416 research outputs found

    Incessant transitions between active and silent states in cortico-thalamic circuits and altered neuronal excitability lead to epilepsy

    Get PDF
    La ligne directrice de nos expériences a été l'hypothèse que l'apparition et/ou la persistance des fluctuations de longue durée entre les états silencieux et actifs dans les réseaux néocorticaux et une excitabilité neuronale modifiée sont les facteurs principaux de l'épileptogenèse, menant aux crises d’épilepsie avec expression comportementale. Nous avons testé cette hypothèse dans deux modèles expérimentaux différents. La déafférentation corticale chronique a essayé de répliquer la déafférentation physiologique du neocortex observée pendant le sommeil à ondes lentes. Dans ces conditions, caractérisées par une diminution de la pression synaptique et par une incidence augmentée de périodes silencieuses dans le système cortico-thalamique, le processus de plasticité homéostatique augmente l’excitabilité neuronale. Par conséquent, le cortex a oscillé entre des périodes actives et silencieuses et, également, a développé des activités hyper-synchrones, s'étendant de l’hyperexcitabilité cellulaire à l'épileptogenèse focale et à des crises épileptiques généralisées. Le modèle de stimulation sous-liminale chronique (« kindling ») du cortex cérébral a été employé afin d'imposer au réseau cortical une charge synaptique supérieure à celle existante pendant les états actifs naturels - état de veille ou sommeil paradoxal (REM). Dans ces conditions un mécanisme différent de plasticité qui s’est exprimé dans le système thalamo-corticale a imposé pour des longues périodes de temps des oscillations continuelles entre les époques actives et silencieuses, que nous avons appelées des activités paroxysmiques persistantes. Indépendamment du mécanisme sous-jacent de l'épileptogenèse les crises d’épilepsie ont montré certaines caractéristiques similaires : une altération dans l’excitabilité neuronale mise en évidence par une incidence accrue des décharges neuronales de type bouffée, une tendance constante vers la généralisation, une propagation de plus en plus rapide, une synchronie augmentée au cours du temps, et une modulation par les états de vigilance (facilitation pendant le sommeil à ondes lentes et barrage pendant le sommeil REM). Les états silencieux, hyper-polarisés, de neurones corticaux favorisent l'apparition des bouffées de potentiels d’action en réponse aux événements synaptiques, et l'influence post-synaptique d'une bouffée de potentiels d’action est beaucoup plus importante par rapport à l’impacte d’un seul potentiel d’action. Nous avons également apporté des évidences que les neurones néocorticaux de type FRB sont capables à répondre avec des bouffées de potentiels d’action pendant les phases hyper-polarisées de l'oscillation lente, propriété qui peut jouer un rôle très important dans l’analyse de l’information dans le cerveau normal et dans l'épileptogenèse. Finalement, nous avons rapporté un troisième mécanisme de plasticité dans les réseaux corticaux après les crises d’épilepsie - une diminution d’amplitude des potentiels post-synaptiques excitatrices évoquées par la stimulation corticale après les crises - qui peut être un des facteurs responsables des déficits comportementaux observés chez les patients épileptiques. Nous concluons que la transition incessante entre des états actifs et silencieux dans les circuits cortico-thalamiques induits par disfacilitation (sommeil à ondes lentes), déafférentation corticale (épisodes ictales à 4-Hz) ou par une stimulation sous-liminale chronique (activités paroxysmiques persistantes) crée des circonstances favorables pour le développement de l'épileptogenèse. En plus, l'augmentation de l’incidence des bouffées de potentiels d’actions induisant une excitation post-synaptique anormalement forte, change l'équilibre entre l'excitation et l'inhibition vers une supra-excitation menant a l’apparition des crises d’épilepsie.The guiding line in our experiments was the hypothesis that the occurrence and / or the persistence of long-lasting fluctuations between silent and active states in the neocortical networks, together with a modified neuronal excitability are the key factors of epileptogenesis, leading to behavioral seizures. We addressed this hypothesis in two different experimental models. The chronic cortical deafferentation replicated the physiological deafferentation of the neocortex observed during slow-wave sleep (SWS). Under these conditions of decreased synaptic input and increased incidence of silent periods in the corticothalamic system the process of homeostatic plasticity up-regulated cortical cellular and network mechanisms and leaded to an increased excitability. Therefore, the deafferented cortex was able to oscillate between active and silent epochs for long periods of time and, furthermore, to develop highly synchronized activities, ranging from cellular hyperexcitability to focal epileptogenesis and generalized seizures. The kindling model was used in order to impose to the cortical network a synaptic drive superior to the one naturally occurring during the active states - wake or rapid eye movements (REM) sleep. Under these conditions a different plasticity mechanism occurring in the thalamo-cortical system imposed long-lasting oscillatory pattern between active and silent epochs, which we called outlasting activities. Independently of the mechanism of epileptogenesis seizures showed some analogous characteristics: alteration of the neuronal firing pattern with increased bursts probability, a constant tendency toward generalization, faster propagation and increased synchrony over the time, and modulation by the state of vigilance (overt during SWS and completely abolished during REM sleep). Silent, hyperpolarized, states of cortical neurons favor the induction of burst firing in response to depolarizing inputs, and the postsynaptic influence of a burst is much stronger as compared to a single spike. Furthermore, we brought evidences that a particular type of neocortical neurons - fast rhythmic bursting (FRB) class - is capable to consistently respond with bursts during the hyperpolarized phase of the slow oscillation, fact that may play a very important role in both normal brain processing and in epileptogenesis. Finally, we reported a third plastic mechanism in the cortical network following seizures - a decreasing amplitude of cortically evoked excitatory post-synaptic potentials (EPSP) following seizures - which may be one of the factors responsible for the behavioral deficits observed in patients with epilepsy. We conclude that incessant transitions between active and silent states in cortico-thalamic circuits induced either by disfacilitation (sleep), cortical deafferentation (4-Hz ictal episodes) and by kindling (outlasting activities) create favorable circumstances for epileptogenesis. The increase in burst-firing, which further induce abnormally strong postsynaptic excitation, shifts the balance of excitation and inhibition toward overexcitation leading to the onset of seizures

