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Abstract 

The synchronization of the neuron’s membrane potential results in the emergence of neuronal 

oscillations at multiple frequencies that serve distinct physiological functions (e.g. facilitation of 

synaptic plasticity) and correlate with different behavioural states (e.g. sleep, wakefulness, 

attention). It has been postulated that at least ten distinct mechanisms are required to cover the 

large frequency range of neuronal oscillations in the cortex, including variations in the 

concentration of extracellular neurotransmitters and ions, as well as changes in cellular 

excitability. However, the mechanism that gears the transition between different oscillatory 

frequencies is still unknown. Over the past decade, astrocytes have been the focus of much 

research, mainly due to (1) their close association with synapses forming what is known today as 

the “tripartite synapse”, which allows them to bidirectionally interact with neurons and modulate 

synaptic transmission; (2) their syncytium-like activity, as they are electrically coupled via gap 

junctions and actively communicate through Ca2+ waves; and (3) their ability to regulate neuronal 

excitability via glutamate uptake and tight control of the extracellular K+ levels via a process 

termed K+ clearance. 

In this thesis we hypothesized that astrocytes, in addition to their role as modulators of neuronal 

excitability, also act as “network managers” that can modulate the overall network oscillatory 

activity within their spatial domain. To do so, it is proposed that astrocytes fine-tune their K+ 

clearance capabilities to affect neuronal intrinsic excitability properties and synchronization with 

other neurons, thus mediating the transitions between neuronal network oscillations at different 

frequencies. To validate or reject this hypothesis I have investigated the potential role of astrocytes 

in modulating cortical oscillations at both cellular and network levels, aiming at answering three 

main research questions:  
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a) what is the impact of alterations in astrocytic K+ clearance mechanisms on cortical networks 

oscillatory dynamics? b) what specific neuronal properties underlying the generation of neuronal 

oscillations are affected as a result of impairments in the astrocytic K+ clearance process? and c) 

what are the bidirectional mechanisms between neurons and astrocytes (i.e. neuromodulators) that 

specifically affect the K+ clearance process to modulate the network activity output?  

In the first experimental chapter I used electrophysiological recordings and pharmacological 

manipulations to dissect the contribution of the different astrocytic K+ clearance mechanisms to 

the modulation of neuronal network oscillations at multiple frequencies. A key finding was that 

alterations in membrane properties of layer V pyramidal neurons strongly correlated with the 

network behaviour following impairments in astrocytic K+ clearance capabilities, depicted as 

enhanced excitability underlying the amplification of high-frequency oscillations, especially 

within the beta and gamma range. The second experimental chapter describes a combinatorial 

approach based on K+-selective microelectrode recordings and optical imaging of K+ ions used to 

quantitatively determine extracellular K+ changes and to follow the spatiotemporal distribution of 

K+ ions under both physiological and altered K+ clearance conditions, which affected the K+ 

clearance rate. The impact of different neuromodulators on astrocytic function is discussed in the 

third experimental chapter. Using extracellular K+ recordings and Ca2+ imaging I found that some 

neuromodulators act specifically on astrocytic receptors to affect both K+ clearance mechanisms 

and Ca2+ signalling, as evidenced by reduced K+ clearance rates and altered evoked Ca2+ signals. 

Overall, this thesis provides new insights regarding the impact of astrocytic K+ clearance 

mechanisms on modulating neuronal properties at both cellular and network levels, which in turn 

imposes alterations on neuronal oscillations that are associated with different behavioural states.
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CHAPTER 1:  

GENERAL INTRODUCTION 

 

 

 

 

“Like the entomologist hunting for brightly coloured butterflies, my attention was drawn to the 

flower garden of the grey matter, which contained cells with delicate and elegant forms, the 

mysterious butterflies of the soul, the beating of whose wings may someday  

(who knows?) clarify the secret of mental life.”  

—Santiago Ramón y Cajal 

 

1.1 Neuronal oscillations  

In the central nervous system (CNS), neurons communicate via electrochemical signals (i.e. action 

potentials), which leads to the flow of ionic currents through synaptic contacts1. At the network 

level, the synchronization of the neuron’s electrical activity gives rise to rhythmic voltage 

fluctuations travelling across brain regions, known as neuronal oscillations or brain waves2. 

