29,852 research outputs found

    Harmonic mappings valued in the Wasserstein space

    Full text link
    We propose a definition of the Dirichlet energy (which is roughly speaking the integral of the square of the gradient) for mappings mu : Omega -> (P(D), W\_2) defined over a subset Omega of R^p and valued in the space P(D) of probability measures on a compact convex subset D of R^q endowed with the quadratic Wasserstein distance. Our definition relies on a straightforward generalization of the Benamou-Brenier formula (already introduced by Brenier) but is also equivalent to the definition of Koorevaar, Schoen and Jost as limit of approximate Dirichlet energies, and to the definition of Reshetnyak of Sobolev spaces valued in metric spaces. We study harmonic mappings, i.e. minimizers of the Dirichlet energy provided that the values on the boundary d Omega are fixed. The notion of constant-speed geodesics in the Wasserstein space is recovered by taking for Omega a segment of R. As the Wasserstein space (P(D), W\_2) is positively curved in the sense of Alexandrov we cannot apply the theory of Koorevaar, Schoen and Jost and we use instead arguments based on optimal transport. We manage to get existence of harmonic mappings provided that the boundary values are Lipschitz on d Omega, uniqueness is an open question. If Omega is a segment of R, it is known that a curve valued in the Wasserstein space P(D) can be seen as a superposition of curves valued in D. We show that it is no longer the case in higher dimensions: a generic mapping Omega -> P(D) cannot be represented as the superposition of mappings Omega -> D. We are able to show the validity of a maximum principle: the composition F(mu) of a function F : P(D) -> R convex along generalized geodesics and a harmonic mapping mu : Omega -> P(D) is a subharmonic real-valued function. We also study the special case where we restrict ourselves to a given family of elliptically contoured distributions (a finite-dimensional and geodesically convex submanifold of (P(D), W\_2) which generalizes the case of Gaussian measures) and show that it boils down to harmonic mappings valued in the Riemannian manifold of symmetric matrices endowed with the distance coming from optimal transport

    Bayesian Bootstrap Analysis of Systems of Equations

    Get PDF
    Research Methods/ Statistical Methods,

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure

    Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift

    Get PDF
    This paper establishes the global asymptotic equivalence between a Poisson process with variable intensity and white noise with drift under sharp smoothness conditions on the unknown function. This equivalence is also extended to density estimation models by Poissonization. The asymptotic equivalences are established by constructing explicit equivalence mappings. The impact of such asymptotic equivalence results is that an investigation in one of these nonparametric models automatically yields asymptotically analogous results in the other models.Comment: Published at http://dx.doi.org/10.1214/009053604000000012 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • 

    corecore