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1 Introduction 

This paper extends the Bayesian Bootstrap Regression (BBR) procedure developed and 

evaluated by Heckelei and Mittelhammer (1996) to a Bayesian Bootstrap Multivariate Regression 

(BBMR) framework that allows robust Bayesian analysis of traditional multivariate regression 

models.  The application of 2SLS- and 3SLS-mappings to posterior distributions of reduced form 

coefficients derived via BBMR further allows robust Bayesian analysis of simultaneous equation 

systems.  The BBMR approach is easily automated, widely applicable, robust with respect to the 

likelihood function, and flexible with respect to the choice of prior distribution.  These characteristics 

remove impediments and contribute to a wider use of Bayesian techniques in applied econometrics 

research.   

BBMR uses a form of Monte Carlo Integration (MCI) in order to analyze posterior 

distributions of model parameters.  In this regard it is in the line of work by Kloek and van Dijk 

(1978),  van Dijk and Kloek (1980),  Zellner,  Bauwens and van Dijk (1988),  and Geweke (1989 

and 1991).  With continuously increasing computing power, MCI is a convincing solution to the 

problem of analytical tractability in multidimensional integration problems as is often encountered in 

Bayesian analysis of econometric models.  It allows a totally flexible choice of prior distributions and 

can be implemented as a generic algorithm in standard statistical software independently of the actual 

choice of prior distribution (Geweke 1991). 

In addition, BBMR does not require the specification of a parametric family for the likelihood 

function.  Instead, it uses a bootstrapped likelihood based on the joint sampling distribution of 

location and scale estimators.  The outcomes of this bootstrap procedure serve as outcomes of an 

importance function for the MCI evaluation of  posterior expectations based on an importance 

sampling scheme (see Geweke 1989 and 1991 for importance sampling in the case of normality). 
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The paper is organized as follows:  First, a short introduction to Bayesian analysis of the 

traditional multivariate regression model is given, followed by an outline of a possible MCI-analysis 

of the posterior under normality.  The presentation serves to establish notation and to set the 

inferential context for the BBMR approach.  Then, the BBMR-algorithm is introduced as a robust 

alternative for performing posterior inference.  The next section demonstrates how BBMR can be 

applied to perform Bayesian analysis of simultaneous equation models based on a generalized 

version of "unrestricted reduced form mappings" by Zellner,  Bauwens and van Dijk (1988).  

Simulation results are presented in the penultimate section to assess the performance of the BBMR in 

the simultaneous equations context using the "Klein Model I" from Theil (1971).  The final section 

presents conclusions and areas in need of further research.   

2 Analytical Bayesian Analysis of the Traditional Multivariate 
Regression Model 

We begin with a general analytical approach for performing Bayesian analysis of the traditional 

multivariate regression model.  We deviate from standard textbook expositions (e.g. Zellner, 1971) 

by not assuming normality and arranging terms differently in order to provide better motivation for the 

BBMR procedure introduced in the next section.  Since later sections will utilize multivariate 

regression formulations in the context of analyzing reduced forms of simultaneous equations systems, 

we use the conventional notation for the reduced form.  Let 

 Y X V =   +  , Π  (1) 

where Y is a (nHm) matrix of observations on m endogenous variables, X is a (nHk) matrix of 

observations on k exogenous variables, Π  is a (kHm) matrix of regression coefficients, and V is a 

(nHm) matrix representing n iid outcomes of a 1Hm disturbance vector having a joint density function 

g([0],Σ), mean vector [0], and covariance matrix Σ .  Then Y has some corresponding probability 

density function f(Y|Π ,Σ).  Assuming that a prior probability density ("prior") on the model 

parameters, p(Π ,Σ), is independent regarding Π  and Σ such that p(Π ,Σ ) = p(Π ) p(Σ) and letting 
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L(Π ,Σ |Y) / f(Y|Π ,Σ ) denote the likelihood function, the joint posterior probability density 

("posterior") of the model parameters can be defined by Bayes theorem as 

 
h( , | ) p( )p( ) f( | , )

m( )
p( )p( ) L( , | )

m( )

 p( )p( ) L( , | )

Π Σ Π Σ Π Σ Π Σ Π Σ

Π Σ Π Σ

Y = =

∝

Y
Y

Y
Y

Y

 (2) 

where m(Y) is the marginal probability density of the matrix Y. 

The main interest of the empirical analyst is most often the marginal posterior density of Π  

which can be represented as 

 

[ ]

h( | )  p( ) . ..  p( ) L( , | ) d

 p( ) 
.. .  p( ) L( , | ) d

...  . ..  p( ) L( , | ) d  d

 p( ) L ( | ) ,

0 0

0 0

0 0

Π Π Σ Π Σ Σ

Π
Σ Π Σ Σ

Σ Π Σ Σ Π

Π ΠΣ

Y Y

Y

Y

Y

∝ ∫ ∫

∝ ∫ ∫
∫ ∫ ∫ ∫

=

∞ ∞

∞ ∞

−∞
∞

−∞
∞ ∞ ∞

 (3) 

where LΣ(Π |Y) is interpreted as a marginal likelihood, derived via weighting L(Π ,Σ |Y) with the prior 

information on Σ and then normalizing to unit total mass.  If an ignorance prior on Σ  is employed, 

which will be the case for the remainder of this paper, then the representation of the posterior in (3) 

separates the available information on Π  into two parts, the prior information p(Π), and the 

information that comes from the data as interpreted through the model, LΣ(Π |Y).    

Expectations of various functions of Π  taken with respect to the posterior (3) are the typical 

measures used to summarize the information contained in the posterior.  The posterior mean 

represents the Bayesian point estimate for the unknown true value of Π  that minimizes a quadratic 

loss function (Judge et al. 1988).  Posterior variances and tail probabilities allow an evaluation of 

how precise the knowledge relating to Π  is.  Posterior probabilities associated with specified subsets 

of the parameter space provide measures of confidence regarding the location of model parameters.  

Generally, posterior expectations of functions of Π , say E[g(Π)], can be represented as  

 E[g( )]  . ..  g( ) h( | ) d- -Π Π Π Π= ∫ ∫∞
∞

∞
∞ Y  (4) 
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3  Monte Carlo Integration and Importance Sampling 

Monte Carlo Integration (MCI) is often the preferred method of evaluating the integrals in the 

preceding section, since flexibility in choosing prior densities, the use of complicated functions of Π  

and/or high parameter dimensionality prohibit the use of analytical integration tools (Geweke 1989).  

Conceptually, Monte Carlo evaluation of expectations is straightforward.  If N iid outcomes from 

h(Π |Y) in equation (4) are available, say Π i, i = 1,...,N and if |E[g(Π )]| = c < 4, then, by 

Kolmogorov's strong law of large numbers 

 1
N

 g( )    E[g( )]
i=1

N

i
 

as

∑ →Π Π  (5) 

where →
as

 denotes almost sure convergence.  Thus for large enough N, a simple average of the 

outcomes of g(Π i) provides an arbitrarily close approximation to E[g(Π)]. 

