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Abstract

Given an unstable hybrid stochastic functional differential equation, how to design a delay feedback controller to make
it stable? Some results have been obtained for hybrid systems with finite delay. However, the state of many stochastic
differential equations are related to the whole history of the system, so it is necessary to discuss the feedback control of
stochastic functional differential equations with infinite delay. On the other hand, in many practical stochastic models,
the coefficients of these systems do not satisfy the linear growth condition, but are highly nonlinear. In this paper,
the delay feedback controls are designed for a class of infinite delay stochastic systems with highly nonlinear and the
influence of switching state.
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1. Introduction

In many engineering and science field, due to many systems are affected by time delay and random factors,
we often use stochastic functional differential equations (SFDEs in short) or stochastic delay differential equations
(SDDEs in short) to describe such systems. Recently, theories of SFDEs including stability and their applications
have attracted much of researchers’ attention ( see, e.g., [1, 2, 3, 4, 5]). Furthermore, in many practical problems, the
current state of the system may be related to all the previous history, so many scholars use the stochastic functional
differential equations with infinite delay (ISFDEs in short) to model these systems and study their various properties
(see, e.g., [6, 7, 8, 9, 10]).

The previous results on stability generally require that the coefficients of stochastic systems satisfy both the
local Lipschitz condition and the linear growth condition. However, in many ecological and economic models,
the coefficients of the system may not meet the linear growth conditions, but have highly nonlinear characteristics
([11, 12, 13, 14, 15, 16]). Therefore, Hu et al. [17] further considered the exponential stability and robustness of a
class of ISFDEs which do not satisfy the linear growth condition. Wu and Hu [18] extended the stochastic version
of LaSalle theorem established by [19] to the infinite delay, and discussed the attraction, stability and robustness of
ISFDEs.

On the other hand, continuous-time Markov chains are often used to model the system whose structures and
parameters may be abrupt changes. Hence, SFDEs with Markovian switching, known also as hybrid SFDEs, have
appeared frequently in practice. The stability is a fundamental problem in the study of hybrid SFDEs (see e.g. [20,
21, 22, 23, 24]). Correspondingly, the control and stabilization of hybrid stochastic systems have been received the
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increasing attentions (see e.g.[25, 26, 27, 28, 29, 30, 31]). Mao [32] proposed for the first time that a delay feedback
controller can be designed to stabilize an unstable hybrid stochastic differential equation. Lu et al. [33] studied
how to use the delay feedback control to make the unstable highly nonlinear hybrid stochastic differential equation
asymptotically stable, and obtained an upper bound of time lag. Using the method of M-matrix, for hybrid SDDEs,
Li and Mao [34] designed delay feedback control to make the controlled system not only asymptotically stable in the
sense of moment, but also to guarantee the exponential stability in the sense of moment and almost surely. In this
paper, we will further extend the above results to hybrid infinite delay systems. Comparing with the existing papers,
we highlight a number of main contributions of this paper:

(i) As mentioned before, systems with infinite delay often appear in population models, and such biological
models often do not satisfy the linear growth conditions. The main purpose of this paper is to design a class of
delay feedback controllers to stabilize unstable hybrid ISFDEs. In order to overcome the difficulties caused by infinite
delay and highly nonlinear, the exponential stability of the controlled ISFDEs is obtained by reasonably selecting the
phase space, constructing the appropriate probability measure space, and ensuring the asymptotic boundedness of the
system.

(ii) In this paper, the phase space is BC((−∞, 0]; Rn). After choosing this phase space, we not only generalize the
results of hybrid SDDEs in [34] to the functional systems with infinite delay, but also improve the results of theorem
4.4 and 4.5 in [34]. That is, we get a better upper bound of time delay to reduce the conservatism.

(iii) Different from the previous stability results of ISFDEs, considering the influence of Markovian switching on
the system, we mainly use the M-matrix method, which makes our results not only related to the coefficients of the
subsystems for better verification, but also take into account the influence of different modes.

2. Notations and Preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let R+ = [0,∞). If both a, b
are real numbers, then a ∧ b = min{a, b} and a ∨ b = max{a, b}. For x ∈ Rn, |x| denotes its Euclidean norm. If A is
a vector or matrix, its transpose is denoted by AT . For A ∈ Rn×m, we let |A| =

√
trace(AT A) be its Frobenius norm.

If A is a symmetric real-valued matrix (A = AT ), denote by λmax(A)and λmin(A) its largest and smallest eigenvalue,
respectively. By A ≤ 0 and A < 0, we mean A is non-positive and negative definite, respectively.

Let (Ω,G, {Gt}t≥0,P) be a complete probability space with a natural filtration {Gt}t≥0 satisfying the usual conditions
(i.e., it is increasing and right continuous while G0 contains all P-null sets). If G is a subset of Ω, denote by IG its
indicator function; that is, IG(ω) = 1 if ω ∈ G and 0 otherwise. Let w(t) = (w1(t), · · · ,wm(t))T be an m-dimensional
Brownian motion defined on the probability space. Let r(t), t ≥ 0, be a right-continuous Markov chain on the
probability space taking values in a finite state space S = {1, 2, · · · ,N} with generator Γ = (γi j)N×N given by

P{r(t + ∆) = j|r(t) = i} =
γi j∆ + o(∆) if i , j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γi j ≥ 0 is the transition rate from i to j if i , j while

γii = −
∑
j,i

γi j.

We always assume that the Markov chain r(·) is independent of the Brownian motion w(·).
Denote by C((−∞, 0]; Rn) the family of continuous functions φ from (−∞, 0] → Rn. Similarly, denote by

BC((−∞, 0]; Rn) the family of bounded continuous functions φ from (−∞, 0]→ Rn with the norm ∥φ∥ = sups≤0 |φ(s)|.
If x(t) is an Rn-valued stochastic process, we let xt = xt(s) = {x(t + s) : −∞ < s ≤ 0} for t ≥ 0. Let Lr((−∞, 0]; Rn)
denote all functions h : (−∞, 0] → Rn such that

∫ 0
−∞ |h(s)|rds < ∞. We give the following lemma, whose proof is

standard.

Lemma 2.1. Let φ ∈ BC((−∞, 0]; Rn) ∩ Lr((−∞, 0]; Rn) for any r > 0. Then for all r1 > r, φ ∈ BC((−∞, 0]; Rn) ∩
Lr1 ((−∞, 0]; Rn).
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Let P0 denote all probability measures µ on (−∞, 0]. For each ε > 0, define

Pε =
{
µ ∈ P0; µ(ε) :=

∫ 0

−∞
e−εθdµ(θ) < ∞

}
. (2.1)

In fact, there are many probability measures that meet the above requirements. Here are just two examples we will
use.