    Intrinsic and synaptic membrane properties of neurons in the thalamic reticular nucleus

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2004-2005Le noyau réticulaire thalamique (RE) est une structure qui engendre des fuseaux, une oscillation bioélectrique de marque pendant les stades précoces du sommeil. De multiples propriétés neuronales, intrinsèques et synaptiques, sont impliquées dans la génération, la propagation, le maintien et la terminaison des ondes en fuseaux. D’un autre côté, ce rythme constitue un état spécial de l’activité du réseau qui est généré par le réseau lui-même et affecte les propriétés cellulaires du noyau RE. Cette étude se concentre sur ces sujets: comment les propriétés cellulaires et les propriétés du réseau sont inter-reliées et interagissent pour engendrer les ondes fuseaux dans les neurones du RE et leurs cibles, les neurones thalamocorticaux. La présente thèse fournit de nouvelles évidences montrant le rôle fondamental joué par les neurones du noyau RE dans la genèse des ondes en fuseaux, dû aux synapses chimiques établies par ces neurones. La propagation et la synchronisation de l’activité sont modulées par les synapses électriques entre les neurones réticulaires thalamiques, mais aussi par les composantes dépolarisantes secondaires des réponses synaptiques évoquées par le cortex. De plus, la forme générale et la terminaison des oscillations thalamiques sont probablement contrôlées en grande partie par les neurones du RE, lesquels expriment une conductance intrinsèque leurs procurant une membrane avec un comportement bistable. Finalement, les oscillations thalamiques en fuseaux sont aussi capables de moduler les propriétés membranaires et l’activité des neurones individuels du RE.The thalamic reticular nucleus (RE) is a key structure related to spindles, a hallmark bioelectrical oscillation during early stages of sleep. Multiple neuronal properties, both intrinsic and synaptic, are implicated in the generation, propagation, maintenance and termination of spindle waves. On the other hand, this rhythm constitutes a special state of network activity, which is generated within, and affects single-cell properties of the RE nucleus. This study is focused on these topics: how cellular and network properties are interrelated and interact to generate spindle waves in the pacemaking RE neurons and their targets, thalamocortical neurons. The present thesis provides new evidence showing the fundamental role played by the RE nucleus in the generation of spindle waves, due to chemical synapses established by its neurons. The propagation and synchronization of activity is modulated by electrical synapses between thalamic reticular neurons, but also by the secondary depolarizing component of cortically-evoked synaptic responses. Additionally, the general shaping and probably the termination of thalamic oscillations could be controlled to a great extent by RE neurons, which express an intrinsic conductance endowing them with membrane bistable behaviour. Finally, thalamic spindle oscillations are also able to modulate the membrane properties and activities of individual RE neurons