However, it is often the case that a flexible choice of prior and likelihood will result in a 

situation where random sampling from the posterior distribution of Π  is difficult or impossible.  In this 

case, a particular variation of the MCI-technique, importance sampling, is especially useful (Geweke 

1986 and 1989).  In this approach, a so-called "importance function" I(Π) is introduced, that 

replaces h(Π |Y) as the sampling density.  I(Π) must include the support of h(Π |Y) and should be 

easy to sample from.  Rewriting equation (4) as  

 E[g( )]  . ..  g( ) h( | )
I( )

 I( ) d- -Π Π Π
Π

Π Π= ∫ ∫








∞

∞
∞

∞ Y  (6) 

expresses E[g(Π)] as the expectation of the bracketed term with respect to the sampling density 

I(Π).  Again, Kolmogorov's strong law of large numbers allows E[g(Π)] to be approximated as 

 E[g( )]  1
N

 g( ) h( | )
I( )i=1

N
i i

i

Π Π Π
Π

= ∑ Y  (7) 

where Π i, for i = 1,...,n,  are iid outcomes from I(Π).  The approximation can be made arbitrarily 

close by increasing n.  The rate of convergence is determined by the variance of g(Π) as well as by 

the variability of the ratio of density values h(Π |Y)/I(Π ), the latter being smaller the closer the two 

densities are in shape.   

Normalizing p(Π)LΣ(Π |Y) in (3) to unit mass in order to define the proper posterior density 

for h(Π |Y) and substituting LΣ(Π |Y) for I(Π) in equation (6) then obtains 
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 (8) 

Note that both the numerator and denominator of the last expression in (9) can be interpreted as 

expectations taken with respect to LΣ(Π*Y). In particular, adopting this interpretation of the 

expectation operator, the numerator can be replaced by E[g(Π)p(Π)] and the denominator replaced 

by E[p(Π )].  Therefore, letting Π i,  i=1,...N,  be iid outcomes from LΣ(Π*Y), E[g(Π)] can be 

approximated by a prior-weighted average of the form  

 E[g( )]  

1
N

  g( ) p( )

1
N

 p( )
  

 g( ) p( )

p( )
  .i=1

N

i i

i=1

N

i

i=1

N

i i

i=1

N

i

Π
Π Π

Π

Π Π

Π
= =

∑

∑

∑

∑
 (9) 

with Π i being iid outcomes from LΣ(Π *Y), i=1,...,N.  In case of an ignorance prior on Π  (p(Π) = 

constant) it is clear that estimated expectations generated via (9) reduce to a simple average of 

functions of the outcomes Ai (see also Zellner, Bauwens, and van Dijk 1988, p. 47). 

If a normal likelihood function is assumed then LΣ(Π |Y), defined in equation (3), is a matrix 

student-t distribution denoted as T(v,Π ,S), where v = n-k, and , i.e. 

 Σ Π Π Π Π ΠL ( | )  |  +  ( ) ( ) |
(v+ k)

2Y ∝ − ′ −S X X$ $  (10) 

Outcomes of this distribution can be easily generated (an algorithm is given, for example, in the 

appendix of Zellner, Bauwens and van Dijk 1988), so that it can serve as the importance function for 

the evaluation of posterior expectations.   

We can conclude that for the normal multivariate regression model a general and easily 

implementable approach for analyzing posterior distributions of the regression coefficients is 

available.  However, leaving the realm of normality requires the development of some other 

(importance) sampling approach that may or may not be as tractable as the preceding one. The need 
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to develop methodological solutions on a case-by-case basis is unappealing and certainly impedes 

the use of Bayesian techniques in econometric analyses.  Furthermore, the error distribution family is 

usually unknown and requiring that one be chosen most likely results in a model specification error to 

some extent.  As in Heckelei and Mittelhammer (1996) for the single equation case, we suggest an 

approach, BBMR, that is robust with respect to the underlying error distribution but preserves the 

advantages of the normal distribution-MCI approach regarding flexibility in choosing the prior and 

the possibility of being implemented generically, once and for all,  in standard statistical software. 

4 Bayesian Bootstrap Multivariate Regression 

In order to obtain an approach to Bayesian analysis of the multivariate regression model that is 

robust with respect to the underlying probability model we first substitute for LΣ(Π |Y) a "Multivariate 

Regression-Structure Likelihood," LΣ(Π | $Π ,S), conditioned on the joint outcome of location and 

scale estimators representing information contained in the data.  We then approximate this likelihood 

by an empirical likelihood defined via a bootstrap procedure that simultaneously provides a random 

sample from the empirical likelihood and replaces outcomes of LΣ(Π |Y) in (10) to approximate 

posterior expectations.  

4.1 Multivariate Regression-Structure Likelihood 

Analogous to LΣ(Π |Y) in equation (3) we define the normalized (to unit mass) Multivariate 

Regression-Structure-Likelihood of Π  as 

 
[ ]Σ Π Π

Σ Π Σ Π Σ

Σ Π Σ Π Σ Π
L $

$

$
( | , )  

. . .  p( ) L( , | , ) d

.. .  . . .  p( ) L( , | , ) d  d
0 0

0 0

S
S

S
= ∫ ∫

∫ ∫ ∫ ∫

∞ ∞

−∞
∞

−∞
∞ ∞ ∞

 (11) 

The likelihood function L(Π ,Σ* $Π ,S) in (11) is conditioned on the usual least squares estimators of 

the parameters (Π ,Σ) that relate to the structure of the multivariate regression problem (1), hence the 

name "Multivariate Regression-Structure-Likelihood."  The idea of constructing a likelihood 

conditional on estimators of unknown parameters has been used previously in related contexts by 

Boos and Monahan (1986), Doksum and Lo (1990), Davison, Hinkley, and Worton (1992), and 
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Pettit (1982, 1983), among others, and in the same context for the univariate linear model by 

Heckelei and Mittelhammer (1996).  Monahan and Boos (1992) have presented criteria that can be 

used to determine when such likelihoods are defensible via the probability calculus for Bayesian 

posterior inference in the case where proper prior densities are used.  Essentially, such likelihoods 

for Θ are defensible when they are based on the densities of statistics that are parameterized entirely 

by Θ. 

It is apparent that in the current context information contained in the data is now exclusively 

represented via the information contained in the estimators $Π  and S.  In the case where $Π  and S 

are sufficient statistics for (Π ,Σ), as under normality, LΣ(Π |Y) and LΣ(Π | $Π ,S) are informationally 

identical and in fact are both equal to the aforementioned matrix student-t distribution.  Whenever $Π  

and S are not sufficient statistics the use of LΣ(Π | $Π ,S) leads to some loss of information on the 

parameter vector Π .  However, information loss is to some extent inevitable in empirical analyses, 

being completely avoided only in cases of perfect knowledge regarding the form of the underlying 

error distribution.  Moreover, the common assumption of normally-distributed errors also represents 

all data information via the statistics $Π  and S, and thus precipitates information loss, as well as 

constitutes a specification error, when normality does not hold.   