(i) Fix τ > 0, let ν be the Dirac measure at −τ ( see, e.g. [35, p.9],). Then for any ε > 0,

ν(ε) :=
∫ 0

−∞
e−εθdν(θ) = eετ < ∞, (2.2)

which means ν ∈ Pε.
(ii) Let dµ(θ) = ε0eε0θdθ. Then, µ ∈ P0 and for any ε ∈ (0, ε0),

µ(ε) := ε0

∫ 0

−∞
e(ε0−ε)θdθ =

ε0

ε0 − ε
< ∞ (2.3)

which also means µ ∈ Pε for ∀ε ∈ (0, ε0). µ(ε) has the following nice property. We give it as a lemma.

Lemma 2.2. (cf. [17]) Fix ε1 > 0. For any ε1 > ε > 0, µ(ε) is continuously nondecreasing on ε and satisfies
µ(ε1) > µ(ε) > µ(0) = 1. Meanwhile ,we have P0 ⊃ Pε ⊃ Pε1 .

Let
f : BC((−∞, 0]; Rn) × S × R+ → Rn and g : BC((−∞, 0]; Rn) × S × R+ → Rn×m.

be both Borel measurable functions. Consider a nonlinear hybrid stochastic functional differential equation

dx(t) = f (xt, r(t), t)dt + g(xt, r(t), t)dw(t), t ≥ 0 (2.4)

with the initial data {ξ(θ) : −∞ < θ ≤ 0} = ξ ∈ BC((−∞, 0]; Rn) and i0 ∈ S, where xt is a BC((−∞, 0]; Rn)-valued
stochastic process.

As a standing hypothesis, we assume the the coefficient f or g are local lipschtiz continuous and polynomial
growth condition in this paper. For this reason, we give the following hypothesis.

Assumption 2.3. For each real number b > 0, there is a constant Kb > 0 such that

| f (φ, i, t) − f (ϕ, i, t)| ∨ |g(φ, i, t) − g(ϕ, i, t)| ≤ Kb∥φ − ϕ∥ (2.5)

for all φ, ϕ ∈ BC((−∞, 0]; Rn) with ∥φ∥ ∨ ∥ϕ∥ ≤ b and all (i, t) ∈ S × R+. Moreover, there are three constants K > 0,
q1 ≥ 1 and q2 ≥ 1 as well as two probability measures µ1, µ2 on (−∞, 0] such that

| f (φ, i, t)| ≤ K(
∫ 0

−∞
|φ(θ)|q1 dµ1(θ) + |φ(0)|q1 +

∫ 0

−∞
|φ(θ)|dµ1(θ) + |φ(0)|)

and |g(φ, i, t)| ≤ K(
∫ 0

−∞
|φ(θ)|q2 dµ2(θ) + |φ(0)|q2 +

∫ 0

−∞
|φ(θ)|dµ2(θ) + |φ(0)|) (2.6)

for all (φ, i, t) ∈ BC((−∞, 0]; Rn) × S × R+.

Obviously, only under the condition of Assumption 2.3, system (2.4) may explode in a finite time. In this paper,
we give a criterion for the existence and uniqueness of solutions of stochastic functional equations by using Lyapunov
function (also known as generalized Khasminskiis condition).
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Assumption 2.4. Let q1, q2, µ1, µ2 be the same as in Assumption 2.3. Assume that there are some positive constants
q, p, αk, βk(k = 1, 2, 3) such that

q ≥ (2q1) ∨ (q1 + 2q2 − 1), p ≥ (q1 + 1) ∨ (2q2) and α3 > α1 + α2 (2.7)

while

φ(0)T f (φ, i, t) +
q − 1

2
|g(φ, i, t)|2 ≤

2∑
k=1

αk

∫ 0

−∞
|φ(θ)|pdµk(θ) − α3|φ(0)|p

+

2∑
k=1

βk

∫ 0

−∞
|φ(θ)|2dµk(θ) + β3|φ(0)|2 (2.8)

for all (φ, i, t) ∈ BC((−∞, 0]; Rn) × S × R+.

Next, as long as we limit the initial value of the equation, we can give the existence and uniqueness of the solution
of the stochastic system.

Theorem 2.5. Under Assumptions 2.3, 2.4. The equation (2.4) has a unique global solution x(t) on t ∈ R, for any
given initial data

ξ ∈ BC((−∞, 0]; Rn) ∩ L2((−∞, 0]; Rn) and i0 ∈ S. (2.9)

Proof. We divide the proof into two steps.
Step 1. Let V(x) = |x|q. We define a functional L1V : BC((−∞, 0]; Rn) × S × R+ → R by

L1V(φ, i, t) =q|φ(0)|q−2φ(0)T f (φ, i, t) +
q
2
|φ(0)|q−2|g(φ, i, t)|2

+
q(q − 2)

2
|φ(0)|q−4|φ(0)T g(φ, i, t)|2. (2.10)

By Assumptions 2.4, we then derive

L1V(φ, i, t) ≤q|φ(0)|q−2
[
φ(0)T f (φ, i, t) +

q − 1
2
|g(φ, i, t)|2

]
≤

2∑
k=1

qαk |φ(0)|q−2
∫ 0

−∞
|φ(θ)|pdµk(θ) − qα3|φ(0)|p+q−2

+

2∑
k=1

qβk |φ(0)|q−2
∫ 0

−∞
|φ(θ)|2dµk(θ) + qβ3|φ(0)|q. (2.11)

Using the Young inequality, we get

qαk |φ(0)|q−2
∫ 0

−∞
|φ(θ)|pdµk(θ) =

∫ 0

−∞
qαk |φ(0)|q−2|φ(θ)|pdµk(θ)

≤qαk(q − 2)
p + q − 2

|φ(0)|p+q−2 +
pqαk

p + q − 2

∫ 0

−∞
|φ(θ)|p+q−2dµk(θ),

qβk |φ(0)|q−2
∫ 0

−∞
|φ(θ)|2dµk(θ) =

∫ 0

−∞
qβk |φ(0)|q−2|φ(θ)|2dµk(θ)

≤(q − 2)βk |φ(0)|q + 2βk

∫ 0

−∞
|φ(θ)|qdµk(θ). (2.12)

4



Substituting these into (2.11) gives

L1V(φ, i, t) ≤
2∑

k=1

Lk

( ∫ 0

−∞
|φ(θ)|p+q−2dµk(θ) − |φ(0)|p+q−2

)
+ 2

2∑
k=1

βk

( ∫ 0

−∞
|φ(θ)|qdµk(θ) − |φ(0)|q

)
+C1, (2.13)

where

C1 = max
s≥0

[
− q(α3 − α1 − α2)sp+q−2 + q(β1 + β2 + β3)sq

]
, Lk =

pqαk

p + q − 2
, k = 1, 2.

Step 2. Since the coefficients of the hybrid ISFDE (2.4) are locally Lipschitz continuous, for any given initial data
(2.9), using the standard truncation method, there exists a unique maximal local strong solution of Equation (2.4) on
t ∈ (−∞, σe), where σe is the explosion time (see, e.g., [36, Theorem 3.2.2, p.95], and [6, Theorem 3.3] ). Let j0 > 0
be a sufficiently large positive number such that ∥ξ∥ < j0. For each integer j ≥ j0, define the stopping time

σ j = inf{t ∈ [0, σe) : |x(t)| ≥ j},

where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Clearly, σ j is increasing as j → ∞.
Set σ∞ = lim j→∞ σ j, whence σ∞ ≤ σe a.s. If we can show that σ∞ = ∞ a.s., then σe = ∞ a.s., which implies the
desired result.

