

Fréchet and Gâteaux derivatives, which generalise the derivative of a real-valued function

and the classical directional derivative, respectively.
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In what follows, we will use the little-o notation: for a function r ∈ U ⊂ X → Y ,

r(h) = o(‖h‖) ⇔ r(h)

‖h‖ −−−−→
‖h‖→0

0,

r(h) = o(1) ⇔ r(h) −−−−→
‖h‖→0

0.

Let X and Y be two normed spaces and let f : U(u0) ⊂ X → Y , where u0 ∈ X

and U(u0) is a neighbourhood of u0 and is an open subset of X . We say that f is Fréchet

differentiable in u0 if there exists a linear operator F : X → Y such that

f(u0 + h)− f(u0) = Fh+ o(‖h‖) (A.1)

for h ∈ X . If F exists, it is called Fréchet derivative of f at u0 and we write f ′(u0) := F .

Alternatively, we can also write

lim

u → u0

u �= u0

‖f(u)− f(u0)− (F (u0), u− u0)‖Y
‖u− u0‖X

= 0 (A.2)

for u ∈ X and where ‖ · ‖X represents the norm in X and (·, ·) is the corresponding inner

product.

Similarly, f is Gâteaux differentiable at u0 if there exists a linear operator F : X → Y

such that

f(u0 + th)− f(u0) = tFh+ o(t) (A.3)

for all h ∈ X such that ‖h‖ = 1. In this case, F is called the Gâteaux derivative of f at

u0, and we also write f ′(u0) := F . As for the case of real-valued functions, if a Fréchet (or

Gâteaux) derivative exists for all u0 ∈ U , then f ′ : U ⊂ X → L(X, Y ), u �→ f ′(u), where

L(X, Y ) is the space of all linear functions from X to Y , is called the Fréchet (or Gâteaux)

derivative of f in U .

We notice that Gâteaux differentiability is a weaker concept than Fréchet differentiability

in the sense that it does not imply continuity. Furthermore, a Fréchet differentiable function

is always Gâteaux differentiable, but the converse is not always true.

The usual properties of derivatives of real-valued functions are easily generalised for

Fréchet derivatives - see [47] for details. We can also use these definitions to generalise the
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notion of second (and higher order) derivatives, which would be useful, for instance, if we

were interested to find sufficient conditions for existence of optimal controls.

A.1.3 Hilbert transform

The Hilbert transform operator is defined by

H[u](x) =
1

π
PV

∫ ∞

−∞

u(ξ)

x− ξ
dξ, (A.4)

where PV means that the integral is understood in the sense of Cauchy principal value. It is

a linear, invertible and bounded operator in both the Lebesgue space L2(R) and the Sobolev

spaces Hk(R).

In the periodic space L̇2
p(0, 2π) (or Ḣk

p (0, 2π)), it is defined instead by

H[u](x) =
1

2π
PV

∫ 2π

0

u(ξ) cot

(
x− ξ

2

)
dξ.

We note some of its properties, wich are useful to our analysis:

∂x ◦ H = H ◦ ∂x (A.5a)

H−1 = −H (A.5b)∫
u(x)H[v](x) dx = −

∫
v(x)H[u](x) dx (A.5c)

F [H[u]](k) = −i sign(R(k))F [u](k). (A.5d)

From Equation (A.5d) we can deduce that H[sin](x) = − cos(x) and H[cos](x) = sin(x).

A.2 Control theory

Here we state some basic definitions from control theory and outline two of the available

algorithms for pole placement; further details can be found in [234]. We consider the linear

system

ż = Az +Bu, y = Cz, (A.6)

where A, B and C are N ×N , N ×M and M × P matrices, respectively. We will say that

a matrix A is stable if all its eigenvalues have negative real part.
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We will call the system (A.6), or the pair (A,B), controllable if there exists a matrix K

such that A + BK is stable. If the system is controllable, we can always obtain the state

z∗ by taking u = K(z − z∗), regardless of initial conditions. Similarly, we say that system

(A.6), or the pair (A,C), is detectable if there exists a matrix L such that A + LC is stable.

If the pair (A,C) is detectable, then (AT , CT ) is controllable.

The Kalman Rank condition gives a necessary and sufficient condition on A and B for

controllability, and therefore detectability. This condition states that the system (A.6) is

controllable if and only if rank[A|B] = N , where

[A|B] = [B AB A2B · · · AN−1B]

is a N ×NM matrix obtained by writing consecutively the columns of the matrices An−1B,

n = 1, . . . , N .