4.2 Mixing Algorithm for Likelihood Sampling 

Analogous to the analysis of the multivariate regression model under normality, one can 

approximate posterior expectations using (9) if a random sample from the Multivariate Regression-

Structure-Likelihood, LΣ(Π | $Π ,S), can be drawn.  In order to define a sampling algorithm we 

express LΣ(Π | $Π ,S) in terms of a mixed distribution involving the marginal posterior distribution of Σ  

(which does the mixing) and the marginal likelihood function of Π , conditional on Σ  (which is mixed 

over Σ):  

 
Σ Π Π Σ Π Σ Π Σ

Σ Π Π Σ Σ Π Σ

Π Π Σ Σ Π Σ

L ( | , )  . . .  p( ) L( , | , ) d

=  . . . p( ) L( | , , ) L( | , ) d

 . . . L( | , , ) h( | , ) d ,

0 0

0 0

0 0

$ $

$ $

$ $

S S

S S

S S

∝ ∫ ∫

∫ ∫

∝ ∫ ∫

∞ ∞

∞ ∞

∞ ∞

 (12) 
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where h(Σ | $Π ,S) % p(Σ) L(Σ | $Π ,S) is the marginal posterior of Σ. It follows from this 

representation that a random outcome of LΣ(Π | $Π ,S) can be obtained by first drawing a random 

outcome of Σ from h(Σ | $Π ,S), say Σ*, and then drawing a random outcome of Π  from 

L(Π | $Π ,S,Σ*) (normalized to unit mass). 

In order to operationalize this mixing algorithm, we first show how it relates to the sampling 

distributions of $Π  and S. We consider a slightly modified version of model (1): 

 Y X U =   +  , Π Σ1 2/  (1')   

where the rows of the  (nHm) matrix of errors, U, are iid outcomes from g([0],I) having a mean of 

[0] and a covariance matrix of I, the density of V[i,.] = U[i,.]Q is g([0],Q'Q) for any conformable Q 

with full column rank, and the (mHm) scale parameter matrix Σ1/2 is such that U[i,.]Σ1/2  = V[i,.]~ 

g([0],Σ) œi,  so that the exponent (1/2) denotes the calculation of a "matrix square root" fulfilling this 

condition.  Everything else is defined as in (1).  Note that the foregoing distributional assumptions 

characterize the class of error density families for which the ensuing mixing algorithm will be robust.  

In particular, when m=1, the robust class includes all symmetric density families with mean zero, as 

well as any family of skewed densities that can be defined via scaling of a random variable having a 

parameterless density with mean zero.  For m$2, all density families in the elliptically contoured class 

having mean vector [0] and covariance matrix Σ are in the robust class, including families such as 

Pearson II, Pearson VII, multivariate T, LaPlace, Bessel, Uniform (elliptical), and multivariate normal 

(Johnson, 1987, chapter 6; Johnson and Kotz, 1972, p. 297).  This follows straightforwardly from 

the fact that the characteristic function of an elliptically contoured random vector Vi with mean vector 

[0] and covariance matrix Σ is given by 
iv (t) =  (ct' t)φ ψ Σ for some function Ψ(@), where c is a 

known numerical constant that is specific to a density family (Cambanis, et. al, 1981, p. 368 and 

Theorem 4).   

Given the preceding assumptions, the outcomes of the estimators $Π  and S are distributionally 

equivalent, in the sense of their marginal distributions, to the outcomes of 

 
$ ( ' ) '

' ( ' )

/Π Π Σ= +

=













−X X X U

S T U MU

1 1 2

T
, (13) 
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where T is a matrix such that T'T = Σ  and M = I-X(X'X)-1X'.  Fixing $Π  and S at their observed 

values and treating Π  and Σ as random variables, outcomes of Π  and Σ can be solved for as 

 
Π Π Σ

Σ

= −

=













−

−

$ ( ' ) '

( ' )

/

/ /

X X X U

S U MU S

1 1 2

1 2 1 1 2
. (14) 

To show that the second equation in (14) holds consider the following sequence of steps: First, 

pre- and postmultiply the second equation in (13) by  S-1/2 to get 

 I S T U MU TS =  ( ) .-1/ 2 -1/2′ ′  (15) 

It follows that S-1/2T' = (U'MU)-1/2 will satisfy (15), so that 

 T S U MU =  ( )1/2 -1/ 2′  (16) 

and therefore 

 Σ =   =  ( ) .1/2 -1 1/2′ ′T T S U MU S  (17) 

If the parametric family of the underlying error distribution were known and new samples 

could be drawn from it, then (14) represents an empirical recipe for implementing the mixing concept 

presented in (12).  Specifically, one could draw a random sample of size n from g([0],I), resulting in 

the (nHm) matrix U*, and then calculate, using (14) and the given value of S, an outcome of Σ, say 

Σ *, which is interpretable as an outcome from h(Σ | $Π ,S) (further motivated below).  Then U* can be 

scaled by the square root of Σ *, Σ*
1/2, to condition an outcome of  Π  = $Π  - (X'X)-1X'U*Σ*

1/2 on 

the covariance matrix Σ*. This outcome of Π  is effectively an outcome from (the normalized to unit 

total mass) L(Π | $Π ,S,Σ*).  Repeating the procedure N times produces a random sample of size N 

from LΣ(Π | $Π ,S), which is equivalent to mixing L(Π | $Π ,S,Σ ) over h( $Σ Π| ,S)  and random sampling 

from the mixture. 

We now examine the type of marginal posterior distribution for Σ  that is implied by the 

transformation in (17) and find that it incorporates the standard ignorance prior on Σ that is typically 

used in Bayesian analyses of the multivariate regression model.  Under the conditions given for the 

distributional model in (1') and denoting the sampling distribution of S as f(S|Σ), we have 

 S T U MU T= ' ( ' ) ∼ f(S|Σ) = f(S|T) (18) 
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since the distribution of UT depends only on the value of T'T = Σ .  Letting W = U'MU = (T')-1ST-1 

and noting that | |∂ ∂W S/ = |T|-(m+1), because of the symmetry of S (Deemer and Olkin, 1951) the 

distribution of W is given via change of variables as 

 η( ) =  f( | )| | .m+1W T WT T T'  (19) 

For a given S it follows from (17) that W = S1/2Σ -1S1/2  and | |∂ ∂W / Σ = |S|(m+1)/2 |Σ |-(m+1)  

(Deemer and Olkin, 1951).  The change of variable transformation from the distribution of W to the 

distribution of Σ  then yields 

 
h( | )  f( | )| | | |

  f( | )| | | |  =  f( | )| |

1/2 -1 1/2 m+1 -(m+1)

(m+1)/2 -(m+1)) -(m+1)/2

Σ Σ Σ

Σ Σ Σ Σ Σ

S T S S T T T

S S

∝

∝

'
 (20) 

 

since |T| = |T'| = |T'T|1/2 = |Σ |1/2 , which implies that the regression structure likelihood for Σ, 

represented by f(S|Σ ), is postmultiplied by the standard ignorance prior p(Σ ) %  |Σ |-(m+1)/2 to obtain 

the marginal posterior for Σ, h(Σ | $Π ,S) / h(Σ *S).  It can be straightforwardly verified that in the 

multivariate normal case, (20) yields the appropriate inverted Wishart distribution.  