By the Itô formula and (2.11), we obtain

E|x(t ∧ σ j)|q =|x(0)|q + E
∫ t∧σ j

0
L1V(xs, r(s), s)ds

≤|x(0)|q +
2∑

k=1

LkE
∫ t∧σ j

0

( ∫ 0

−∞
|x(s + θ)|p+q−2dµk(θ) − |x(s)|p+q−2

)
ds

+ 2
2∑

k=1

βkE
∫ t∧σ j

0

( ∫ 0

−∞
|x(s + θ)|qdµk(θ) − |x(s)|q

)
ds +C1t. (2.14)

But

E
∫ t∧σ j

0

( ∫ 0

−∞
|x(s + θ)|p+q−2dµk(θ) − |x(s)|p+q−2

)
ds

=E
∫ 0

−∞

∫ t∧σ j

0
|x(s + θ)|p+q−2dsdµk(θ) − E

∫ t∧σ j

0
|x(s)|p+q−2ds

≤E
∫ 0

−∞

∫ t∧σ j

−∞
|x(s)|p+q−2dsdµk(θ) − E

∫ t∧σ j

0
|x(s)|p+q−2ds

=

∫ 0

−∞
|ξ(s)|p+q−2ds,

and

E
∫ t∧σ j

0

( ∫ 0

−∞
|x(s + θ)|qdµk(θ) − |x(s)|q

)
ds

=E
∫ 0

−∞

∫ t∧σ j

0
|x(s + θ)|qdsdµk(θ) − E

∫ t∧σ j

0
|x(s)|qds

≤E
∫ 0

−∞

∫ t∧σ j

−∞
|x(s)|qdsdµk(θ) − E

∫ t∧σ j

0
|x(s)|qds

=

∫ 0

−∞
|ξ(s)|qds.
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Recalling (2.9), by p + q − 2 ≥ q ≥ 2, Lemma 2.1 gives that∫ 0

−∞
|ξ(s)|p+q−2ds ≤ ∥ξ∥p−2

∫ 0

−∞
|ξ(s)|qds ≤ ∥ξ∥p+q−4

∫ 0

−∞
|ξ(s)|2ds < ∞.

It therefore follow that

E|x(t ∧ σ j)|q ≤ |x(0)|q +C1t + (L1 + L2)
∫ 0

−∞
|ξ(s)|p+q−2ds + 2(β1 + β2)

∫ 0

−∞
|ξ(s)|qds

=: C(t).

On the other hand, using the definition of stopping time σ j, we get

C(t) ≥ E|x(t ∧ σ j)|q =E{|x(t)|qIσ j>t} + E{ jqIσ j≤t} ≥ jqP(σ j ≤ t).

Then, we have

P(σ j ≤ t) ≤ C(t)
jq
.

Letting j→ ∞, we obtain that P(σ∞ ≤ t) = 0, namely

P(σ∞ > t) = 1.

But t ≥ 0 is arbitrary, we must have P(σ∞ = ∞) = 1 as required. The proof is therefore complete. 2
Obviously, there exists a class of hybrid ISFDEs which satisfy the conditions of Theorem (2.5) but are not stable.

In this article, we will focus on how to design the feedback controller to make the unstable ISFDE (2.4) asymptotically
bounded and exponentially stable.

Definition 2.6. (i) The equation is said to be asymptotically bounded in qth moment if the solution of the equation
satisfies

lim sup
t→∞

E|x(t)|q < C,

where C is a positive constant.
(ii) The equation is said to be exponentially stable in Lp if the solution of the equation satisfies

lim sup
t→∞

1
t

log(E|x(t)|p) < 0.

(iii) The equation is said to be almost surely exponentially stable if the solution of the equation satisfies

lim sup
t→∞

1
t

log(|x(t)|) < 0 a.s.

3. Main results

When the ISFDE (2.4) is unstable, we need to design a delay feedback controller u(x(t − τ), r(t), t) to make the
original system stable. That is, we will discuss the controlled ISFDE

dx(t) = [ f (xt, r(t), t) + u(x(t − τ), r(t), t)]dt + g(xt, r(t), t)dw(t), t ≥ 0, (3.1)

stability, where the control function u : Rn × S × R+ → Rn is a Borel measurable. We always hope that the controller
u we designed is more simple and effective, so we give the following condition.

Assumption 3.1. Assume that there is a positive number κ such that

|u(x, i, t) − u(y, i, t)| ≤ κ|x − y| (3.2)

for all x, y ∈ Rn, i ∈ S and t ≥ 0. Moreover, assume that u(0, i, t) ≡ 0 for all (i, t) ∈ S × R+.

Obviously this assumption implies

|u(x, i, t)| ≤ κ|x|, ∀(x, i, t) ∈ Rn × S × R+. (3.3)
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3.1. Existence, uniqueness and boundedness
Theorem 3.2. Let Assumptions 2.3, 2.4 and 3.1 hold. For any given initial data (2.9), the new controlled system (3.1)
has a unique global solution x(t) on t ∈ R.

Proof. We define a new functional L2V : BC((−∞, 0]; Rn) × S × R+ → R by

L2V(φ, i, t) =q|φ(0)|q−2φ(0)T [ f (φ, i, t) + u(φ(−τ), i, t)] + q
2
|φ(0)|q−2|g(φ, i, t)|2

+
q(q − 2)

2
|φ(0)|q−4|φ(0)T g(φ, i, t)|2.

Using Assumptions 2.3 and 2.4, we further get

L2V(φ, i, t) ≤q|φ(0)|q−2
[
φ(0)T f (φ, i, t) +

q − 1
2
|g(φ, i, t)|2 + φ(0)T u(φ(−τ), i, t)

]
≤

2∑
k=1

qαk |φ(0)|q−2
∫ 0

−∞
|φ(θ)|pdµk(θ) − qα3|φ(0)|p+q−2 +

2∑
k=1

qβk |φ(0)|q−2

×
∫ 0

−∞
|φ(θ)|2dµk(θ) + qβ3|φ(0)|q + qκ|φ(0)|q−1|φ(−τ)|. (3.4)

Let ν be the Dirac measure at −τ. Applying similar technique with (2.12), then using

|φ(−τ)|q = |
∫ 0

−∞
φ(θ)dν(θ)|q ≤

∫ 0

−∞
|φ(θ)|qdν(θ),

we get

L2V(φ, i, t) ≤
2∑

k=1

Lk

∫ 0

−∞
(|φ(θ)|p+q−2 − |φ(0)|p+q−2)dµk(θ) + 2

2∑
k=1

βk

∫ 0

−∞
(|φ(θ)|q − |φ(0)|q)dµk(θ)

+ κ

∫ 0

−∞
(|φ(θ)|q − |φ(0)|q)dν(θ) +C2 (3.5)

where

C2 = max
s≥0

[
− q(α3 − α1 − α2)sp+q−2 + q(β1 + β2 + β3 + κ)sq

]
.