    Investigating hippocampal-neocortical interactions around sharp-wave ripples

    Get PDF
    Coordinated activity in the hippocampal-neocortical network around hippocampal sharp-wave ripples (SWRs) plays an instrumental role in memory processing in the brain. SWRs occur in both sleep and awake states, though under two significantly different behavioural and chemical circumstances. Previous studies have reported different patterns of peri-SWR neocortical modulations between these states; however, their findings have been limited to one or a few discrete regions of the neocortex. To extend previous findings, we conducted wide-field optical imaging of the mouse neocortical voltage and glutamate activity combined with hippocampal electrophysiological recording. We found topographically- and temporally-organized patterns of neocortical glutamate and voltage activity around sleep and awake SWRs, though with pronounced differences. These findings highlight the state-dependency of the hippocampal-neocortical network’s computations and possibly functions. Moreover, they provide a spatiotemporal map of the neocortex around SWRs that could guide future studies on the role of hippocampal-neocortical interactions in memory consolidation

    Modelling emergent rhythmic activity in the cerebal cortex

    Get PDF
    A la portada consta: IDIBAPS Institut d'Investigacions Biomèdiques August Pi i SunyerThe brain, a natural adaptive system, can generate a rich dynamic repertoire of spontaneous activity even in the absence of stimulation. The spatiotemporal pattern of this spontaneous activity is determined by the brain state, which can range from highly synchronized to desynchronized states. During slow wave sleep, for example, the cortex operates in synchrony, defined by low-frequency fluctuations, known as slow oscillations (<1Hz). Conversely, during wakefulness, the cortex is characterized mainly by desynchronized activity, where low-frequency fluctuations are suppressed. Thus, an inherent property of the cerebral cortex is to transit between different states characterized by distinct spatiotemporal complexity patterns, varying in a large spectrum between synchronized and desynchronized activity. All these complex emergent patterns are the product of the interaction between tens of billions of neurons endowed with diverse ionic channels with complex biophysical properties. Nevertheless, what are the mechanisms behind these transitions? In this thesis, we sought to understand the mechanisms and properties behind slow oscillations, their modulation and their transitions towards wakefulness by employing experimental data analysis and computational models. We reveal the relevance of specific ionic channels and synaptic properties to maintaining the cortical state and also get out of it, and its spatiotemporal dynamics. Using a mean-field model, we also propose bridging neuronal spiking dynamics to a population description.El cerebro, un sistema adaptativo natural, es capaz de generar un amplio repertorio dinámico de actividad espontánea, incluso en ausencia de estímulos. La patrón espacio-temporal de esta actividad espontánea viene determinada por el estado cerebral, el cual puede variar de estados altamente sincronizados hasta estados muy desincronizados. Cuando en el sueño se entra en la fase de ondas lentas, por ejemplo, la corteza opera en sincronía, cuya actividad es definida por fluctuaciones de baja frecuencia, conocidas como oscilaciones lentas (<1Hz). En cambio, durante la vigilia, el córtex se caracteriza principalmente por tener una actividad desincronizada, donde las fluctuaciones de baja frecuencia desaparecen. Por lo tanto, una propiedad inherente de la corteza cerebral es transitar entre diferentes estados caracterizados por distintos patrones de complejidad espacio-temporal, los cuales se sitúan dentro del amplio espectro marcado por la actividad sincronizada y la desincronizada. Estos patrones emergentes son el producto de la interacción entre decenas de miles de millones de neuronas dotadas de múltiples y distintos canales iónicos con complejas propiedades biofísicas. Sin embargo, ¿cuáles son los mecanismos que regulan estas transiciones? En esta tesis tratamos de entender los mecanismos, propiedades y sus transiciones hacia la vigilia, que están detrás de las oscilaciones lentas a través del uso y análisis de datos experimentales y modelos computacionales. En ella describimos la importancia de los canales iónicos específicos y sus propiedades sinápticas tanto para mantener el estado cortical como para salir de él, estudiando así su dinámica espacio-temporal. Además, mediante el uso de un modelo de campo medio, proponemos establecer un puente que pueda describir la dinámica de disparos neuronales con una descripción general de la población neuronal.Postprint (published version