Neuronal oscillations can be modulated in space and time and are affected by the dynamic interplay 

between neuronal connectivity patterns, as well as intrinsic circuit and cellular membrane 

properties (e.g. physical architecture, axonal speed conduction, synaptic delays)3,4,5. At the cellular 

level, these synchronous oscillations fluctuate between two main states, known as “Up states” and 

“Down states”, which occur in the neocortex both in vitro and in vivo3. Whereas Down states refer 

to resting activity and membrane hyperpolarization, Up states are associated with neuronal 

depolarization and firing of bursts of action potentials6.  
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Importantly, Up states occurring within spatially organized cortical ensembles have been 

postulated to interact with each other to produce a temporal window for neuronal network 

communication and coordination7. This network coherence is essential for several sensory and 

motor processes, as well as for cognitive flexibility (i.e. attention, memory)8,9, thereby playing a 

fundamental role in the brain’s basic functions. 

 

1.1.1 Significance of neuronal oscillations to brain function 

Emerging technologies during the past decades led to the description of multiple neuronal 

oscillations displaying different electrophysiological and connectivity properties across brain areas 

(e.g. neocortex, thalamus, hippocampus)10. Using power spectrum analysis, investigators 

identified that neuronal oscillations fluctuate within specific frequency bands, ranging from very 

slow (<0.01 hertz, Hz) to ultra-fast (>1,000 Hz) oscillations, mediated by at least ten different 

mechanisms11. Whereas fast oscillators are more localized within a restricted neural volume12, 

slow oscillations typically involve large synchronous membrane voltage fluctuations in wider 

brain areas13. Furthermore, these network dynamics and connectivity patterns change according to 

behaviour, with some frequency bands being associated with sleep, while other frequencies 

predominate during arousal or conscious states14,15,16 (Table 1.1). 

In addition, the fact that neuronal oscillations and their behavioural correlates are preserved 

throughout evolution (e.g. human, macaque, cat, rabbit, rat)17,18,19,20,21 suggests that they exert 

relevant physiological roles, potentially by means of mediating synchronization across neuronal 

ensembles to efficiently coordinate and propagate synaptic information at the network level. 

Hence, oscillatory frequency bands represent groups of neuronal oscillations acting as individual 

entities that act similarly during particular brain fucntions22.  
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Table 1.1 Significance of neuronal network oscillations in the CNS. 

 
Delta - δ Theta - θ Alpha - α Beta - β Gamma- γ 

Frequency: 1-4 Hz 4-10 Hz 8-12 Hz 12-30 Hz >30 Hz 

EEG 

traces:  
                 23  

                24 25 26 27
 

Brain area: Neocortex, 

Thalamus,  

Basal ganglia28,29                   

Hippocampus, 

Dentate gyrus, 

Entorhinal cortex, 

Cingulate cortex, 

Amygdala30,31,32,33,34                            

Neocortex, 

Thalamus35,36,37 

Neocortex, 

Olfactory bulb, 

Striatum, Dentate 

gyrus, Thalamus, 

Hippocampus 
26,38,39,40          

Neocortex, 

Olfactory bulb, 

Hippocampus41,42, 

43           

Rhythm 

generators: 

1) Interplay between 

the low threshold Ca2+ 

transient current (It) 

and the 

hyperpolarization 

activated cation current 

(Ih) in thalamocortical 

neurons44,45  

2) NMDAR-driven 

networks of 

intrinsically bursting 

cortical neurons in 

response to 

depolarization46,47,48 

3) Increase in K+ 

conductance leading to 

hyperpolarization49 

4) Neuron-glia 

interactions to regulate 

extracellular K+ 

through Ca2+ 

waves50,51 ,52 

1) Interplay between 

somatic IPSPs 

(GABAergic neurons 

in the medial septum) 