4.3 Bootstrapping the Mixing Algorithm: The BBMR Algorithm 

If the error distribution family were known, the analytical Bayesian approach were intractable, 

and random sampling from the error distribution family were reasonably straightforward, then the 

mixing algorithm, described in the preceding section together with (10), would represent a feasible 

method of conducting Bayesian analysis of the multivariate regression model.  Of course, other 

computationally intensive and possibly more efficient approaches might be available for performing 

Bayesian inference in this case, such as MCI and importance sampling.  However, the mixing 

approach will approximate the results of the analytical approach arbitrarily closely for large enough 

samples if $Π  and S are sufficient statistics for the parameters of the regression model.  Furthermore, 

even if there were some information loss associated with the mixing approach, computational 

simplicity may favor its use. 

In the more typical case where the error distribution family is unknown, a robust variation on 

the mixing approach can be defined using the empirical distribution function of the regression 
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residuals, EDF( $V) , to approximate the true error distribution, g([0],Σ ), and ultimately to 

approximate LΣ(Π | $Π ,S) by a nonparametric estimate LΣ*(Π | $Π ,S).  In this case the bootstrap is 

the relevant sampling technique, where new nHm residual matrices are constructed by random 

sampling residual vectors,  with replacement, from the observed vectors of residuals in 

$V MU =  1/2Σ . 

Denote a bootstrap sample of the OLS-residual vectors as V*=U*(S/n)1/2, where U* = 

V*(S/n)-1/2 then approximates a random sample of size n from g([0], I).  According to (14) a 

bootstrapped outcome of Π , Π *, can be generated by first computing a bootstrapped outcome of 

Σ , Σ * (second equation in (14)) by substituting U* in place of U, and then substituting the square root 

*
1/2Σ  into the first equation in (14) in place of Σ1/2. Considering this procedure in detail allows 

substitutions to be made that eliminate the need for sequential calculations of Σ* and Π * as: 

 
*

-1 -1/2
*
-1 1/2

*
1/2

*
-1/2

*
-1

*
-1

 =   -  ( ) ( )

 =  [( ) ( ( ) ]  =  

Π Π

Σ

$ ′ ′

′













X X X V S SS S

S V S M V S S SS S

*

( / n) / n) ( ) n-1/2 1/2 -1

 (21) 

with * * * =  S V M V′ . 

We can now define the BBMR algorithm as follows (compare to the BBR-algorithm 

presented by Heckelei and Mittelhammer, 1996): 

1. Calculate $ ' 'Π =  ( )-1X X X Y . 

2. Calculate $ $V Y X =   − Π . 

3. Calculate ( )1/2
1/2

 =   S V V$ $′  

 4. Draw a random sample (with replacement) of size n from 1 n, . . . ,$ $V V ,  with the subscripts 

indicating the rows of the $V  matrix, resulting in the (nHm) matrix V*. 

5. Calculate ( )* * =   S V M V*'  . 

6. Calculate ** *
-1/ 2 1/2 =  ( )V V S S S S*

-1 . 

7. Calculate *
-1

** =  - ( )Π Π$ ' 'X X X V . 

8. Repeat steps 4-7 N times and collect outcomes of Π *. 

 9. In combination with a specification of the prior distribution, p(Π), use the N outcomes of  

Π * to approximate posterior expectations according to equation (9). 
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As the data sample size increases, and EDF( $V ) 6 g([0], Σ), then bootstrap sampling in the 

BBMR algorithm becomes equivalent to random sampling from the true error distribution.  As the 

bootstrap sample size increases, posterior expectations calculated via the BBMR algorithm become 

equivalent to analytical expectations based on EDF( $V ).  Thus, for large enough data and bootstrap 

sample sizes, the BBMR algorithm will produce posterior expectations based on the true regression 

structure likelihood for the parameters of the regression model. 

5 BBMR and Robust Bayesian Analysis of Simultaneous Equations 

A considerable part of econometric modeling work involves structural equations which have 

endogenous variables on the right hand side, i.e. simultaneous equation systems.  Zellner, Bauwens 

and van Dijk (1988) developed, among other things, several mappings of unrestricted reduced form 

coefficients that allow for Bayesian estimation and specification analysis of structural equations based 

on random samples from the posterior distribution of reduced form coefficients.  In this section their 

"2SLS-Mapping" is extended to a "3SLS-Mapping" to accommodate cases where more than one 

structural equation is of interest.  In combination with the BBMR algorithm developed above, these 

mappings can be used to perform robust Bayesian analysis of simultaneous equation systems. 

5.1 2SLS and 3SLS Mappings of the Reduced Form 

Consider the following representation of a system of m structural equations 

 Y X U 0Γ Β +   +   =  [ ]  (22) 

where Y is a nHm matrix of endogenous variables, X is a (nHk) matrix of predetermined variables, Γ 

and Β are (mHm) and (kHm) matrices of coefficients of endogenous and predetermined variables, 

respectively, and [0] is a nHm matrix of zeros. Assume the system is normalized so that Γ  has 

negative unit values on the diagonal. The reduced form of (22) can then be written as 

 Y X V =   +  Π  (23) 

with V = -UΓ -1 and 
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 Π ΒΓ= - .-1  (24) 

Now let Γ0 = Γ + I, with I being a mHm identity matrix, and rearrange equation (24) to get 

 Π Γ Β Π Π Γ Β( - ) =  -    =   +  0 0I ⇔  (25) 

Premultiplying by X yields a generalized version of equation 2.24 in Zellner, Bauwens and van Dijk 

(1988) as 

 X  =  X  +  X  =  Z ,0Π Π Γ Β δ  (26) 

where Z = [XΠ   X] and δ =
Γ
Β

0





.  To allow for possible errors in the exact restrictions implied by 

(26) a (nHm) discrepancy matrix ∆  (instead of a vector in the case of single equation analyses) is 

introduced leading to 

 X  =  Z  +  Π ∆δ .  (27) 

Let ∆ i be the ith column of ∆, which represents discrepancies in the exact restrictions of (26) 

corresponding to the ith structural equation.  Minimizing each of the discrepancy functions ∆ i'∆ i, for 

i = 1,...,m, separately with respect to δ i (the ith column of δ ) defines what Zellner, Bauwens and van 

Dijk call the 2SLS-mapping, because it resembles the way 2SLS-estimation maps Π  into δ, as 

 i
2SLS

i i
-1

i i =  ( ) ,  i =1, . . ., m.δ Z Z Z X' ' Π  (28) 

Here iZ denotes a matrix of the columns of XΠ  and X that appear in the ith equation, and Π i 

denoting the ith column of Π .  