Finally, by the same proof method as Theorem 2.5, we can get this theorem must be hold. 2
Different from [34], under the assumption of Theorem 3.2, we may only guarantee the existence and uniqueness

of the solution of the controlled system (3.1), but not the moment asymptotic boundedness of the solution. However,
as long as we want to slightly enhance the condition, we can get the moment asymptotic boundedness.

Theorem 3.3. Let the conditions of Theorem 3.2 hold. Further assume that µ1, µ2 ∈ Pε̄. Then for any given initial
data (2.9), the controlled system (3.1) is asymptotically bounded in qth moment. That is, the solution x(t) has the
property that

lim sup
t→∞

E|x(t)|q < C3

ε
, (3.6)

where
C3 = max

s≥0

[
− q(α3 − α1µ

(ε)
1 − α2µ

(ε)
2 )sp+q−2 + q(β1µ

(ε)
1 + β2µ

(ε)
2 + β3 + κeετ + ε)sq

]
and ε > 0 is sufficiently small constant such that

µ(ε)
1 =

∫ 0

−∞
e−εθdµ1(θ), µ(ε)

2 =

∫ 0

−∞
e−εθdµ2(θ) and α1µ

(ε)
1 + α2µ

(ε)
2 < α3. (3.7)
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Proof. Firstly, lets show that existence ε satisfies condition (3.7). The existence of µ(ε)
1 and µ(ε)

2 can be referred to
(2.1). From Lemma 2.2 that when ε monotonically decreases to 0, there are µ(ε)

1 and µ(ε)
2 also monotonically decrease

to 1. Then, combining with the continuity of µ(ε)
1 and µ(ε)

2 and condition (2.7), there exists ε2 > 0, which makes any
ε ∈ (0, ε̄ ∧ ε2) condition (3.7) holds.

Recalling (2.7) and (3.7), we can rewrite (3.5) as

L2V(φ, i, t) ≤
2∑

k=1

Lk

∫ 0

−∞
(|φ(θ)|p+q−2 − µ(ε)

k |φ(0)|p+q−2)dµk(θ)

+ 2
2∑

k=1

βk

∫ 0

−∞
(|φ(θ)|q − µ(ε)

k |φ(0)|q)dµk(θ)

+ κ

∫ 0

−∞
(|φ(θ)|q − eετ|φ(0)|q)dν(θ) − ε|φ(0)|q +C3. (3.8)

Applying the Itô formula on function eεt |x|q, we have

eεtE|x(t)|q = E|x(0)|q + E
∫ t

0
eεs[ε|x(s)|q +L2V(xs, r(s), s)]ds.

In view of condition (3.8),

eεtE|x(t)|q ≤|x(0)|q +
2∑

k=1

LkE
∫ t

0
eεs

( ∫ 0

−∞
|x(s + θ)|p+q−2dµk(θ) − µ(ε)

k |x(s)|p+q−2
)
ds

+ 2
2∑

k=1

βkE
∫ t

0
eεs

( ∫ 0

−∞
|x(s + θ)|qdµk(θ) − µ(ε)

k |x(s)|q
)
ds

+ κE
∫ t

0
eεs

( ∫ 0

−∞
|x(s + θ)|qdν(θ) − eετ|x(s)|q

)
ds +

C3eεt

ε
. (3.9)

By the Fubini theorem and a substitution technique, it is easy to show that

E
∫ t

0
eεs

( ∫ 0

−∞
|x(s + θ)|p+q−2dµk(θ) − µ(ε)

k |x(s)|p+q−2
)
ds

≤E
∫ 0

−∞

∫ t

0
eεs|x(s + θ)|p+q−2dsdµk(θ) − µ(ε)

k E
∫ t

0
eεs|x(s)|p+q−2ds

≤E
∫ 0

−∞
e−εθdµk(θ)

∫ t

−∞
eεs|x(s)|p+q−2ds − µ(ε)

k E
∫ t

0
eεs|x(s)|p+q−2ds

=µ(ε)
k

∫ 0

−∞
eεs|ξ(s)|p+q−2ds ≤ µ(ε)

k

∫ 0

−∞
|ξ(s)|p+q−2ds.

Similarly, we then derive

E
∫ t

0
eεs

( ∫ 0

−∞
|x(s + θ)|qdµk(θ) − µ(ε)

k |x(s)|q
)
ds ≤ µ(ε)

k

∫ 0

−∞
|ξ(s)|qds,

and

E
∫ t

0
eεs

( ∫ 0

−∞
|x(s + θ)|qdν(θ) − eετ|x(s)|q

)
ds ≤ eετE

∫ 0

−∞
|ξ(s)|qds.
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Substituting these into (3.9) give

eεtE|x(t)|q ≤|x(0)|q + C3eεt

ε
+

2∑
k=1

Lkµ
(ε)
k

∫ 0

−∞
|ξ(s)|p+q−2ds

+ 2
2∑

k=1

βkµ
(ε)
k

∫ 0

−∞
|ξ(s)|qds + eετ

∫ 0

−∞
|ξ(s)|qds =:

C3eεt

ε
+C4.

Dividing both sides by eεt, and letting t → ∞, we obtain the assertion (3.6). 2
This theorem implies a number of good properties of the solution. For example, supt≥0 E|x(t)|q̄ < ∞ for any

q̄ ∈ (0, q] while both f (xt, r(t), t) and g(xt, r(t), t) are bounded in L2 on t ≥ 0.

3.2. Exponential stabilization
However, only Assumption 3.1 can not guarantee the stability of the controlled system (3.1), we need to give more

criteria related to the control function u. In this paper, we will use M-matrix to construct Lyapunov functional to
obtain exponential stability of the ISFDE (3.1). Regarding the theory on M-matrix we refer the reader to [37]. Now
we give the first criterion, which is related to M-matrix.

Assumption 3.4. For each i ∈ S , there exist nonnegative numbers αik, α̂ik, βik, β̂ik(k = 1, 2), positive numbers αi3, α̂i3
and real numbers βi3, β̂i3 for both

φ(0)T [ f (φ, i, t)+u(φ(0), i, t)] +
1
2
|g(φ, i, t)|2 ≤

2∑
k=1

αik

∫ 0

−∞
|φ(θ)|pdµk(θ)

− αi3|φ(0)|p +
2∑

k=1

βik

∫ 0

−∞
|φ(θ)|2dµk(θ) + βi3|φ(0)|2 (3.10)

and

φ(0)T [ f (φ, i, t)+u(φ(0), i, t)] +
q1

2
|g(φ, i, t)|2 ≤

2∑
k=1

α̂ik

∫ 0

−∞
|φ(θ)|pdµk(θ)

− α̂i3|φ(0)|p +
2∑

k=1

β̂ik

∫ 0

−∞
|φ(θ)|2dµk(θ) + β̂i3|φ(0)|2 (3.11)

to hold for all (φ, i, t) ∈ BC((−∞, 0]; Rn) × S × R+ (where q1 has been specified in Assumption 2.3). In addition, both

A1 := −2diag(β13, · · · , βN3) − Γ,
A2 := −(q1 + 1)diag(β̂12, · · · , β̂N2) − Γ (3.12)

are nonsingular M-matrices.