and dendritic EPSPs 

(performant path) from 

CA1 pyramidal 

neurons31,53,54  

2) ACh-mediated 

modulation of 

glutamate release from 

CA3 collaterals55  

3) Amplification of 

membrane resonance 

and subthreshold 

oscillations by slow 

inward K+ currents in 

cerebellar granule cells 

or dendritic Ca2+ 

spikes following 

activation of NMDAR 

on CA1 pyramidal 

neurons31,56,57  

4) ACh-induced Ca2+ 

release from internal 

stores (IP3) in 

astrocytes58 

1) Ca2+ T-channel-

mediated tuning of 

local cortical 

networks via 

GABAergic 

inhibition of 

thalamic 

transmission59,60 

2) Thalamic gap 

junction-mediated 

synchronization of 

local high-threshold 

bursting neurons in 

the lateral geniculate 

nucleus19,61  

3) Corticotropin 

releasing hormone-

binding protein-

mediated activation 

of locus coeruleus 

neuronal firing 

properties that 

influence thalamic 

neurons62,63,64 

1) Glutamatergic 

excitation, gap 

junction-mediated 

communication 

between layer V 

intrinsically 

bursting cell 

compartments and  

M-type K+ current 

in the association 

cortex65  

2) ACh-mediated 

modulation and 

synaptic 

interactions 

between layer V 

pyramidal neurons 

and low-threshold 

spiking 

interneurons in the 

primary auditory 

cortex66 

3) Thalamic or 

cortical projections 

in extrastriate area 

V4 independent of 

bottom-up V1 

drive67  

1) Excitation of  

interneural networks 

via NMDAR and 

IPSPs kinetics in 

CA168 and ACh-

mediated modulation 

via non-NMDAR in 

CA369 

2) Modulation via 

gap junctions in 

cortical layer II/III or 

via glutamatergic 

excitation in layer 

IV70 

3) Elevations in 

astrocytic cytosolic 

Ca2+ levels leading to 

glutamate release71 

4) AMPAR, 

GABAAR and gap 

junction-related 

modulation 

following elevations 

in extracellular K+ 

leading to 

neurotransmitter 

release72,73,74 
 

Brain 

functions: 

a) Slow wave sleep75 

and deep NREM 

sleep76 

b) Signal detection and 

decision making77,78 

c) Memory 

consolidation76,79 

d) Concentration, 

motivation and focused 

attention80,81,82  

e) Facilitation of 

interlaminar 

interactions in the 

cortex to control 

synaptic rescaling48   

a) REM sleep58,83 

b) Selective attention, 

arousal, orienting and 

voluntary control of 

movement77,84,85 

c) Modulation of 

synaptic strength and 

coordination of phase 

coding of active 

neuronal ensembles 
86,87 

d) Episodic memory,    

word integration and 

environmental 

encoding88,89,90 

a) Drowsiness and 

relaxation91,92 

b) Sensory function, 

movement and visual 

perceptual framing 
84,93,94 

c) Task engagement,  

speed of working 

memory and 

cognitive 

performance88,95,96,97 

a) Resting and 

motor tasks15,92,98 

b) Responses to 

olfactory and 

visual stimuli 
26,99,100  

c) Top-down 

attention and 

working memory 

allocation9,101,102,103 

a) Focused attention 

and motor task 

execution15,92 

b) Responses to 

evoked auditory and 

visual stimuli104 

c) Facilitation of 

neuronal 

communication and 

efficient cognitive 

processing105,106 

d) Spatial working 

and recognition 

memory71,107  
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Indeed, previous studies have postulated that different oscillation frequencies either compete with 

each other or cooperate in a specific manner to participate in distinct physiological processes (e.g. 

bias of input selection, temporal linkage of neurons into assemblies or facilitation of synaptic 

plasticity)108,109, which importantly correlate with specific behaviours (e.g. sleep, learning)2,76, 

thereby becoming a fundamental tool for both clinical diagnosis and brain research (Table 1.1).  