Accordingly, a 3SLS Mapping can be defined as  

 3SLS -1 -1 -1 =  ( ( I ) )  ( I ) vec( )δ
~

' $ ~ ~
' $Z Z ZΩ Ω Π⊗ ⊗ X  (29) 

with 

 ~Z

Z 0 0

0 Z 0

0 0 Z
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and ij i i i
2SLS

j j j
2SLS =  ( - ) ( - ) / n$ω δ δX XΠ ΠZ Z′ , so that this mapping takes covariances between 

the different errors in (27) into account.  The 3SLS-mapping, δ 3SLS , is the solution for δ  in (27) that 

minimizes the quadratic discrepancy function defined by vec(∆)' -1
I)( $Ω ⊗ vec(∆). 

5.2 BBMR and Robust Structural Equation Analysis 

The 2SLS- and 3SLS-mappings can be combined with the BBMR algorithm to perform 

robust Bayesian estimation and specification analysis of structural coefficients.  In the first step 

BBMR is used to provide outcomes from a robust ignorance prior-based posterior of the reduced 

form coefficients, replacing the random sample from the matrix student t-distribution in Zellner, 

Bauwens and van Dijk (1988).  In the second step these reduced form coefficient outcomes are 

substituted for Π i and Π  in (28) and (29) to calculate outcomes of the 2SLS- and 3SLS-mappings.  

The mappings represent information about structural coefficients that is contained in the data and 

bootstrapped outcomes can be interpreted as being drawn from an approximation to the marginal 

likelihood function of the structural coefficients.  Finally, posterior expectations of structural 

coefficients or functions thereof (g(δ )) are evaluated using a prior (p(δ ))-weighted average of the 

mapping outcomes analogous to equation (9), e.g. for the 3SLS-mapping as 

 i=1

N

i
3SLS

i
3SLS

i=1

N

i
3SLS

 g( ) p( )

p( )
  .

∑

∑

δ δ

δ
 (30) 

where N denotes the bootstrap sample size. 

It should be noted here that an important use of the unrestricted reduced form mappings is in 

analyzing the reasonableness of the identifying restrictions of the structural model.  This can be 

accomplished through an examination of the posterior distribution of the discrepancy functions 

described above (see Zellner, Bauwens and van Dijk for the 2SLS-mapping case).   
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6 Motivation, Design, and Results of Monte Carlo Simulations  

The theoretical validity of BBMR is based on the bootstrap's ability to consistently estimate the 

sampling distribution of $Π  and S. As the data sample size n approaches infinity, the empirical 

distribution function of the observed residuals, EDF( $V ), converges to the true distribution g([0]*Σ) 

and accordingly LΣ*(Π | $Π ,S) converges to LΣ(Π | $Π ,S).  Finite sample properties of the bootstrap, 

however, are generally unknown.  Monte Carlo simulations of the single equation regression model 

have been promising, even for rather small data sample sizes (see Heckelei and Mittelhammer 1996) 

but performance in the multivariate regression setting requires investigation.  Furthermore, the 

suggested use of the BBMR-outcomes to analyze structural equations involves nonlinear 2SLS- and 

3SLS-mappings that might render the approximation error of the bootstrap more significant.  The 

performance of the BBMR should be evaluated within a simultaneous equations structure that is 

typical in applied econometrics.  The design of the Monte Carlo simulations should allow an 

assessment of the crucial properties of a robust estimator, namely the efficiency loss relative to the 

normal approach when the normal probability model is true, and the ability of the procedure to 

accurately represent characteristics of the true posterior distribution under different probability 

regimes. 

In order to measure the approximation error of BBMR regarding posterior expectations, we 

contrast means, variances, and tail probabilities of the bootstrapped marginal posterior distributions 

h*(δ j* $Π ,S) based on 2SLS and 3SLS-mappings with their parametric counterparts from 

h(δj* $Π ,S).  Note that the efficiency loss resulting from the use of $Π  and S as the only source of 

data information relative to the use of a known likelihood function L(Π ,Σ*Y) is not evaluated with 

this approach when $Π  and S are not sufficient statistics.  Such efficiency loss is in a sense 

unavoidable in empirical work since the analyst rarely knows the true functional form of the likelihood 

function and, consequently, it is of less practical interest in our context.  

Two important sources of approximation error remain in the current simulation context:  (1) A 

finite collection of bootstrapped error samples V* from EDF() does not completely represent the full 

informational content of EDF( $V ), so that the appropriate bootstrap sample size is an issue and (2) 

EDF( $V ) itself is only an approximation to the true error distribution g([0]*Σ ) raising questions 
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regarding required data sample sizes and also regarding the usefulness of certain transformations of 

the observed residuals $V  suggested in the literature. 

Heckelei and Mittelhammer (1996) paid considerable attention to techniques that have been 

proposed to mitigate the preceding types of approximation errors. The design of the simulations 

reported here are based on those findings in the single equation case and we do not reiterate all of 

the comparisons between different bootstrap correction techniques and residual transformations.  

We therefore use sampling with replacement of the untransformed OLS-residuals of the reduced 

form equations exactly as described in the BBMR-algorithm above.  Nevertheless, we do analyze 

whether a system version of a promising second order correction technique, introduced by Heckelei 

and Mittelhammer, is useful device in the BBMR context.  The technique transforms the collection of 

bootstrap samples in order to achieve second moment characteristics of the "infinite" bootstrap. 

Letting V*i, i = 1,...,N, be the collection of N bootstrapped (nHm) residual matrices, the 

transformation is defined as 

 *i
S

*i
-1/2 1/ 2 =    V V P Λ Σ$ ,  i = 1, ..., N  (31) 

where P and Λ are the eigenvector and diagonal eigenvalue matrices corresponding to the matrix 

Ψ =  
1
N

  '
i=1

N

*i *i∑ V V , and 1/2$Σ  is the symmetric square root of 

$ $ $Σ Π Π= n S = ( - )' ( - ) / n-1 Y X Y X .  It follows that 

 1
N

  '  =   ' 1
N

  '    =  ,
i=1

N

*i
S

*i
S 1/2 -1/ 2

i=1

N

*i *i
-1/2 1/ 2∑ ∑







V V P V V P$ $ $Σ Λ Λ Σ Σ  (32) 

which is the appropriate covariance matrix associated with EDF( $V ) and the limiting covariance 

matrix that would be estimated from bootstrapped residuals if the bootstrap sample size were 

increased toward 4.  This technique is a more generally applicable alternative to ? Second Order 

Balancing?  (Graham et al. 1990), and places none of the latter approach? s restrictions on bootstrap 

and data sample sizes.  
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6.1 Simulation Design 

The Monte Carlo simulations are based on Klein's Model I as reported in Theil (1971).  For 

variable definitions and additional information about the model that is not reported here, the reader 

can consult the reference.  The simulation results are generated via the following sequence of steps: 

1. A data sample of n=21 is drawn from Klein's model using the 3SLS-estimates reported by 

Theil as the "true" values of the model parameters, i.e. the data is drawn from a simultaneous 

equation system with three behavioral equations (first three equations)  and three identities (last three 

equations) of the following form: 

 t t t =   +  Y X UΓ Β  (33) 

 with  

 { }tY  =   C  I  W  X  P  D  ,t t t
I

t t t  

 

 Γ =

−
− −

−
− −

−





























1 0 0 1 0 0
0 1 0 1 0 1
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0 0 0 1 1 0
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 { }tX  =   1 t 1931 W  T  G  P  K  X  t
G

t t t-1 t-1 t-1u  

 Β =  .
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 The structural errors U have some multivariate probability density with mean [0] and a covariance 
submatrix for the three behavioral equations (all other entries of the complete covariance matrix 

are zero) 
 

 Ω =
−

−















4 2 057 1 968
2 057 10 2 015

1 968 2 015 2 600

.459 . .