The natural choice when constructing controls based on the observations y would be to

choose a matrix K such that the matrix A + BKC is stable. Controls that can be written in

the form u = Ky are called static output feedback controls. However, for nontrivial B and

C, it is not possible, in general, to construct a matrix K so that A + BKC is stable. This

difficulty motivates the construction of the dynamic observers presented in Sec. 3.3.4.

A.2.1 Pole placement algorithms

We used two different algorithms to compute the matrix K associated with the stabilisation

of the chosen solutions to our PDEs and we summarise them here.

MATLAB’s command place

MATLAB’s command place is designed for the system

dz

dt
= Az +Bu, u = Kz, (A.7)

where z and u are vectors, the matrices A and B are given and we wish to compute a matrix

K such that the eigenvalues of A + BK are a given set p = {λ1, . . . , λN}. The algorithm

is based on [123] and requires that if the eigenvalues in p are complex then they must be

complex conjugates and also that their multiplicity cannot exceed that of the rank of B (or
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equivalently to our case, the number of control inputs).

The solution to this problem is not unique, and this algorithm computes the matrix K

which minimises the condition number of the matrix X of eigenvectors of A + BK. This

means that K also minimises the sensitivity of the closed-loop poles to perturbations in the

matrices A or B, which allowed us to prove the robustness results in Section 2.2.2.

This algorithm was our first choice when dealing with the stabilisation of the solutions

to weakly nonlinear models, since it allows us to choose the eigenvalues of the stabilised

system. This was necessary since we needed to make sure that inequalities such as the one

in Equation (2.26) were verified. If there is no need to specify the eigenvalues of the closed-

loop system, then algorithms such as the LQR algorithm are more adequate.

The LQR algorithm

The Linear-Quadratic Regulator (LQR) algorithm is designed for system (A.7), but in this

case the goal is to choose the matrix K in order to minimise the cost κ defined by

κ =

∫ ∞

0

(
zTUz + uTV u

)
dt, (A.8)

where U and V are given symmetric, positive definite matrices that define the relative cost

associated with different solution components. A minimiser K of the cost (A.8) subject

to the system (A.7) is strongly connected to a solution, if it exists, of an algebraic Riccati

equation:

U + PJ + JTP − PBV −1BTP = 0, (A.9)

in which the unknown P is a nonnegative definite matrix. If P̃ is a solution to (A.9) and

P̃ − P is negative definite for all other solutions P , then P̃ is called a minimal solution

to (A.9) and K = −V −1BT P̃ minimises the cost functional (A.8). Furthermore, in [234],

it is proved that if the pair (A,B) is controllable and U = CTC, where the pair (A,C)

is observable then the algebraic Ricatti equation (A.9) has exactly one solution P , and the

matrix A− BV −1BTP is stable.

MATLAB’s LQR algorithm requires that the pair (A,B) is controllable and (U,A) has no

unobservable modes on the imaginary axis. These conditions are equivalent to the unique-

ness of solutions of (A.9), which means that the matrix P is unique. It then computes the

matrix K by solving the associated Riccati equation (A.9) and outputs both K, the matrix P
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and the eigenvalues of the closed-loop system.

A.3 Optimal control of PDEs

Here we state some basic results from the theory of optimal control of PDEs that are useful

for the construction of our algorithm to find the optimal position of the point actuators. This

is an area that has seen considerable progress in the last decade, and for a comprehensive

study of the most general results on this field see [141, 211]. There, one can find proof of

existence of an optimal control for general PDEs, as well as uniqueness of such controls in

the case when the problem is convex. These results assume that the nonlinearities present

in the problem are Lipschitz continuous and Fréchet differentiable. We adapted the proof

of existence of an optimal control to the case when the nonlinearity is of the form uux in

Chapter 2.

The problem we considered can be generally written in the form

minimise C (u, f) (A.10a)

subject to ut +Au+N (u) = f(x, t), (A.10b)

u(x, 0) = u0(x) ∈ Ḣ2
p (0, 2π), (A.10c)

∂ju

∂xj
(x+ 2π) =

∂ju

∂xj
(x), (A.10d)

f ∈ Fad, (A.10e)

where C is a quadratic cost, A is a linear operator, j = 0, 1, . . . , k (k is the highest order

derivative present in A), N is the nonlinearity (which may depend on ux) and Fad is the

space of admissible controls, usually a bounded and convex subset of L2.