    Slow-wave sleep : generation and propagation of slow waves, role in long-term plasticity and gating

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013.Le sommeil est connu pour réguler plusieurs fonctions importantes pour le cerveau et parmi celles-ci, il y a le blocage de l’information sensorielle par le thalamus et l’amélioration de la consolidation de la mémoire. Le sommeil à ondes lentes, en particulier, est considéré être critique pour ces deux processus. Cependant, leurs mécanismes physiologiques sont inconnus. Aussi, la marque électrophysiologique distinctive du sommeil à ondes lentes est la présence d’ondes lentes de grande amplitude dans le potentiel de champ cortical et l’alternance entre des périodes d’activités synaptiques intenses pendant lesquelles les neurones corticaux sont dépolarisés et déchargent plusieurs potentiels d’action et des périodes silencieuses pendant lesquelles aucune décharge ne survient, les neurones corticaux sont hyperpolarisés et très peu d’activités synaptiques sont observées. Tout d'abord, afin de mieux comprendre les études présentées dans ce manuscrit, une introduction générale couvrant l'architecture du système thalamocortical et ses fonctions est présentée. Celle-ci comprend une description des états de vigilance, suivie d'une description des rythmes présents dans le système thalamocortical au cours du sommeil à ondes lentes, puis par une description des différents mécanismes de plasticité synaptique, et enfin, deux hypothèses sur la façon dont le sommeil peut affecter la consolidation de la mémoire sont présentées. Puis, trois études sont présentées et ont été conçues pour caractériser les propriétés de l'oscillation lente du sommeil à ondes lentes. Dans la première étude (chapitre II), nous avons montré que les périodes d'activité (et de silence) se produisent de façon presque synchrone dans des neurones qui ont jusqu'à 12 mm de distance. Nous avons montré que l'activité était initiée en un point focal et se propageait rapidement à des sites corticaux voisins. Étonnamment, le déclenchement des états silencieux était encore plus synchronisé que le déclenchement des états actifs. L'hypothèse de travail pour la deuxième étude (chapitre III) était que les états actifs sont générés par une sommation de relâches spontanées de médiateurs. Utilisant différents enregistrements à la fois chez des animaux anesthésiés et chez d’autres non-anesthésiés, nous avons montré qu’aucune décharge neuronale ne se produit dans le néocortex pendant les états silencieux du sommeil à ondes lentes, mais certaines activités synaptiques peuvent ii être observées avant le début des états actifs, ce qui était en accord avec notre hypothèse. Nous avons également montré que les neurones de la couche V étaient les premiers à entrer dans l’état actif pour la majorité des cycles, mais ce serait ainsi uniquement pour des raisons probabilistes; ces cellules étant équipées du plus grand nombre de contacts synaptiques parmi les neurones corticaux. Nous avons également montré que le sommeil à ondes lentes et l’anesthésie à la kétamine-xylazine présentent de nombreuses similitudes. Ayant utilisé une combinaison d'enregistrements chez des animaux anesthésiés à la kétamine-xylazine et chez des animaux non-anesthésiés, et parce que l'anesthésie à la kétamine-xylazine est largement utilisée comme un modèle de sommeil à ondes lentes, nous avons effectué des mesures quantitatives des différences entre les deux groupes d'enregistrements (chapitre IV). Nous avons trouvé que l'oscillation lente était beaucoup plus rythmique sous anesthésie et elle était aussi plus cohérente entre des sites d’enregistrements distants en comparaison aux enregistrements de sommeil naturel. Sous anesthésie, les ondes lentes avaient également une amplitude plus grande et une durée plus longue par rapport au sommeil à ondes lentes. Toutefois, les ondes fuseaux (spindles) et gamma étaient également affectées par l'anesthésie. Dans l'étude suivante (Chapitre V), nous avons investigué le rôle du sommeil à ondes lentes dans la formation de la plasticité à long terme dans le système thalamocortical. À l’aide de stimulations pré-thalamiques de la voie somatosensorielle ascendante (fibres