. .47 .

. . .

 

which is five times the contemporaneous covariance matrix estimated from the 3SLS residuals.  The 

additional variation was added in order to insure that any observed accuracy of the BBMR is not 

due to the relatively good fit of Klein's model.  However, we also show simulation results based on 

the original smaller contemporaneous covariance matrix estimated from the 3SLS residuals for 

comparison with the results of the standard simulation case described here (Table 2). 

The data sample was generated sequentially (because of lagged endogenous variables) using 

Yt = XtΒΓ -1 + UtΓ -1.  All reported results are restricted to the first model equation, i.e the 

consumption function. 

2. The means, jδ , variances, Var(δj), and values of δj  corresponding to the 2nd, 5th, 10th, 

90th, 95th, and 98th percentile, denoted as j
ithδ , are calculated from the parametric marginal 

posterior distributions of the structural coefficients, h(δj* $Π ,S).  For the case of normally distributed 

errors this is done using the sampling procedure from the appropriate matrix T-distribution as 

described in Zellner, Bauwens and van Dijk (1988).  In the case of T-distributed errors we use a 

procedure equivalent to the BBMR algorithm except that the errors are drawn from the known 

parametric family parameterized by S.  For simplicity we employ an ignorance prior on δ  noting that 

the nonlinear character of the mappings of the reduced form coefficients should sufficiently challenge 

the ability of the BBMR to approximate multivariate distributions.  All "parametric solutions" are 

based on 100000 error samples to minimize noise.   

3. In a sequence of nsim = 50 simulations of the BBMR procedure, the BBMR-outcomes of 

the posterior expectations based on a bootstrap sample size of nb = 1000 (5000), are compared 

with their parametric counterparts.  The reported distance measures for each marginal posterior 

hj(δj* $Π ,S), are calculated as follows (subscript j is suppressed below, bootstrapped outcomes have 

a "*" subscript): 
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(a) Root Mean Square Error of bootstrapped posterior mean estimate (denoted in Tables as 
(MSE)1/2, Mean):  

 1
n

(   )
sim i=1

n

* i
2

sim

∑ −δ δ  . 

b) Bias of posterior mean estimate (Bias, Mean): 

 1
n

(   )
sim i=1

n

*i

sim

∑ −δ δ  . 

c) Root Mean Square Error of bootstrapped posterior variance estimate((MSE)1/2, Variance):  

 [ ]1
n

Var( )   Var( )
sim i=1

n
2

*i

sim

∑ −δ δ  . 

d) Bias of bootstrapped posterior variance estimate (Bias, Variance): 

 1
n

(Var( )   Var( ))
sim i=1

n

*i

sim

∑ −δ δ  . 

e) The average bootstrapped probabilities (ith percentiles): 

 1
n

prob
sim i=1

n

*i

sim

∑  , 

 where prob*i is calculated as the proportion of the bootstrapped δ *'s in the ith bootstrapped 
sample that are  below j

ithδ , relative to the bootstrap sample size. 

 
f) Standard deviation of bootstrapped probabilities (STDV): 

 1
n 1

(prob 1
n

prob )
sim i=1

n

*i
sim i=1

n

*i
2

sim sim

−
−∑ ∑   . 

 

A single simulation sequence evaluating the distance measures for a specific error distribution 

repeats steps one to three 10 times in order to make the results less dependent on a specific data 

sample.  The results reported in each table are consequently averages over 10 different simulated 

data sets and required between 15 and 25 hours on a IBM-compatible PC with a Pentium-90 CPU.  

Note however, that the simulations involve three layers of sampling--the bootstrap itself, the nsim 

repetitions of the bootstrap, and the resampling of the data set.  When BBMR is used as an 

estimation technique in empirical work, only bootstrap sampling will be involved. Simple Bayesian 

point estimates and variances of a three equation model can be obtained in less than a minute even 

with a bootstrap sample size of 5000. 
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6.2 Simulation Results 

Table 1 shows distance measures for 2SLS-mappings based on the standard simulation 

procedure described in the previous section.  The accuracy of the nonparametric mean and variance 

estimates as measured by the root mean square error is very promising.  Since the respective bias 

measures are smaller than the root mean square errors by an order of magnitude, the largest part of 

MSE1/2 must be variance-related.  Therefore, one would expect that the general approximation 

accuracy of BBMR will increase for higher bootstrap sample sizes, second order corrected samples 

or lower error variances in the data generating process.  Results presented below will partly confirm 

this hypothesis.  Comparing these results to the single equation BBR algorithm in Heckelei and 

Mittelhammer (1996, Table 1), however, suggests there may be less accuracy in the multivariate 

case.  This may reflect the higher demand put on the empirical distribution function in the multivariate 

setting with considerably more parameters to be approximated.  Moreover, the nonlinear mappings 

of the reduced form coefficients may accentuate the approximation errors of the BBMR.  It is 

somewhat surprising in this context that the average of the bootstrapped probabilities and their 

standard deviations do not significantly differ regarding their accuracy from the single equation results 

reported in Heckelei and Mittelhammer.  One should keep in mind, however, that, contrary to the 

single equation case, averages over 10 data samples are reported here.  More detailed results (not 

reported here) show that the accuracy of the probability estimates differ somewhat across data 

samples, but remain comparable in terms of order of magnitude. The standard deviations of the 

probabilities are rather stable across different data samples.   