In this case, one can write the cost functional as a function of the control f only, by

defining a control-to-state operator G such that u = u(f) = G(f). Using this, we can obtain

a reduced cost functional

J (f) := C(G(f), f) = C(u, f).

Under the correct assumptions on the operators involved, the functional J is Fréchet differ-
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entiable, and therefore we can take its derivative to obtain the variational inequality

J ′(f̄)(f − f̄) ≥ 0, ∀f ∈ Fad, (A.11)

which needs to be verified by any locally optimal control f̄ . Using the chain rule, one can

write the variational inequality (A.11) in terms of f̄ , ū = G(f̄) and u, where u is the solution

to a linearised version of the state equation, which can be eliminated by means of an adjoint

state p(x, t). It can then be proved that the variational inequality (A.11) can be written in the

form ∫ T

0

∫ 2π

0

(
p+ ϕf (x, t, ūf̄)

)
(f − f̄) dx dt ≥ 0, ∀f ∈ Fad, (A.12)

where ϕ is the component of the cost functional that penalises the controls (usually ‖f‖2L2)

and the subscript f means we are taking the Fréchet derivative with respect to f .

We use a simpler way of obtaining the adjoint operator p and the variational inequal-

ity (A.12) directly, by looking at p(x, t) as a Lagrange multiplier. We therefore look at the

problem as a nonlinear optimisation problem - see [161] - and define the Lagrangian

L (u, p, f) = C(u, f)−
∫ T

0

∫ 2π

0

(ut +Au+N (u)− f(x, t)) p(x, t) dx dt. (A.13)

In this context, the first order necessary conditions are knwon as Karush-Kuhn-Tucker

(KKT) conditions and are stated in the following way: if f̄ and ū = G(f̄) are a local min-

imiser of (A.10), then ū, f̄ and p̄ minimise the Lagrangian (A.13) and therefore we have the

following:

1. ū is a solution of Lp(ū, p̄, f̄) = 0 which gives the state equation (A.10b),

2. p̄ solves the adjoint equation, which is given by Lu(ū, p̄, f̄) = 0 and

3. f̄ verifies the variational inequality Lf (ū, p̄, f̄) ≥ 0.

Therefore, by taking the Fréchet derivative of the Lagrangian with respect to u and f we can

easily obtain the adjoint equation and the variational inequality that needs to be verified.

Since these are only necessary conditions, there is the possibility that a pair ū, f̄ veri-

fying the KKT conditions is not a minimiser of the optimal control problem. We did not

come across this difficulty in our computations, but if needed, we can exclude such pairs by
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differentiating a second time, and deriving the second order sufficient conditions for a pair

ū, f̄ to be a minimiser [100, 211, 226].

A.4 Linear Algebra

In order to solve the matrix problem presented in Chapter 4, we made use of the following

Lemmas, which can be found in any matrix analysis textbook, e.g. [102]:

Lemma 1 (Matrix-Determinant Lemma). For an invertible N × N matrix A, and N × m

matrix B and m×N matrix K, where m < N , we have the following identity:

det(A+BK) = det(A) det(Im×m +KA−1B). (A.14)

Corollary 1 (Matrix Determinant Lemma - rank one version). For an invertible N × N

matrix A and N × 1 vectors u and v, we have the following identity:

det(A+ uvt) = det(A)(1 + vtA−1u). (A.15)

If A is not invertible, then we have the following version:

det(A+ uvt) = det(A) + vt adj (A)u. (A.16)

Lemma 2 (Woodbury Matrix Identity). For anN×N matrixA,N×mmatrixB andm×N
matrix K, we have the following identity:

(A+BK)−1 = A−1 − A−1B(Im×m +KA−1B)−1KA−1. (A.17)

Corollary 2 (Sherman Morrison Formula). LetA be anN×N matrix and u and v beN×1

vectors. We have the following expansion of the rank one perturbation of the inverse of the

matrix A:

(A+ uvt)−1 = A−1 − A−1uvtA−1

1 + vtA−1u
. (A.18)
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Appendix B

Discretisation of the nonlinear terms

For our numerical methods used in Chapters 2, 4 and 5, we need to discretise the various

nonlinear terms appearing in the equations. Consider f, g two functions in L2
p(0, 2π). We

can write them as

f(x, t) =
f0(t)√
2π

+
∞∑
n=1

f s
n(t)

sin(nx)√
π

+
∞∑
n=1

f c
n(t)

cos(nx)√
π

,

g(x, t) =
g0(t)√
2π

+
∞∑
n=1

gsn(t)
sin(nx)√

π
+

∞∑
n=1

ugn(t)
cos(nx)√

π
.

