141 research outputs found

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    The physics of spreading processes in multilayer networks

    Get PDF
    The study of networks plays a crucial role in investigating the structure, dynamics, and function of a wide variety of complex systems in myriad disciplines. Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (i.e., "multiplexity") among their constituent components and/or multiple interacting subsystems. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent "multilayer" approach for modeling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. On one hand, it allows one to couple different structural relationships by encoding them in a convenient mathematical object. On the other hand, it also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.Comment: 25 pages, 4 figure

    The physics of spreading processes in multilayer networks

    Get PDF
    Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (or ‘multiplexity’) between their components. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent multilayer approach for modelling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. It allows one to couple different structural relationships by encoding them in a convenient mathematical object. It also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping to achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure

    Spreading Processes in Multilayer Networks

    Full text link

    Interacting Spreading Processes in Multilayer Networks: A Systematic Review

    Full text link
    © 2013 IEEE. The world of network science is fascinating and filled with complex phenomena that we aspire to understand. One of them is the dynamics of spreading processes over complex networked structures. Building the knowledge-base in the field where we can face more than one spreading process propagating over a network that has more than one layer is a challenging task, as the complexity comes both from the environment in which the spread happens and from characteristics and interplay of spreads' propagation. As this cross-disciplinary field bringing together computer science, network science, biology and physics has rapidly grown over the last decade, there is a need to comprehensively review the current state-of-the-art and offer to the research community a roadmap that helps to organise the future research in this area. Thus, this survey is a first attempt to present the current landscape of the multi-processes spread over multilayer networks and to suggest the potential ways forward

    Frequency-based brain networks: From a multiplex framework to a full multilayer description

    Get PDF
    We explore how to study dynamical interactions between brain regions using functional multilayer networks whose layers represent the different frequency bands at which a brain operates. Specifically, we investigate the consequences of considering the brain as a multilayer network in which all brain regions can interact with each other at different frequency bands, instead of as a multiplex network, in which interactions between different frequency bands are only allowed within each brain region and not between them. We study the second smallest eigenvalue of the combinatorial supra-Laplacian matrix of the multilayer network in detail, and we thereby show that the heterogeneity of interlayer edges and, especially, the fraction of missing edges crucially modify the spectral properties of the multilayer network. We illustrate our results with both synthetic network models and real data sets obtained from resting state magnetoencephalography. Our work demonstrates an important issue in the construction of frequency-based multilayer brain networks.Comment: 13 pages, 8 figure
    corecore