Table 1: Distance Measures Between 2SLS -Mappings Based on BBMR and Parametric Posterior - 
Normal Errors  

 Structural Coefficients (True Value) 

Distance Measure  δ1(16.44)  δ 2(0.1249)  δ 3(0.1631)  δ 4(0.7901)

MSE1/2, Mean 0.2693 0.0603 0.0591 0.0482

Bias, Mean 0.0043 -3.0E-04 0.0051 1.1E-04

MSE1/2, Variance 0.3672 0.0014 8.3E-04 4.1E-04

Bias, Variance 0.0382 8.8E-05 -3.5E-05 5.3E-05

2% probability 1.92 1.93 2.00 2.04

(STDV)  (0.4357) (0.4662) (0.4292) (0.4513)

5%        " 4.94 4.89 5.03 5.05
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 (0.6910) (0.7177) (0.6815) (0.6611)

10%      "  9.96 9.84 10.07 9.99

 (0.9628) (0.9504) (0.9507) (0.9218)

90%      "  89.80 89.82 90.02 89.95

 (0.9180) (0.9921) (0.9363) (0.9718)

95%      "  94.87 94.83 95.00 94.96

 (0.6972) (0.7736) (0.7108) (0.6649)

98%      "  97.87 97.88 98.01 97.93

 (0.4591) (0.4804) (0.4466) (0.4406)

NOTE:   nb = 1000,  nsim= 50,  MSE = Mean Square Error, STDV = Standard Deviation.  The coefficients of 
government wages (WG) and industry wages (W I)  are set equal in model estimation ( δ4) so that only four instead 
of five coefficients are reported here. 

Table 2 is based on the original covariance matrix estimated from 3SLS residuals as reported 

by Theil.  Scaling the error covariance by a factor of 1/5 relative to the one underlying Table 1 

improves accuracy, as expected.  Root Mean Square Error and bias measures of mean and variance 

estimates in Table 2 are respectively smaller than in Table 1 for all coefficients.  The smaller error 

variance had less impact on the accuracy of the average bootstrapped probabilities and the size of 

their standard deviations.  Across all coefficients and percentiles, the accuracy of the probabilities is 

virtually indistinguishable from the higher variance scenario.  Standard deviations are on average 

slightly lower but the differences are small. 

Table 2: Distance Measures Between 2SLS-Mappings Based on BBMR and Parametric Posterior - 
Normal Errors, Small Error Variance 

  Structural Coefficients (True Value) 

Distance Measure    δ1(16.44)  δ 2(0.1249)  δ 3(0.1631)  δ 4(0.7901)

MSE1/2, Mean 0.1942 0.0508 0.0482 0.0325

Bias, Mean 0.0019 -1.1E-04 -9.7E-04 -6.4E-05

MSE1/2, Variance 0.1002 5.4E-04 4.4E-04 8.3E-05

Bias , Variance 0.0197 7.4E-05 -1.7E-05 1.1E-05

2% probability 2.04 2.01 1.92 1.98

(STDV)  (0.4114) (0.4767) (0.4006) (0.4506)

5%        " 5.01 5.02 4.86 4.98

 (0.6492) (0.7434) (0.6575) (0.7043)

10%      " 10.06 10.02 9.85 9.97
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(0.9314) (0.9826) (0.9185) (0.9277)

90%      " 89.89 89.92 89.97 89.90

(0.9607) (0.9618) (0.9340) (0.9140)

95%      " 94.95 94.91 94.97 94.90

(0.6884) (0.7068) (0.6992) (0.6531)

98%      " 97.93 97.88 97.95 97.93

(0.4287) (0.4427) (0.4425) (0.4303)

NOTE:  See Table 1. 

Of more interest to the empirical researcher are impacts of changing characteristics of the 

estimation problem that are actually controllable, which can generally not be said about the error 

variance of the data generating process.  Two approaches promising an improvement in 

approximation accuracy are the aforementioned second order sample correction technique and an 

increase in the bootstrap sample size.  Table 3 allows these two cases to be compared with the 

"reference" scenario in Table 1 and with each other for the coefficients δ2 and δ 4.   Both approaches 

improve upon the accuracy of the mean and variance estimates presented in Table 1.   
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Table 3: Distance Measures Between 2SLS-Mappings Based on BBMR and Parametric Posterior - 
Normal Errors, Comparison Between Second Order Corrected Bootstrap Samples and Large 
Bootstrap Sample Size 

 Structural Coefficients (True Value) 

 Second Order Corrected         Large Bootstrap Sample Size

Distance Measure   δ2(0.1249)  δ 4(0.7901)  δ 2(0.1249)  δ 4(0.7901)

MSE1/2, Mean 0.0575 0.0471 0.0358 0.0213

Bias, Mean 6.7E-05 9.7E-05 8.1E-05 -1.8E-05

MSE1/2, Variance 0.0010 2.9E-04 3.0E-04 3.6E-05

Bias, Variance -4.5E-05 -6.9E-06 7.7E-05 4.7E-05

2% probability 1.95 1.97 1.93 1.97

(STDV) (0.4261) (0.4274) (0.2029) (0.1952)

5%        "  4.94 4.95 4.94 4.96

 (0.6325) (0.6406) (0.3141) (0.2927)

10%      "  9.91 9.95 9.96 9.98

 (0.9181) (0.8157) (0.4343) (0.4078)

90%      "  90.01 89.92 89.88 89.86

 (0.8590) (0.8745) (0.4359) (0.4378)

95%      "  95.02 94.93 94.85 94.88

 (0.6337) (0.6262) (0.3137) (0.3224)

98%      "  97.99 97.95 97.88 97.89

 (0.4261) (0.4143) (0.2037) (0.2028)

NOTE:   nb = 1000 for first two columns and nb = 5000 for last two columns,  n sim= 50,  MSE = Mean Square Error, 
STDV = Standard Deviation.  The coefficients of government wages (W G) and industry wages (W I)  are set equal 
in model estimation (δ 4). 

Increasing the bootstrap sample size from 1000 to 5000 clearly outperforms the second order 

correction technique if measured with respect to root mean square errors whereas the correction 

technique yields a lower bias for the variance estimates.  Correcting the covariance matrix of the 

reduced form errors alone apparently is not as effective in stabilizing the expectations of the nonlinear 

mappings as is the large, and for applications certainly achievable, increase in bootstrap sample size.   

This is also confirmed looking at the standard deviations of the bootstrapped probabilities. Here the 

reduction for the increased sample size is around 50% compared to the reference scenario.  The 

second order correction hardly improves at all on these measures.  These results are somewhat in 

disagreement with the single equation case in Heckelei and Mittelhammer (1996): There, the second 
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order correction had a stronger impact on distance measures at comparable bootstrap sample sizes 

(nb = 900) and the impact of increasing the bootstrap sample size was less significant.  This again 

may be explained by the multivariate setting and the nonlinear mappings employed here that place 

higher demands on the bootstrap.  Higher bootstrap sample sizes in the range between 1000 and 

5000 still seem to improve upon the bootstrap? s ability to represent the information contained in the 

multivariate empirical distribution function. 

 Another important trait of a robust estimation approach is its performance under different 

probability regimes.  Table 4 presents distance measures between BBMR based 2SLS-Mappings 

and those calculated via a parametric regression structure likelihood using the mixing algorithm 

described above when the disturbances are assumed to be multivariate T-distributed instead of 

normally distributed. Compared with the results for the normal distribution in Table 1, root mean 

square errors of mean and variance estimates and standard deviations of bootstrapped probabilities 

are slightly reduced for the T-distributed errors.  The comparison of mean and variance bias is 

ambiguous whereas the average bootstrapped probabilities are somewhat less accurate than those 

for normal errors.  Overall one can say that the general approximation accuracy of the BBMR-based 

2SLS-mappings for a multivariate T-distribution is quite good and the accuracy did not notably differ 

from the normal case. 
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Table 4: Distance Measures Between 2SLS-Mappings Based on BBMR and Parametric Posterior - 
Errors Distributed as Multivariate T with 5 d.f. 