We multiply them together to obtain

(fg)(x, t) =
b0√
2π

+
∞∑
j=1

(
aj(t)

sin(jx)√
π

+ bj(t)
cos(jx)√

π

)
, (B.1)

where

aj =
1

2
√
π

∑
m+n=j

(f s
mg

c
n + f c

mg
s
n) +

1

2
√
π

∑
m−n=j

(f s
mg

c
n − f c

mg
s
n − f s

ng
c
m + f c

ng
s
m)

and

bj =
1

2
√
π

∑
m+n=j

(f c
mg

c
n − f s

mg
s
n) +

1

2
√
π

∑
m−n=j

(f s
mg

s
n + f c

mg
c
n + f s

ng
s
m + f c

ng
c
m).
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B.1 N (u) = uux

We differentiate equation (B.1) with respect to x and use trigonometric identities to find that

(fg)x =
∞∑
j=1

cj(t)
sin(jx)√

π
+ dj(t)

cos(jx)√
π

,

where

cj =
j

2
√
π

∑
m+n=j

(f s
ng

s
m − f c

ng
c
m)−

j

2
√
π

∑
m−n=j

(f s
ng

s
m + f c

ng
c
m + f s

mg
s
n + f c

mg
c
n)

and

dj =
j

2
√
π

∑
m+n=j

(f s
ng

c
m − f c

ng
s
m) +

j

2
√
π

∑
m−n=j

(f c
ng

s
m − f s

ng
c
m − f c

mg
s
n + f s

mg
c
n)

By replacing f = u, g = u
2
, we obtain

uux =

(
u2

2

)
x

=
∞∑
n=1

gsn(t)
sin(nx)√

π
+ gcn(t)

cos(nx)√
π

,

where

gsn =
n

4
√
π

∑
j+k=n

(ucju
c
k − usju

s
k) +

n

2
√
π

∑
j−k=n

(ucju
c
k + usju

s
k),

gcn = − n

2
√
π

∑
j+k=n

ucju
s
k +

n

2
√
π

∑
j−k=n

(ucju
s
k − usju

c
k).

B.2 N (u, p) = upx

Replacing f = u, g = px in equation (B.1) , we obtain

(upx) =
g0√
2π

+
∞∑
n=1

gsn(t)
sin(nx)√

π
+ gcn(t)

cos(nx)√
π

,

where

gsn =
1

2
√
π

∑
j+k=n

k(usjp
s
k − ucjp

c
k) +

1

2
√
π

∑
j−k=n

(
k(usjp

s
k + ucjp

c
k)− j(uskp

s
j + uckp

c
j)
)
,
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gcn =
1

2
√
π

∑
j+k=n

k(ucjp
s
k + usjp

c
k) +

1

2
√
π

∑
j−k=n

(
k(ucjp

s
k − usjp

c
k) + j(uckp

s
j − uskp

c
j)
)
.

B.3 N (u) = (ux)
2

Finally, replacing f = g = ux in equation (B.1), we obtain

(u2x) =
∞∑
n=1

gsn(t)
sin(nx)√

π
+ gcn(t)

cos(nx)√
π

,

where

gsn = − 1

2
√
π

∑
j+k=n

jk(usju
c
k + ucju

s
k)−

1√
π

∑
j−k=n

jk(ucju
s
k − usju

c
k),

gcn =
1

2
√
π

∑
j+k=n

jk(usju
s
k − ucju

c
k) +

1√
π

∑
j−k=n

jk(ucju
c
k + usju

x
k).
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Appendix C

Implementation of the algorithm derived

in Section 4.3.1 to solve equation (4.40)

We solved the matrix equation (4.40) by implementing our algorithm in MATLAB. Given a

diagonal matrix A, a matrix B and the desired eigenvalues of matrix D, we used a nonlinear

solver to solve the system of N equations (4.47) for m = 1 and (4.52) for m > 1 . We note

that when only one control is used (m = 1), then we have a system of N equations for N

unknowns and therefore we use Newton’s method. For m > 1, the problem is underdeter-

mined and we may use a least-squares method. We use the Levenberg-Marquardt algorithm

[139, 156].

We solved the problem for various values of N and m and different matrices A and B.