We will explain that there are many control functions that can satisfy Assumption 3.1 and make Assumption
3.4 hold at the same time. For example, let’s take a linear controller u(x, i, t) = Ax, where A is a symmetric n × n
real-valued negative-definite matrix such that λmax(A) ≤ −2β3 (obviously satisfies Assumption 3.1). Then

xT u(x, i, t) ≤ −2β3|x|2, ∀(x, i, t) ∈ Rn × S × R+.

Combining this and (2.8), we deduce that

φ(0)T [ f (φ, i, t) + u(φ(0), i, t)] +
1
2
|g(φ, i, t)|2

≤
2∑

k=1

αk

∫ 0

−∞
|φ(θ)|pdµk(θ) − α3|φ(0)|p +

2∑
k=1

βk

∫ 0

−∞
|φ(θ)|2dµk(θ) − β3|φ(0)|2 (3.13)

9



as well as

φ(0)T [ f (φ, i, t) + u(φ(0), i, t)] +
q1

2
|g(φ, i, t)|2

≤
2∑

k=1

αk

∫ 0

−∞
|φ(θ)|pdµk(θ) − α3|φ(0)|p +

2∑
k=1

βk

∫ 0

−∞
|φ(θ)|2dµk(θ) − β3|φ(0)|2 (3.14)

while

A1 = 2diag(β3, · · · , β3) − Γ and A2 = (q1 + 1)diag(β3, · · · , β3) − Γ

which are nonsingular M-matrices. That is, the control function u(x, i, t) = Ax meets Assumption 3.4.
We set

(c1, · · · , cN)T := A−1
1 (1, · · · , 1)T ,

(ĉ1, · · · , ĉN)T := A−1
2 (1, · · · , 1)T , (3.15)

whereA1 andA2 have specified in Assumption 3.4. Obviously, both ci and ĉi are positive numbers. Define a function
U : Rn × S → R+ by

U(x, i) = ci|x|2 + ĉi|x|q1+1, (x, i) ∈ Rn × S (3.16)

while define a functional LU : BC((−∞, 0]; Rn) × S × R+ → R by

LU(φ, i, t) = 2ci

[
φ(0)T [ f (φ, i, t) + u(φ(0), i, t)] +

1
2
|g(φ, i, t)|2

]
+ (q1 + 1)ĉi|φ(0)|q1−1

×
[
φ(0)T [ f (φ, i, t) + u(φ(0), i, t)] +

q1

2
|g(φ, i, t)|2

]
+

N∑
j=1

γi j(c j|φ(0)|2 + ĉ j|φ(0)|q1+1). (3.17)

Next, we will use LU(φ, i, t) to give the second stability criterion.

Assumption 3.5. Assume that there exists a function Φ(x) ∈ C(Rn; R+), as well as positive numbers γ j( j = 1, 2, ..., 9),
such that

γ4 + γ5 < 1, γ6 + γ7 < 1, γ8|x|p+q1−1 ≤ Φ(x) ≤ γ9(|x|2 + |x|p+q1−1) (3.18)

and

LU(φ, i, t) + γ1
(
2ci|φ(0)| + (q1 + 1)ĉi|φ(0)|q1

)2
+ γ2| f (φ, i, t)|2 + γ3|g(φ, i, t)|2

≤ − ρ
(
|φ(0)|2 − γ4

∫ 0

−∞
|φ(θ)|2dµ1(θ) − γ5

∫ 0

−∞
|φ(θ)|2dµ2(θ)

)
− Φ(φ(0)) + γ6

∫ 0

−∞
Φ(φ(θ))dµ1(θ) + γ7

∫ 0

−∞
Φ(φ(θ))dµ2(θ) (3.19)

for all (φ, i, t) ∈ BC((−∞, 0]; Rn) × S × R+.

The Lyapunov functional used in this paper will be of the form

V̄(xt, rt, t) =U(x(t), r(t)) + ϑ
∫ 0

−τ

∫ t

t+s

[
τ| f (xv, r(v), v) + u(x(v − τ), r(v), v)|2

+ |g(xv, r(v), v)|2
]
dvds (3.20)
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for t ≥ 0, where U has been defined by (3.16), rt := {r(t+ s) : −τ ≤ s ≤ 0} and ϑ is a positive constant to be determined
later. For rt to be well defined for 0 ≤ t < τ, we set r(s) = r(0) = i0 for s ∈ [−τ, 0). By the generalized Itô formula and
simple differential calculations, we get

dV̄(xt, rt, t) = (LU(xt, r(t), t) + ϑH(xt, rt, t))dt + dM(t) (3.21)

for t ≥ 0, where M(t) is a continuous local martingale with M(0) = 0 (see, e.g., [37, Theorem 1.45 on p.48]),
LU : BC((−∞, 0]; Rn) × S × R+ → R and H(xt, rt, t) are defined as

LU(xt,r(t), t) = 2cr(t)

[
x(t)T [ f (xt, r(t), t) + u(x(t − τ), r(t), t] +

1
2
|g(xt, r(t), t)|2

]
+ (q1 + 1)ĉr(t)|x(t)|q1−1

[
x(t)T [ f (xt, r(t), t) + u(x(t − τ), r(t), t)] +

1
2
|g(xt, r(t), t)|2

]
+

(q2
1 − 1)
2

ĉr(t)|x(t)|q1−3|x(t)T g(xt, r(t), t)|2 +
N∑

j=1

γr(t) j(c j|x(t)|2 + ĉ j|x(t)|q1+1), (3.22)

and

H(xt, rt, t) =τ
[
τ| f (xt, r(t), t) + u(x(t − τ), r(t), t)|2 + |g(xt, r(t), t)|2

]
−

∫ t

t−τ

[
τ| f (xv, r(v), v) + u(x(v − τ), r(v), v)|2 + |g(xv, r(v), v)|2

]
dv.

Obviously, we deduce that

LU(xt, i, t) ≤ 2ci

[
x(t)T [ f (xt, i, t) + u(x(t − τ), i, t] + 1

2
|g(xt, i, t)|2

]
+ (q1 + 1)ĉi|x(t)|q1−1

×
[
x(t)T [ f (xt, i, t) + u(x(t − τ), i, t)] + q1

2
|g(xt, i, t)|2

]
+

N∑
j=1

γi j(c j|x(t)|2 + ĉ j|x(t)|q1+1)

= LU(xt, i, t) + [2ci + (q1 + 1)ĉi|x(t)|q1−1]x(t)T [u(x(t − τ), i, t) − u(x(t), i, t)]. (3.23)

We can now state our first stabilization result.