du lemnisque médial) chez des animaux non-anesthésiés, nous avons montré que le potentiel évoqué enregistré dans le cortex somatosensoriel était augmenté dans une période d’éveil suivant un épisode de sommeil à ondes lentes par rapport à l’épisode d’éveil précédent et cette augmentation était de longue durée. Nous avons également montré que le sommeil paradoxal ne jouait pas un rôle important dans cette augmentation d'amplitude des réponses évoquées. À l’aide d'enregistrements in vitro en mode cellule-entière, nous avons caractérisé le mécanisme derrière cette augmentation et ce mécanisme est compatible avec la forme classique de potentiation à long terme, car il nécessitait une activation à la fois les récepteurs NMDA et des récepteurs AMPA, ainsi que la présence de calcium dans le neurone post-synaptique. iii La dernière étude incluse dans cette thèse (chapitre VI) a été conçue pour caractériser un possible mécanisme physiologique de blocage sensoriel thalamique survenant pendant le sommeil. Les ondes fuseaux sont caractérisées par la présence de potentiels d’action calcique à seuil bas et le calcium joue un rôle essentiel dans la transmission synaptique. En utilisant plusieurs techniques expérimentales, nous avons vérifié l'hypothèse que ces potentiels d’action calciques pourraient causer un appauvrissement local de calcium dans l'espace extracellulaire ce qui affecterait la transmission synaptique. Nous avons montré que les canaux calciques responsables des potentiels d’action calciques étaient localisés aux synapses et que, de fait, une diminution locale de la concentration extracellulaire de calcium se produit au cours d’un potentiel d’action calcique à seuil bas spontané ou provoqué, ce qui était suffisant pour nuire à la transmission synaptique. Nous concluons que l'oscillation lente est initiée en un point focal et se propage ensuite aux aires corticales voisines de façon presque synchrone, même pour des cellules séparées par jusqu'à 12 mm de distance. Les états actifs de cette oscillation proviennent d’une sommation de relâches spontanées de neuromédiateurs (indépendantes des potentiels d’action) et cette sommation peut survenir dans tous neurones corticaux. Cependant, l’état actif est généré plus souvent dans les neurones pyramidaux de couche V simplement pour des raisons probabilistes. Les deux types d’expériences (kétamine-xylazine et sommeil à ondes lentes) ont montré plusieurs propriétés similaires, mais aussi quelques différences quantitatives. Nous concluons également que l'oscillation lente joue un rôle essentiel dans l'induction de plasticité à long terme qui contribue très probablement à la consolidation de la mémoire. Les ondes fuseaux, un autre type d’ondes présentes pendant le sommeil à ondes lentes, contribuent au blocage thalamique de l'information sensorielle.Sleep is known to mediate several major functions in the brain and among them are the gating of sensory information during sleep and the sleep-related improvement in memory consolidation. Slow-wave sleep in particular is thought to be critical for both of these processes. However, their physiological mechanisms are unknown. Also, the electrophysiological hallmark of slow-wave sleep is the presence of large amplitude slow waves in the cortical local field potential and the alternation of periods of intense synaptic activity in which cortical neurons are depolarized and fire action potentials and periods of silence in which no firing occurs, cortical neurons are hyperpolarized, and very little synaptic activities are observed. First, in order to better understand the studies presented in this manuscript, a general introduction covering the thalamocortical system architecture and function is presented, which includes a description of the states of vigilance, followed by a description of the rhythms present in the thalamocortical system during slow-wave sleep, then by a description of the mechanisms of synaptic plasticity, and finally two hypotheses about how sleep might affect the consolidation of memory are presented. Then, three studies are presented and were designed to characterize the properties of the sleep slow oscillation. In the first study (Chapter II), we showed that periods