We first give the relevant case for the stochastic Kuramoto-Sivashinsky equation. We wish

to maintain the negative eigenvalues and change the positive ones to a value that will allow

the prescribed trace for the matrix D. For the purposes of this test, we will have

μj =

⎧⎪⎪⎨⎪⎪⎩
2aj if aj < 0,

−aj if aj > 0,

−0.1 if aj = 0.

(C.1)

We used ν = 0.5, which (if we ignore the zero entry) has two positive entries in matrix

A. In this case, it makes sense to use m = 2 and we chose x1 =
π
3

and x2 =
5π
3

.

We make a further implementation of our algorithm. For this implementation we generate

a vector a with N entries randomly distributed, following a Gaussian law with mean zero
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and variance 1. We define the initial μ0 = 2a and change 1, 2 or 3 of its elements to obtain

the μ that we require, we then use m = 1, 2 or 3 controls, respectively, to obtain the matrix

K that gives us the desired eigenvalues. We specify below the randomly generated matrix B

and vector a we use.

a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2616

0.4754

1.1741

0.1269

−0.6568

−1.4814

0.1555

0.8186

−0.2926

−0.5408

−0.3086

−1.0966

−0.4930

−0.1807

0.0458

−0.0638

0.6113

0.1093

1.8140

0.3120

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.8045 −0.4251 0.9421

−0.7231 0.5894 0.3005

0.5265 −0.0628 −0.3731

−0.2603 −2.0220 0.8155

0.6001 −0.9821 0.7989

0.5939 0.6125 0.1202

−2.1860 −0.0549 0.5712

−1.3270 −1.1187 0.4128

−1.4410 −0.6264 −0.9870

0.4018 0.2495 0.7596

1.4702 −0.9930 −0.6572

−0.3268 0.9750 −0.6039

0.8123 −0.6407 0.1769

0.5455 1.8089 −0.3075

−1.0516 −1.0799 −0.1318

0.3975 0.1992 0.5954

−0.7519 −1.5210 1.0468

1.5163 −0.7236 −0.1980

−0.0326 −0.5933 0.3277

1.6360 0.4013 −0.2383

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We then extracted, for each N , the first N rows of a and B to generate the matrices A

and B, respectively. In the case of matrix B, we extract its first column when m = 1, the

first two columns for m = 2 and the three columns when m = 3. Finally, the initial guess

for the matrix K is the zero matrix, with ones in the position kjj , j = 1, . . . ,m. We limit the

function count to 5000.

We define two types of error for this problem:

• Error 1 is defined by how far are the obtained eigenvalues μk from the prescribed ones
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(μ̄k):

E1 =

√√√√ N∑
k=1

(μk − μ̄k)2

• Error 2 is defined by how far the obtained trace is from
∑N

k=1 μ̄k:

E2 =

∣∣∣∣∣Tr(2A+BK +KtBt)−
N∑
k=1

μ̄k

∣∣∣∣∣ .
Control of the stochastic Kuramoto-Sivashinsky equation

The convergence results for the stochastic Kuramoto-Sivashinsky equation are:

N 2 4 6 8 10 12 14
Run time (s) 0.05 0.16 1.09 4.29 23.30 97.43 495.13

Nr of iterations 10 16 24 18 17 17 18
Function Count 57 162 345 349 415 499 614

E1 0.0014 0.0688 0.1217 0.0933 0.0880 0.0784 0.1047
E2 2.6× 10−9 2.6× 10−4 0.0055 0.0110 0.0165 0.0349 0.0144

Table C.1: Results of the numerical method for the solution of the matrix problem for the

sKS equation with ν = 0.5.

Control of randomly generated matrices

For the case m = 1, we changed the first entry of μ to μ1 = 2, while for m = 2 we

change the first and second entries as μ1 = 2, μ2 = 1. Finally, for m = 3 we choseμ1 = 2,

μ2 = 1, μ3 = 1.5. We obtained the following results, which are presented in tables 2-4.

Case m = 1:

N 4 5 6 7 8 9 10
Run time (s) 2.00 3.47 12.92 37.1 78.77 155.87 317.93

Nr of iterations 395 316 513 665 607 536 490
Function Count 1920 1847 3514 5006 5000 5001 5001

E1 0.0201 0.0195 0.0188 0.0213 0.0808 0.1145 0.1158
E2 9.4× 10−4 0.0015 0.0033 0.0032 0.0166 0.0284 0.0312

Table C.2: Results of the numerical method for the solution of the general case with m = 1.
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Case m = 2:

N 4 5 6 7 8 9 10
Run time (s) 0.39 0.32 0.54 1.89 3.04 10.47 23.30

Nr of iterations 49 14 11 18 13 19 20
Function Count 475 174 163 297 246 392 454

E1 0.0179 0.0178 0.0170 0.0185 0.0271 0.0263 0.0251
E2 7.9× 10−4 0.0013 0.0029 0.0027 8× 10−4 0.0010 0.0015

Table C.3: Results of the numerical method for the solution of the general case with m = 2.