Theorem 3.6. Let Assumptions 2.3, 2.4, 3.1, 3.4, 3.5 hold. Further assume that µ1, µ2 ∈ Pε̂. Assume also τ is
sufficiently small for

τ <

√
3ργ1(1 − γ4 − γ5)

2κ2
and τ ≤

√
3γ1γ2

2κ
∧ 3γ1γ3

2κ2
. (3.24)

Then the solution of the controlled system (3.1) satisfies

lim sup
t→∞

1
t

log(E|x(t)|2) < 0 (3.25)

for any initial data (2.9). That is, the controlled system (3.1) is exponentially stable in L2.

Proof. Similar to the first paragraph of Theorem 3.3, since (3.18) and (3.24), combined with the continuity of µ(ε)
1 and

µ(ε)
2 , there is ε3 > 0, and

ργ4µ
(ε)
1 + ργ5µ

(ε)
2 < ρ −

4τ2κ4

3γ1
, γ6µ

(ε)
1 + γ7µ

(ε)
2 < 1 (3.26)

hold for any ε ∈ (0, ε̂ ∧ ε3). To make the proof more understandable, we divide it into the following three steps.
Step 1. Set

LV̄(xt, rt, t) = LU(xt, r(t), t) + ϑH(xt, rt, t). (3.27)
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Let ϑ = 2κ2/3γ1. By condition (3.24), it is easy to show that 4κ2τ2
3γ1
≤ γ2,

2κ2τ
3γ1
≤ γ3. Using the basic inequality, we get

ϑH(xt, rt, t) ≤γ2| f (xt, r(t), t)|2 + γ3|g(xt, r(t), t)|2 + 4τ2κ2

3γ1
|u(x(t − τ), r(t), t)|2

− 2κ2

3γ1

∫ t

t−τ

[
τ| f (xv, r(v), v) + u(x(v − τ), r(v), v)|2 + |g(xv, r(v), v)|2

]
dv.

On the other hand, combining (3.23) and Assumption 3.1, we have

LU(xt, r(t), t) ≤ LU(xt, r(t), t) + γ1
[
2cr(t)|x(t)| + (q1 + 1)ĉr(t)|x(t)|q1

]2
+
κ2

4γ1
|x(t − τ) − x(t)|2.

Plugging these into (3.27), then using conditions (3.3) and (3.19), we obtain that

LV̄(xt, rt, t) ≤ LU(xt, r(t), t) + γ1
[
cr(t)|x(t)| + (q1 + 1)ĉr(t)|x(t)|q1

]2
+ γ2| f (xt, r(t), t)|2

+ γ3|g(xt, r(t), t)|2 + 4τ2κ2

3γ1
|u(x(t − τ), r(t), t)|2 + κ

2

4γ1
|x(t − τ) − x(t)|2

− 2κ2

3γ1

∫ t

t−τ

[
τ| f (xv, r(v), v) + u(x(v − τ), r(v), v)|2 + |g(xv, r(v), v)|2

]
dv

≤ −ρ
(
|x(t)|2 − γ4

∫ 0

−∞
|x(t + θ)|2dµ1(θ) − γ5

∫ 0

−∞
|x(t + θ)|2dµ2(θ)

)
− Φ(x(t)) + γ6

∫ 0

−∞
Φ(x(t + θ))dµ1(θ) + γ7

∫ 0

−∞
Φ(x(t + θ))dµ2(θ)

+
4τ2κ4

3γ1
|x(t − τ)|2 + κ

2

4γ1
|x(t − τ) − x(t)|2

− 2κ2

3γ1

∫ t

t−τ

[
τ| f (xv, r(v), v) + u(x(v − τ), r(v), v)|2 + |g(xv, r(v), v)|2

]
dv. (3.28)

By Assumptions 2.3, 2.4 and 3.1 as well as Theorem 3.3, it is straightforward to see that

sup
t≥0

E|LV̄(xt, rt, t)| < ∞. (3.29)

Step 2. Combining the generalized Itô formula and (3.29), we obtain

eεtEV̄(xt, rt, t) = V̄(x0, r0, 0) + E
∫ t

0
eεs(εV̄(xs, rs, s) +LV̄(xs, rs, s))ds (3.30)

for any t ≥ 0. Recalling (3.18), we have

|x(s)|q1+1 ≤ |x(s)|2 + |x(s)|p+q1−1 ≤ |x(s)|2 + γ−1
8 Φ(x(s)).

Set λ1 = mini∈S ci, λ2 = maxi∈S ci, λ3 = maxi∈S ĉi.We can rewrite (3.30) as

λ1eεtE|x(t)|2 ≤ eεtEV̄(xt, rt, t) ≤V̄(x0, r0, 0) + E
∫ t

0
eεs(ε(λ2 + λ3)|x(s)|2

+
ελ3

γ8
Φ(x(s)) +LV̄(xs, rs, s))ds + J, (3.31)

where

J =εϑE
∫ t

0
eεs

( ∫ 0

−τ

∫ s

s+w

[
τ| f (xv, r(v), v) + u(x(v − τ), r(v), v)|2 + |g(xv, r(v), v)|2

]
dvdw

)
ds.
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Substituting (3.28) into (3.31), yields

λ1eεtE|x(t)|2 ≤ V̄(x0, r0, 0) + I1 + I2 + I3 − I4 + J, (3.32)

where

I1 =E
∫ t

0
eεs

[
− (ρ − ελ2 − ελ3)|x(s)|2 + 4τ2κ4

3γ1
|x(s − τ)|2 + ργ4

∫ 0

−∞
|x(s + θ)|2dµ1(θ)

+ ργ5

∫ 0

−∞
|x(s + θ)|2dµ2(θ)

]
ds,

I2 =E
∫ t

0
eεs

[
− (1 − ελ3

γ8
)Φ(x(s)) + γ6

∫ 0

−∞
Φ(x(s + θ))dµ1(θ) + γ7

∫ 0

−∞
Φ(x(s + θ))dµ2(θ)

]
ds,

I3 =
κ2

4γ1
E

∫ t

0
eεs|x(s − τ) − x(s)|2ds,

I4 =
2κ2

3γ1
E

∫ t

0
eεs

( ∫ s

s−τ

[
τ| f (xv, r(v), v) + u(x(v − τ), r(v), v)|2 + |g(xv, r(v), v)|2

]
dv

)
ds.

Step 3. By the substitution technique, we deduce that∫ t

0

∫ 0

−∞
eεs|x(s + θ)|2dµk(θ)ds =

∫ 0

−∞
e−εθ

∫ t

0
eε(s+θ)|x(s + θ)|2dsdµk(θ)

≤
∫ 0

−∞
e−εθdµk(θ)

∫ t

−∞
eεs|x(s)|2ds

≤ µ(ε)
k

( ∫ 0

−∞
|ξ(s)|2ds +

∫ t

0
eεs|x(s)|2ds

)
,

and ∫ t

0
eεs|x(s − τ)|2ds = eετ

∫ t−τ

−τ
eεs|x(s)|2ds ≤ eετ

( ∫ 0

−∞
|ξ(s)|2ds +

∫ t

0
eεs|x(s)|2ds

)
.