of activity (and silence) occur almost synchronously in neurons that are separated by up to 12 mm. The activity was initiated in a focal point and rapidly propagated to neighboring sites. Surprisingly, the onsets of silent states were even more synchronous than onsets of active states. The working hypothesis for the second study (Chapter III) was that active states are generated by a summation of spontaneous mediator releases. Using different recordings in both anesthetized and non-anesthetized animals, we showed that no neuronal firing occurs in the neocortex during silent states of slow-wave sleep but some synaptic activities might be observed prior to the onset of active states, which was in agreement with our hypothesis. We also showed that layer V neurons were leading the onset of active states in most of the cycles but this would be due to probabilistic reasons; these cells being equipped with the most numerous synaptic contacts among cortical neurons. We also showed that slow-wave sleep and ketamine-xylazine shares many similarities. v Having used a combination of recordings in ketamine-xylazine anesthetized and non-anesthetized animals, and because ketamine-xylazine anesthesia is extensively used as a model of slow-wave sleep, we made quantitative measurements of the differences between the two groups of recordings (Chapter IV). We found that the slow oscillation was much more rhythmic under anesthesia and it was also more coherent between distant sites as compared to recordings during slow-wave sleep. Under anesthesia, slow waves were also of larger amplitude and had a longer duration as compared to slow-wave sleep. However, spindles and gamma were also affected by the anesthesia. In the following study (Chapter V), we investigated the role of slow-wave sleep in the formation of long-term plasticity in the thalamocortical system. Using pre-thalamic stimulations of the ascending somatosensory pathway (medial lemniscus fibers) in non-anesthetized animals, we showed that evoked potential recorded in the somatosensory cortex were enhanced in a wake period following a slow-wave sleep episode as compared to the previous wake episode and this enhancement was long-lasting. We also showed that rapid eye movement sleep did not play a significant role in this enhancement of response amplitude. Using whole-cell recordings in vitro, we characterized the mechanism behind this enhancement and it was compatible with the classical form of long-term potentiation, because it required an activation of both NMDA and AMPA receptors as well as the presence of calcium in the postsynaptic neuron. The last study included in this thesis (Chapter VI) was designed to characterise a possible physiological mechanism of thalamic sensory gating occurring during sleep. Spindles are characterized by the presence of low-threshold calcium spikes and calcium plays a critical role in the synaptic transmission. Using several experimental techniques, we verified the hypothesis that these calcium spikes would cause a local depletion of calcium in the extracellular space which would impair synaptic transmission. We showed that calcium channels responsible for calcium spikes were co-localized with synapses and that indeed, local extracellular calcium depletion occurred during spontaneous or induced low-threshold calcium spike, which was sufficient to impair synaptic transmission. We conclude that slow oscillation originate at a focal point and then propagate to neighboring cortical areas being almost synchronous even in cells located up to 12 mm vi apart. Active states of this oscillation originate from a summation of spike-independent mediator releases that might occur in any cortical neurons, but happens more often in layer V pyramidal neurons simply due to probabilistic reasons. Both experiments in ketamine-xylazine anesthesia and non-anesthetized animals showed several similar properties, but also some quantitative differences. We also conclude that slow oscillation plays a critical role in the induction of long-term plasticity, which very likely contributes to memory consolidation. Spindles, another oscillation present in slow-wave sleep, contribute to the thalamic gating of information