1.1.1.1 Behavioural correlates of neuronal oscillations 

Despite lacking a universal consensus on the frequency ranges breakdown10,110, it is well 

established that mammalian cortical neurons form behavioural state-dependent oscillating 

networks that are traditionally classified by characteristics of amplitude and broad frequency 

bands, including delta (~1-4 Hz), theta (~4-10 Hz), alpha (~8-12 Hz), beta (~12-30 Hz) and gamma 

(>30 Hz) oscillations2,11, as shown in Table 1.1. 

Delta (δ) oscillations are low frequency fluctuations typically ranging from ~1-4 Hz and are found 

in brain areas such as the neocortex, thalamus and basal ganglia. These brain waves are 

predominant during physiological brain states, including sleep (i.e. Slow Wave Sleep, SWS; non-

rapid eye movement, NREM, phases 3 and 4)48,76, as well as in pathology (i.e. coma)92,111. 

According to their low frequency profile, delta oscillations involve large neuronal populations 

spreading over wide brain regions (e.g. frontal lobes), which are typically active during the 

performance of mental operations (e.g. calculation, semantics)81,112 and attention to a specific 

stimulus, likely mediated via the inhibitory modulation of neuronal networks involved in the 

processing of other stimuli at different locations82. 

Theta (θ) oscillations range from ~4 to 10 Hz and have been observed in the hippocampus, dentate 

gyrus, medial septum, amygdala, as well as in different cortical areas (e.g. entorhinal, cingulate 
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and frontal cortices)30,31,32,33,34. These sinusoidal oscillations arise during voluntary control of 

movement, arousal and rapid eye movement (REM) sleep24,31, and have been suggested to play a 

part in memory processes113 and during inhibitory tasks subserving executive functions114. 

Alpha (α) waves (~8-12 Hz) were the first to be recorded from the human scalp by Berger25 and 

are found in both the neocortex and thalamus. They have been associated with drowsiness, 

relaxation and information processing in response to sensory (e.g. visual) stimuli92,115. In addition, 

alpha rhythms show an inverse relationship with memory and attention, likely reflecting functional 

inhibition of these cognitive processes116,117.   

Beta (β) oscillations are high frequency oscillations within ~12-30 Hz and are predominant in the 

neocortex, thalamus, olfactory bulb, striatum, dentate gyrus and hippocampus. The power of these 

oscillations increases in sensorimotor areas in subjects performing motor tasks, such as muscle 

contraction118,119, but attenuated during voluntary movement of body parts or imagined actions120, 

thereby being classically associated with an “idling” or resting state98. More recent studies 

postulated that rather than representing lack of movement, beta oscillations may be necessary for 

the active maintenance of the current cognitive state or status quo requiring sensorimotor 

interaction121, by impairing neuronal processing related to new movements122,123. 

Similar to beta oscillations, gamma (γ) rhythms are considered  high frequency oscillations (~30-

80 Hz), typically recorded from the neocortex, olfactory bulb and hippocampus, which play a 

fundamental role in conscious perception124,125. Intriguingly, gamma oscillations have been 

suggested to balance the mainly excitatory connectivity between pyramidal cells with inhibition 

during activated states of the cortex that occur when performing a specific task126. Therefore, 

gamma oscillations are correlated with motor and high cognitive functions, such as selective 
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attention8, as well as memory formation127, storage128 and retrieval129. 

Previous studies also showed the presence of sleep spindles reflecting bursts of neuronal 

oscillatory activity during NREM sleep within the alpha and beta bands (~12-18 Hz)130, as well as 

fast (80-200 Hz, “ripples”) and ultra-fast oscillations, up to 600 Hz, in both the hippocampus and 

cortex131,132. Interestingly, neuronal oscillations interact across different frequency bands to 

modulate each other and engage with specific beahviours2,10. For instance, transient coupling 

between theta and gamma bands has been previously reported to be important for activity 

coordination in distributed neocortical areas during cognitive processing105, as well as for synaptic 

plasticity in both the entorhinal cortex and the hippocampus of freely behaving rats106. 

Furthermore, phase relations between regions are diverse and can be modulated by sensory and 

motor experiences133, thereby adding more complexity in deciphering how brain waves coordinate 

to subserve important functions in both the developing and mature human brains. 