Thus

I1 ≤
(
ρ(γ4µ

(ε)
1 + γ5µ

(ε)
2 ) +

4τ2κ4eετ

3γ1

) ∫ 0

−∞
|ξ(s)|2ds

−
(
ρ − ελ2 − ελ3 −

4τ2κ4eετ

3γ1
− ρ(γ4µ

(ε)
1 + γ5µ

(ε)
2 )

)
E

∫ t

0
eεs|x(s)|2ds. (3.33)

Similarly, and then use (3.18) to get

I2 ≤(γ6µ
(ε)
1 + γ7µ

(ε)
2 )

∫ 0

−∞
Φ(ξ(s))ds − (1 − ελ3

γ8
− (γ6µ

(ε)
1 + γ7µ

(ε)
2 ))E

∫ t

0
eεsΦ(x(s))ds

≤γ9(γ6µ
(ε)
1 + γ7µ

(ε)
2 )

( ∫ 0

−∞
|ξ(s)|2ds +

∫ 0

−∞
|ξ(s)|p+q1−1ds

)
− (1 − ελ3

γ8
− (γ6µ

(ε)
1 + γ7µ

(ε)
2 ))E

∫ t

0
eεsΦ(x(s))ds. (3.34)

On the other hand, by the Fubini theorem,

I3 =
κ2

4γ1

∫ t

0
eεsE|x(s) − x(s − τ)|2ds.
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For t ∈ [0, τ], we have

I3 ≤
κ2

4γ1

∫ τ

0
eεsE|x(s) − x(s − τ)|2ds ≤ τe

ετκ2

γ1
sup

v∈[−τ,τ]
E|x(v)|2 =: C5.

For t > τ, using the Hölder inequality and the Itô isometry, we derive that

I3 <C5 +
κ2

4γ1

∫ t

τ

eεsE|x(s) − x(s − τ)|2ds

≤C5 +
κ2

2γ1

∫ t

τ

eεsE
∫ s

s−τ

(
τ| f (xv, r(v), v) + u(x(v − τ), r(v), v)|2 + |g(xv, r(v), v)|2

)
dv

≤C5 + 3/4I4.

This implies

I3 ≤ C5 + 3/4I4. (3.35)

It is straightforward to show that

J ≤2εκ2

3γ1
E

∫ t

0
eεs

(
τ

∫ s

s−τ

[
τ| f (xv, r(v), v) + u(x(v − τ), r(v), v)|2 + |g(xv, r(v), v)|2

]
dv

)
ds

=ετI4. (3.36)

Substituting (3.33) , (3.34), (3.35) and (3.36) into (3.32), we have

λ1eεtE|x(t)|2 ≤C6 −
(
ρ − ελ2 − ελ3 −

4τ2κ4eετ

3γ1
− ρ(γ4µ

(ε)
1 + γ5µ

(ε)
2 )

)
E

∫ t

0
eεs|x(s)|2ds

−
(
1 − ελ3

γ8
− (γ6µ

(ε)
1 + γ7µ

(ε)
2 )

)
E

∫ t

0
eεsΦ(x(s))ds − (1/4 − ετ)I4, (3.37)

where C6 is a constant defined by

C6 =V̄(x0, r0, 0) +
(
ρ(γ4µ

(ε)
1 + γ5µ

(ε)
2 ) +

4τ2κ4eετ

3γ1
+ γ9(γ6µ

(ε)
1 + γ7µ

(ε)
2 )

) ∫ 0

−∞
|ξ(s)|2ds

+ γ9(γ6µ
(ε)
1 + γ7µ

(ε)
2 )

∫ 0

−∞
|ξ(s)|p+q1−1ds +C5.

Recalling (3.26), we may make sure ε ∈ (0, ε̂ ∧ ε3) to be sufficiently small for

ργ4µ
(ε)
1 + ργ5µ

(ε)
2 + ελ2 + ελ3 +

4τ2κ4eετ

3γ1
≤ ρ,

γ6µ
(ε)
1 + γ7µ

(ε)
2 +

ελ3

γ8
≤ 1, ετ ≤ 1

4
.

It then follows from (3.37) immediately that

E|x(t)|2 ≤ C6

λ1
e−εt, ∀t ≥ 0. (3.38)

This implies the required assertion (3.25). 2

Remark 3.7. As we mentioned in the introduction, [34, Theorem 4.4 ] makes a special case of our result if we take µ1
and µ2 as Dirac measures ν at δ. Moreover, compared with condition (4.24) in [34], condition (3.24) in this theorem
is more relaxed, that is to say, the time delay of our controller can be longer. In fact, with the same parameters, we
can improve the result of [34, Example 5.1] to τ = 0.0108.
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In general, for the highly nonlinear stochastic system, the mean square exponential stability can not guarantee the
almost surely exponential stability. However, in our situation, we only need to strengthen the result of Theorem 3.6,
then we can get the almost surely exponential stability of the system through the q̂th moment stability of the system.

Theorem 3.8. Under the same Assumptions of Theorem 3.6. For any given initial data (2.9),
(i) the controlled system (3.1) is exponentially stable in Lq̂ for any q̂ ∈ [2, q);
(ii) the solution of the controlled system (3.1) satisfies

lim sup
t→∞

1
t

log(|x(t)|) < 0 a.s. (3.39)

That is, the controlled system (3.1) is almost surely exponentially stable.

Proof. (i) By Theorem 3.3,
C7 = sup

t≥0
E|x(t)|q < ∞.

Applying the Hölder inequality, we obtain

E|x(t)|q̂ ≤(E|x(t)|2)(q−q̂)/(q−2)(E|x(t)|q)(q̂−2)/(q−2)

≤C(q̂−2)/(q−2)
7

(
C6/λ1

)(q−q̂)/(q−2)e−εt(q−q̂)/(q−2) (3.40)

for any q̂ ∈ [2, q).
(ii) By using the similar method of [37, Theorem 8.8 on p.309] and [34, Theorem 4.5], the assertion (3.39) can be

obtained from conditions (2.7) and (3.40). 2

4. Example

To illustrate applications of our theory clearly, in this section, we consider the following scalar stochastic integro-
differential equation

dx(t) = f (xt, r(t), t)dt + g(xt, r(t), t)dw(t), (4.1)

where the coefficients f and g are defined by

f (xt, 1, t) = −x(t)(3x2(t) +
∫ 0

−∞
x2(t + θ)dµ1(θ) − 1),

g(xt, 1, t) = 0.5(−|x(t)|3/2 +
∫ 0

−∞
|x(t + θ)|3/2dµ2(θ)),

f (xt, 2, t) = −x(t)(4x2(t) −
∫ 0

−∞
x2(t + θ)dµ1(θ) − 1.5),

g(xt, 2, t) = |x(t)|3/2 − 0.5
∫ 0

−∞
|x(t + θ)|3/2dµ2(θ), (4.2)

dµ1(θ) = dµ2(θ) = eθdθ on θ ∈ (−∞, 0] are probability measures and w(t) is a scalar Brownian motion, r(t) is a Markov
chain on the state space S = {1, 2} with its generator