    Investigating the role of fast-spiking interneurons in neocortical dynamics

    Get PDF
    PhD ThesisFast-spiking interneurons are the largest interneuronal population in neocortex. It is well documented that this population is crucial in many functions of the neocortex by subserving all aspects of neural computation, like gain control, and by enabling dynamic phenomena, like the generation of high frequency oscillations. Fast-spiking interneurons, which represent mainly the parvalbumin-expressing, soma-targeting basket cells, are also implicated in pathological dynamics, like the propagation of seizures or the impaired coordination of activity in schizophrenia. In the present thesis, I investigate the role of fast-spiking interneurons in such dynamic phenomena by using computational and experimental techniques. First, I introduce a neural mass model of the neocortical microcircuit featuring divisive inhibition, a gain control mechanism, which is thought to be delivered mainly by the soma-targeting interneurons. Its dynamics were analysed at the onset of chaos and during the phenomena of entrainment and long-range synchronization. It is demonstrated that the mechanism of divisive inhibition reduces the sensitivity of the network to parameter changes and enhances the stability and exibility of oscillations. Next, in vitro electrophysiology was used to investigate the propagation of activity in the network of electrically coupled fast-spiking interneurons. Experimental evidence suggests that these interneurons and their gap junctions are involved in the propagation of seizures. Using multi-electrode array recordings and optogenetics, I investigated the possibility of such propagating activity under the conditions of raised extracellular K+ concentration which applies during seizures. Propagated activity was recorded and the involvement of gap junctions was con rmed by pharmacological manipulations. Finally, the interaction between two oscillations was investigated. Two oscillations with di erent frequencies were induced in cortical slices by directly activating the pyramidal cells using optogenetics. Their interaction suggested the possibility of a coincidence detection mechanism at the circuit level. Pharmacological manipulations were used to explore the role of the inhibitory interneurons during this phenomenon. The results, however, showed that the observed phenomenon was not a result of synaptic activity. Nevertheless, the experiments provided some insights about the excitability of the tissue through scattered light while using optogenetics. This investigation provides new insights into the role of fast-spiking interneurons in the neocortex. In particular, it is suggested that the gain control mechanism is important for the physiological oscillatory dynamics of the network and that the gap junctions between these interneurons can potentially contribute to the inhibitory restraint during a seizure.Wellcome Trust

    Astrocytic modulation of neuronal network oscillations

    Get PDF
    The synchronization of the neuron’s membrane potential results in the emergence of neuronal oscillations at multiple frequencies that serve distinct physiological functions (e.g. facilitation of synaptic plasticity) and correlate with different behavioural states (e.g. sleep, wakefulness, attention). It has been postulated that at least ten distinct mechanisms are required to cover the large frequency range of neuronal oscillations in the cortex, including variations in the concentration of extracellular neurotransmitters and ions, as well as changes in cellular excitability. However, the mechanism that gears the transition between different oscillatory frequencies is still unknown. Over the past decade, astrocytes have been the focus of much research, mainly due to (1) their close association with synapses forming what is known today as the “tripartite synapse”, which allows them to bidirectionally interact with neurons and modulate synaptic transmission; (2) their syncytium-like activity, as they are electrically coupled via gap junctions and actively communicate through Ca2+ waves; and (3) their ability to regulate neuronal excitability via glutamate uptake and tight control of the extracellular K+ levels via a process termed K+ clearance. In this thesis we hypothesized that astrocytes, in addition to their role as modulators of neuronal excitability, also act as “network managers” that can modulate the overall network oscillatory activity within their spatial domain. To do so, it is proposed that astrocytes fine-tune their K+ clearance capabilities to affect neuronal intrinsic excitability properties and synchronization with other neurons, thus mediating the transitions between neuronal network oscillations at different frequencies. To validate or reject this hypothesis I have investigated the potential role of astrocytes in modulating cortical oscillations at both cellular and network levels, aiming at answering three main research questions: a) what is the impact of alterations in astrocytic K+ clearance mechanisms on cortical networks oscillatory dynamics? b) what specific neuronal properties underlying the generation of neuronal oscillations are affected as a result of impairments in the astrocytic K+ clearance process? and c) what are the bidirectional mechanisms between neurons and astrocytes (i.e. neuromodulators) that specifically affect the K+ clearance process to modulate the network activity output? In the first experimental chapter I used electrophysiological recordings and pharmacological manipulations to dissect the contribution of the different astrocytic K+ clearance mechanisms to the modulation of neuronal network oscillations at multiple frequencies. A key finding was that alterations in membrane properties of layer V pyramidal neurons strongly correlated with the network behaviour following impairments in astrocytic K+ clearance capabilities, depicted as enhanced excitability underlying the amplification of high-frequency oscillations, especially within the beta and gamma range. The second experimental chapter describes a combinatorial approach based on K+-selective microelectrode recordings and optical imaging of K+ ions used to quantitatively determine extracellular K+ changes and to follow the spatiotemporal distribution of K+ ions under both physiological and altered K+ clearance conditions, which affected the K+ clearance rate. The impact of different neuromodulators on astrocytic function is discussed in the third experimental chapter. Using extracellular K+ recordings and Ca2+ imaging I found that some neuromodulators act specifically on astrocytic receptors to affect both K+ clearance mechanisms and Ca2+ signalling, as evidenced by reduced K+ clearance rates and altered evoked Ca2+ signals. Overall, this thesis provides new insights regarding the impact of astrocytic K+ clearance mechanisms on modulating neuronal properties at both cellular and network levels, which in turn imposes alterations on neuronal oscillations that are associated with different behavioural states

