7 research outputs found

    Stabilisation of hybrid stochastic differential equations by delay feedback control

    Get PDF
    This paper is concerned with the exponential mean-square stabilisation of hybrid stochastic differential equations (also known as stochastic dierential equations with Markovian switching) by delay feedback controls. Although the stabilisation by non-delay feedback controls for such equations has been discussed by several authors, there is so far little on the stabilisation by delay feedback controls and our aim here is mainly to close the gap. To make our theory more understandable as well as to avoid complicated notations, we will restrict our underlying hybrid stochastic dierential equations to a relatively simple form. However our theory can certainly be developed to cope with much more general equations without any diculty

    Advances in stabilisation of hybrid stochastic differential equations by delay feedback control

    Get PDF
    A novel approach to design the feedback control based on past states is proposed for hybrid stochastic differential equations (HSDEs). This new theorem builds up the connection between the delay feedback control and the control function without delay terms, which enables one to construct the delay feedback control using the existing results on stabilities of HSDEs. Methods to find the upper bound of the length of the time delay are also investigated. Numerical simulations are presented to demonstrate the new theorem

    Almost sure exponential stabilization by discrete-time stochastic feedback control

    Get PDF
    Given an unstable linear scalar differential equation x˙ (t) = αx(t) (α > 0), we will show that the discrete-time stochastic feedback control σx([t/τ ]τ )dB(t) can stabilize it. That is, we will show that the stochastically controlled system dx(t) = αx(t)dt +σx([t/τ ]τ )dB(t) is almost surely exponentially stable when σ2 > 2α and τ > 0 is sufficiently small, where B(t) is a Brownian motion and [t/τ ] is the integer part of t/τ . We will also discuss the nonlinear stabilization problem by a discrete- time stochastic feedback control. The reason why we consider the discrete-time stochastic feedback control is because that the state of the given system is in fact observed only at discrete times, say 0, τ, 2τ, • • • , for example, where τ > 0 is the duration between two consecutive observations. Accordingly, the stochastic feedback control should be designed based on these discrete-time observations, namely the stochastic feedback control should be of the form σx([t/τ ]τ )dB(t). From the point of control cost, it is cheaper if one only needs to observe the state less frequently. It is therefore useful to give a bound on τ from below as larger as better

    Robust stabilization of hybrid uncertain stochastic systems by discrete-time feedback control

    Get PDF
    This paper aims to stabilize hybrid stochastic differential equations (SDEs) with norm bounded uncertainties by feedback controls based on the discrete-time observations of both state and mode. The control structure appears only in the drift part (the deterministic part) of an SDE and the controlled system will be robustly exponentially stable in mean-square. Our stabilization criteria are in terms of linear matrix inequalities (LMIs) whence the feedback controls can be designed more easily in practice. An example is given to illustrate the effectiveness of our results

    A new criterion on stability in distribution for a hybrid stochastic delay differential equation

    Get PDF
    A new sufficient condition for stability in distribution of a hybrid stochastic delay differential equation (SDDE) has been proposed. In the new criterion leading to stability for an SDDE, its main component only depends on the coefficients of a corresponding SDE without delay. The Lyapunov method is applied to find an upper bound, so that the SDDE is stable in distribution if the delay is less than the upper bound. Also, the criterion shows that delay terms can be impetuses toward the stability in distribution

    Exponential stabilization by delay feedback control for highly nonlinear hybrid stochastic functional differential equations with infinite delay

    Get PDF
    Given an unstable hybrid stochastic functional differential equation, how to design a delay feedback controller to make it stable? Some results have been obtained for hybrid systems with finite delay. However, the state of many stochastic differential equations are related to the whole history of the system, so it is necessary to discuss the feedback control of stochastic functional differential equations with infinite delay. On the other hand, in many practical stochastic models, the coefficients of these systems do not satisfy the linear growth condition, but are highly nonlinear. In this paper, the delay feedback controls are designed for a class of infinite delay stochastic systems with highly nonlinear and the influence of switching state

    Stability of highly nonlinear hybrid stochastic integro-differential delay equations

    Get PDF
    For the past few decades, the stability criteria for the stochastic differential delay equations (SDDEs) have been studied intensively. Most of these criteria can only be applied to delay equations where their coefficients are either linear or nonlinear but bounded by linear functions. Recently, the stability criterion for highly nonlinear hybrid stochastic differential equations is investigated in Fei et al. (2017). In this paper, we investigate a class of highly nonlinear hybrid stochastic integro-differential delay equations (SIDDEs). First, we establish the stability and boundedness of hybrid stochastic integro-differential delay equations. Then the delay-dependent criteria of the stability and boundedness of solutions to SIDDEs are studied. Finally, an illustrative example is provided
    corecore