Γ =

(
−1 1
2 −2

)
. (4.3)

This equation is widely discussed in population models (for example, [12, 13] and the reference therein). Through
simple calculation, it can be found that the equation (4.1) satisfies Assumptions 2.3 and 2.4, that is, the equation (4.1)
has a unique solution. Letting the initial value

ξ =

{
5e0.01t − 5e−1, if t ∈ (−100, 0]

0, if t ∈ (−∞,−100] and r(0) = 1. (4.4)

The computer simulation (Figure 4.1) shows that this hybrid stochastic integro-differential equation (4.1) is not almost
surely stable.
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Remark 4.1. Since the system with infinite delay is difficult to perform numerical simulation, we have chosen a
special initial value (4.4) here. But this is enough to illustrate our previous theoretical results. For the theory of
numerical methods of SFDEs, please refer to [38, 39, 40].
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Figure 4.1: The computer simulation of the sample paths of the Markov chain and the equation (4.1) using the Euler–Maruyama
method with step size 10−3.

The following describes how to design the delay feedback control to stabilize the unstable system (4.1). We will
choose the control function u : R × S × R+ → R define by

u(x, 1, t) = −2x, u(x, 2, t) = −3x. (4.5)

It is straightforward to see that Assumption 3.1 hold with κ = 3. Applying Theorems 3.2 and 3.3 yield that the
controlled system

dx(t) = [ f (xt, r(t), t) + u(x(t − τ), r(t), t)]dt + g(xt, r(t), t)dw(t) (4.6)

has a unique global solution on t ≥ 0 for any initial data (2.9) and the solution satisfies that

sup
0≤t<∞

E|x(t, ξ)|q < ∞, ∀q > 2. (4.7)

Next, let’s show that the controlled system (4.6) satisfies all of the assumptions in section 4. For (xt, i, t) ∈
BC((−∞, 0]; R) × S × R+, we have

x(t)[ f (xt, i, t) + u(x(t), i, t)] +
1
2
|g(xt, i, t)|2

≤
 0.0625

∫ 0
−∞ |x(t + θ)|2eθdθ − 0.9375x2(t) + 0.0625

∫ 0
−∞ |x(t + θ)|4eθdθ − 2.9375x4(t), if i = 1,

0.0625
∫ 0
−∞ |x(t + θ)|2eθdθ − 1.25x2(t) + 0.5625

∫ 0
−∞ |x(t + θ)|4eθdθ − 3.25x4(t), if i = 2,
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and

x(t)[ f (xt, i, t) + u(x(t), i, t)] +
3
2
|g(xt, i, t)|2

≤
 0.1875

∫ 0
−∞ |x(t + θ)|2eθdθ − 0.8175x2(t) + 0.1875

∫ 0
−∞ |x(t + θ)|4eθdθ − 2.8125x4(t), if i = 1,

0.1875
∫ 0
−∞ |x(t + θ)|2eθdθ − 0.75x2(t) + 0.6875

∫ 0
−∞ |x(t + θ)|4eθdθ − 2.75x4(t), if i = 2.

It is easy to see that
β13 = −0.9375, β23 = −1.25, β̂13 = −0.8125, β̂23 = −0.75.

Hence,

A1 =

(
2.875 −1
−2 4.5

)
and A2 =

(
4.25 −1
−2 5

)
are both M-matrices. Using (3.15), we then obtain

c1 = 0.502857, c2 = 0.445714, ĉ1 = 0.311688, ĉ2 = 0.324675,

and while the Assumption 3.4 is satisfied. The function U defined by (3.16) becomes

U(x, i) =
{

0.502857x2 + 0.311688x4, if i = 1,
0.445714x2 + 0.324675x4, if i = 2.

Through simple calculations, combined with (3.17), we can get

LU(xt, i, t) ≤


0.062857

∫ 0
−∞ |x(t + θ)|2eθdθ − x2(t) + 0.179740

∫ 0
−∞ |x(t + θ)|4eθdθ

−3.837403x4(t) + 0.155844
∫ 0
−∞ |x(t + θ)|6eθdθ − 3.428571x6(t), if i = 1,

0.055714
∫ 0
−∞ |x(t + θ)|2eθdθ − x2(t) + 0.623182

∫ 0
−∞ |x(t + θ)|4eθdθ

−3.775390x4(t) + 0.595238
∫ 0
−∞ |x(t + θ)|6eθdθ − 3.273810x6(t), if i = 2.

To verify Assumption 3.5, we let γ1 = 0.12, γ2 = 0.1 and γ3 = 1.2. Noting

LU(xt, i, t) + γ1
(
2ci|x| + 4ĉi|x|3

)2
+ γ2| f (xt, i, t)|2 + γ3|g(xt, i, t)|2

≤ − 0.529643
(
x2(t) − 0.401888

∫ 0

−∞
|x(t + θ)|2eθdθ

)
− Φ(x(t)) + 0.974291

∫ 0

−∞
Φ(x(t + θ))eθdθ, (4.8)

whereΦ(x) = 1.438081x4+0.94754x6. That is, conditions (3.18) and (3.19) are satisfied when ρ = 0.529643, γ4+γ5 =

0.401888 and γ6 + γ7 = 0.974291. Accordingly, condition (3.24) becomes τ < 0.017688. By Theorem 3.8, we can
therefore conclude that the controlled system (4.6) with the control function (4.3) is not only exponentially stable in
Lq̂ for any q̂ ∈ [2, q) but also almost surely provided τ < 0.017688.

To perform a computer simulation, we set τ = 0.015 and the initial data (4.4). The sample paths of the Markov
chain and the solution of the equation (4.6) are plotted in Figure 4.2. The simulation supports our theoretical results
clearly.

5. Conclusion

In this paper we have discussed the stabilization of highly nonlinear hybrid ISFDEs by delay feedback controls.
In fact, as far as the author knows, there are few results about the stability and stabilization of highly nonlinear hybrid
ISFDEs. Therefore, for ISFDEs model which does not satisfy the linear growth condition, it is necessary to develop
a new delay feedback stabilization theory to fill the gap. In this paper, we first construct the phase space reasonably
according to the characteristics of infinite delay, and obtain the existence and uniqueness condition of the solution
of hybrid system. On this basis, we design delay feedback controls, which not only make the controlled system be
bounded by the qth moment, but also make use of the Lyapunov functionals constructed by M-matrices to ensure the
exponential stability in the sense of moment and almost surely. Finally, an example and computer simulations are
given to illustrate our results.
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Figure 4.2: The computer simulation of the sample paths of the Markov chain and the equation (4.6) using the Euler–Maruyama
method with step size 10−3 .
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