    The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes

    Get PDF
    Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal

    MAPPING LOW-FREQUENCY FIELD POTENTIALS IN BRAIN CIRCUITS WITH HIGH-RESOLUTION CMOS ELECTRODE ARRAY RECORDINGS

    Get PDF
    Neurotechnologies based on microelectronic active electrode array devices are on the way to provide the capability to record electrophysiological neural activity from a thousands of closely spaced microelectrodes. This generates increasing volumes of experimental data to be analyzed, but also offers the unprecedented opportunity to observe bioelectrical signals at high spatial and temporal resolutions in large portions of brain circuits. The overall aim of this PhD was to study the application of high-resolution CMOS-based electrode arrays (CMOS-MEAs) for electrophysiological experiments and to investigate computational methods adapted to the analysis of the electrophysiological data generated by these devices. A large part of my work was carried out on cortico-hippocampal brain slices by focusing on the hippocampal circuit. In the history of neuroscience, a major technological advance for hippocampal research, and also for the field of neurobiology, was the development of the in vitro hippocampal slice preparation. Neurobiological principles that have been discovered from work on in vitro hippocampal preparations include, for instance, the identification of excitatory and inhibitory synapses and their localization, the characterization of transmitters and receptors, the discovery of long-term potentiation (LTP) and long-term depression (LTD) and the study of oscillations in neuronal networks. In this context, an initial aim of my work was to optimize the preparation and maintenance of acute cortico-hippocampal brain slices on planar CMOS-MEAs. At first, I focused on experimental methods and computational data analysis tools for drug-screening applications based on LTP quantifications. Although the majority of standard protocols still use two electrodes platforms for quantifying LTP, in my PhD I investigate the potential advantages of recording the electrical activity from many electrodes to spatiotemporally characterized electrically induced responses. This work also involved the collaboration with 3Brain AG and a CRO involved in drug-testing, and led to a software tool that was licensed for developing its exploitation. In a second part of my work I focused on exploiting the recording resolution of planar CMOS-MEAs to study the generation of sharp wave ripples (SPW-Rs) in the hippocampal circuit. This research activity was carried out also by visiting the laboratory of Prof. A. Sirota (Ludwig Maximilians University, Munich). In addition to set-up the experimental conditions to record SPW-Rs from planar CMOS-MEAs integrating 4096 microelectrodes, I also explored the implementation of a data analysis pipeline to identify spatiotemporal features that might characterize different type of in-vitro generated SPW-R events. Finally, I also contributed to the initial implementation of high-density implantable CMOS-probes for in-vivo electrophysiology with the aim of evaluating in vivo the algorithms that I developed and investigated on brain slices. With this aim, in the last period of my PhD I worked on the development of a Graphical User Interface for controlling active dense CMOS probes (or SiNAPS probes) under development in our laboratory. I participated to preliminary experimental recordings using 4-shank CMOS-probes featuring 1024 simultaneously recording electrodes and I contributed to the development of a software interface for executing these experiments

    Hippocampal gabaergic inhibitory interneurons

    Get PDF
    This is the author accepted manuscript. The final version is available from American Physiological Society via the DOI in this record In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10–15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage-and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.National Institute of Child Health and Human Developmen
    • …
    corecore