 Structural Coefficients (True Value) 

Distance Measure    δ1(16.44)  δ 2(0.1249)  δ 3(0.1631)  δ 4(0.7901)

MSE1/2, Mean 0.2436 0.0582 0.0559 0.0439

Bias, Mean -0.0387 -4.8E-04 0.0015 2.7E-04

MSE1/2, Variance 0.2484 0.0010 7.7E-04 2.9E-04

Bias, Variance -0.0325 -3.0E-04 3.1E-05 -1.0E-04

2% probability 2.05 1.96 1.94 1.70

(STDV) (0.4344) (0.4173) (0.4245) (0.3997)

5%        " 5.17 5.00 4.92 4.57

(0.6984) (0.6765) (0.6575) (0.6287)

10%      " 10.38 10.05 9.93 9.54

(0.9629) (0.9260) (0.9033) (0.9156)

90%      " 90.36 90.40 89.69 89.95

(0.8988) (0.9132) (0.9356) (0.9141)

95%      " 95.31 95.32 94.81 94.96

(0.6524) (0.6362) (0.6921) (0.6580)

98%      " 98.15 98.18 97.94 97.93

(0.4177) (0.3980) (0.4477) (0.4296)

NOTE:  See Table 1. 

All of the types of simulations on 2SLS-mappings reported here were also done for 3SLS-

mappings, but only for a bootstrap sample size of 1000.  The absolute approximation accuracy as 

well as the findings regarding variations on error variance, second order correction and error 

distribution paralleled those for the 2SLS-mappings.  Therefore, in Table 5, only distance measures 

for the standard simulation scenario, analogous to the simulation context of Table 1, are presented.  

Comparisons with Table 1 demonstrates the similarity of the results. 
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Table 5: Distance Measures Between 3SLS -Mappings Based on BBMR and Parametric Posterior - 
Normal Errors  

 Structural Coefficients (True Value) 

Distance Measure  δ1(16.44)  δ 2(0.1249)  δ 3(0.1631)  δ 4(0.7901)

MSE1/2, Mean 0.2568 0.0612 0.0565 0.0457

Bias, Mean 0.0082 1.8E-04 0.0013 -1.8E-04

MSE1/2, Variance 0.2777 0.0015 0.0007 0.0004

Bias, Variance -0.0385 -1.1E-05 -1.5E-05 -5.0E-05

2% probability 1.90 1.94 1.95 1.94

(STDV)  (0.4301) (0.4276) (0.4494) (0.4338)

5%        " 4.79 4.95 4.91 4.93

 (0.6851) (0.6996) (0.6503) (0.6844)

10%      " 9.72 9.92 9.92 9.91

 (0.9153) (0.9674) (0.9127) (0.9262)

90%      " 89.86 89.90 89.92 90.12

 (0.9428) (0.9425) (0.9068) (0.9254)

95%      " 94.97 94.83 94.96 95.08

 (0.6806) (0.7045) (0.7013) (0.6877)

98%      " 97.94 97.86 97.94 98.03

 (0.4460) (0.4581) (0.4557) (0.4400)

NOTE:  See Table 1. 

7 Conclusions 

The Bayesian Bootstrap Regression (BBR) procedure developed by Heckelei and 

Mittelhammer (1996) has been generalized to a Bayesian Bootstrap Multivariate Regression 

(BBMR) approach.  This allows for a generic, algorithmic Bayesian analysis of the traditional 

multivariate regression model without specification of a likelihood function and without restrictions on 

the form of prior densities.  Combining BBMR with 2SLS- and 3SLS- mappings allows Bayesian 

analysis of simultaneous equation systems based on unrestricted reduced forms. Monte Carlo results 
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for the simultaneous equation setting presented in the paper indicate that the efficiency loss relative to 

a parametric approach under normality is small.  Simulation results with multivariate T-distributed 

error terms suggest that the BBMR-algorithm may also be robust for elliptically contoured 

distributions, given that the data information is represented exclusively via a regression structure 

likelihood defined in terms of the sampling distribution of location and scale estimators.  Since the 

underlying probability model for the regression disturbances is generally unknown, BBMR can be a 

robust and useful alternative to assuming normality and performing parametric Bayesian analysis with 

a potentially incorrect likelihood function.  

Several areas in need of further research on Robust Bayesian Analysis in the system context 

can be identified.  First of all, Monte Carlo studies are always of limited generality and additional 

simulations across other error distributions would provide additional insights regarding the robustness 

of the BBMR.  Second, in the context of non-normal error distributions it would be interesting to 

compare the parametric normality-based approach with the BBMR both to evaluate the robustness 

of the normality assumption, and to assess possible relative improvements that BBMR can provide 

over incorrectly assuming normality.  Third, the development of a bootstrap algorithm for performing 

restricted reduced form analysis of simultaneous equation systems would be desirable for cases in 

which the analyst felt that over identifying restrictions could be imposed with certainty.  Finally, one 

might consider BBMR based on other robust estimators of location and scale to generate samples 

from likelihood functions that are possibly more robust than the Regression-Structure-Likelihood.    

 

Summary 

A Bayesian Bootstrap Multivariate Regression (BBMR) procedure is presented that allows 

robust Bayesian posterior analyses of traditional multivariate regression models.  The 

procedure is then extended via 2SLS- and 3SLS-mappings of reduced form posterior 

distributions to facilitate robust posterior analyses of simultaneous equations systems. BBMR 

does not require the specification of a parametric family for the likelihood function and 

instead  uses a bootstrapped likelihood based on the sampling distribution of location and 

scale estimators. It also allows a flexible choice of prior distributions and can be implemented 



 

 

28 

 

as a generic algorithm in standard statistical software independently of the actual choice of 

prior distribution.  

 

Zusammenfassung 

Der Beitrag stellt die Multivariate Bayes-Bootstrap -Regression (BBMR) vor, die eine robuste 

Analyse der A-posteriori Verteilungen traditioneller multivariater Regressionsmodelle erlaubt. 

Die Methode wird erweitert durch die Anwendung zweier Projektionen (verwandt mit der 

zweistufigen und dreistufigen Kleinstquadratmethode), die eine robuste Bayes'sche Analyse 

simultaner Gleichungssysteme ermöglichen. BBMR benötigt keine Spezifikation der Likelihood 

Funktion, sondern benutzt eine "bootstrap-Likelihood" auf der Grundlage der 

Stichprobenverteilungen von Lage- und Varianz-Schätzern. Gleichzeitig erlaubt BBMR eine 

flexible Spezifikation der A-priori Verteilungen und kann, unabhängig von der spezifischen 

Wahl der A-priori Verteilung, als standardisierter Algorithmus in Ökonometriesoftware-

paketen implementiert werden. 
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