Case m = 3:

N 4 5 6 7
Run time (s) 0.56 1.26 2.96 8.23

Nr of iterations 11 13 9 16
Function Count 156 240 205 389

E1 6.9× 10−15 9.8× 10−15 6.7× 10−15 6.6× 10−15

E2 1.78× 10−15 1.8× 10−15 1.8× 10−15 < 10−16

N 8 9 10
Run time (s) 14.74 36.51 75.15

Nr of iterations 12 17 17
Function Count 337 518 572

E1 4.9× 10−15 1× 10−14 3.1× 10−14

E2 8.9× 10−16 4.4× 10−16 1.8× 10−15

Table C.4: Results of the numerical method for the solution of the general case with m = 3.

The high level of accuracy for the sKS equation is explained through the fact that the

matrix B has a regular structure and there are repeated eigenvalues. We observe that the

algorithm converges faster when the distance between the diagonal entries of 2A and the

required eigenvalues is small. There may be difficulties in wanting to make a perturbation

that is too large, and this idea would still need to be quantified.

It is noteworthy that the performance of our algorithm improves when m increases. This

is due to the fact that for largermwe have an increased number of degrees of freedom, which

makes our algorithm more versatile in terms of obtaining the correct eigenvalues.
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Appendix D

Eigenvalues and eigenfunctions of

System (5.1)

To obtain the eigenvalues and eigenfunctions of System (5.1), we will consider the linear

system {
u1,t = −νu1,xxxx − u1,xx − α1u2,xx

u2,t = −νu2,xxxx − u2,xx − α2u1,xx,
(D.1)

in the interval (0, 2π), with periodic boundary conditions and initial conditions u1(x, 0) =

u10(x) and u2(x, 0) = u20(x) and u10, u20 ∈ Ḣ2
p (0, 2π).

We assume that the solution of System (D.1) is of the form

U(x, t) =

[
u1(x, t)

u2(x, t)

]
=
∑
k∈Z

[
a1

a2

]
eλt+ikx = eλt+ikxa. (D.2)

Substituting (D.2) in (D.1) we obtain, for each k ∈ Z

λa =

[
−νk4 + k2 α1k

2

α2k
2 −νk4 + k2

]
a = La. (D.3)

λ is then an eigenvalue of matrix L and verifies:

(−νk4 + k2 − λ)2 − α1α2k
4 = 0.
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The solutions to this equation are

λ± = −νk4 + k2(1±√
α1α2). (D.4)

The eigenfunctions associated to these eigenvalues verify the equation (L−λI)a = 0, or

{ [
−νk4 + k2 − (−νk4 + k2(1±√

α1α2))
]
a1 + α1k

2a2 = 0

α2k
2a1 +

[
−νk4 + k2 − (−νk4 + k2(1±√

α1α2))
]
a2 = 0

⇔
{

±√
α1α2a1 = α1a2

±√
α1α2a2 = α2a1

And a particular solution to this equation is

[
a1

a2

]
=

[ √
α1

±√
α2

]
.

This means that, for each k ∈ Z, the eigenvalue λk+ = −νk4+k2
(
1 +

√
α1α2

)
is associated

with the eigenfunction eikx

[ √
α1

√
α2

]
and the eigenvalue λk− = −νk4 + k2

(
1−√

α1α2

)
is

associated with the eigenfunction eikx

[ √
α1

−√
α2

]
.

In the more general case when the coupling is also through the fourth order derivatives,

{
u1,t = −νu1,xxxx − u1,xx − u1u1,x − α1u2,xx − β1u2,xxxx

u2,t = −νu2,xxxx − u2,xx − u2u2,x − α2u1,xx − β2u1,xxxx,
(D.5)

we can still compute the relevant eigenvalues and eigenfunctions, and these are

λ± = −νk4 + k2(1±
√

(α1 − β1k2)(α2 − β2k2)) (D.6)

associated with the eigenfunctions

eikx

[ √
α1 − β1k2

±
√
α2 − β2k2

]
.