1.1.1.2 Mechanisms underpinning neuronal oscillations 

Neuronal oscillations show a linear progression on a natural logarithmic scale with little overlap, 

which led Penttonen and Buzsáki (2003)11 to postulate that at least ten distinct and independent 

mechanisms are required to cover the large frequency range of cortical network oscillations, and 

it has been reported that some frequency oscillations are driven by multiple mechanisms2,108. Some 

of the suggested mechanisms affecting individual neuronal activity underlying the generation of 

network oscillations are summarized in Table 1.1, and most of them include reciprocal interactions 

between excitatory and inhibitory mechanisms92 or changes in cellular excitability70,134. The latter 

is often associated with alterations in extracellular ions (e.g. Ca2+) and the hyperpolarization-

activated inward current (Ih)
135, which can regulate intrinsic membrane properties136, as well as the 

strength and frequency of network oscillations137.  
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In particular, neurons consist of inherent membrane resonance and frequency preference 

properties138 that allow them to act as resonators or transient oscillators and to select inputs within 

certain subthreshold frequencies (e.g. theta)139. This oscillatory behaviour at multiple frequencies 

depends on the accurate combination of both low-pass (i.e. passive leak conductance, membrane 

capacitance) and high-pass (i.e. open probability of voltage-gated channels activated close to the 

resting membrane potential, RMP)2 filtering properties, which endow neurons with a wide 

repertoire to respond faster and more efficiently to spike trains or fast inputs140. Therefore, 

alterations in membrane conductance or potential along the somatodendritic compartments result 

in differential tuning of the resonant response in cell types (e.g. interneurons vs pyramidal cells), 

which is essential for sculpting the functionality of a neuronal network141.  

In this regard, changes in the concentration of extracellular ions (e.g. K+, Mg2+, Ca2+) have been 

recently shown to allow switching between behavioural states, including sleep and arousal in 

vivo142, indicating that cellular mechanisms particularly affecting the ionic composition of the 

extracellular space are powerful tools to modulate brain states. Accordingly, K+ channels play a 

crucial role in determining the overall network excitability by limiting depolarizing inputs and 

have been suggested to affect the generation of neuronal oscillations at multiple frequencies2. For 

instance, an early modelling study showed that slow repolarizing K+ currents are required for the 

bursting and resonant behaviour at theta frequencies in cerebellar granule cells, by inducing 

delayed repolarization to terminate the oscillatory Up state amplified by a persistent Na+ current56.  

In line with these results, activation of K+ currents in vivo has been associated with enhanced spike 

timing precision at gamma frequencies in both pyramidal and basket cells in the hippocampus143, 

as well as with lower frequency oscillations in the delta range49.  
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Importantly, neuromodulators have been associated with network oscillations and found to affect 

the concentration of extracellular ions, including the extracellular K+ concentration ([K+]o)
142, as 

well as slow K+ conductances in neurons from different brain regions144,145. Among the different 

neuromodulators, acetylcholine (ACh) appears to be the common denominator for most frequency 

bands (Table 1.1) and as such takes part in brain states involving intercommunication between 

brain regions, including consciousness, memory formation and attention146,147. Indeed, previous 

studies reported on a role for the cholinergic system in blocking K+ conductances related to delta 

oscillations leading to cortical arousal49,148. In the hippocampus, activation of medial septal 

cholinergic inputs led to the generation of high frequency oscillations within ~40 Hz in vitro69, as 

well as enhanced theta oscillations, by attenuating sharp wave ripples and slow oscillations in 

vivo55.  

Interestingly, different regions within the same brain area may display alternate generators of brain 

waves oscillating within the same frequency range, as beta oscillations in layer V of the primary 

auditory cortex are generated via cholinergic stimulation, whereas tonic glutamatergic excitation 

has been reported to be the underlying mechanism in layer V of the association cortex66. These 

observations support the involvement of ACh in mediating temporal interactions between cortical 

regions within a single frequency range that could facilitate the assembly of neuronal 

ensembles7,149.  

However, the fact that neuronal oscillations participate in spatial integration across distant brain 

regions2, which occurs over time scales greater than direct synaptic transmission, suggests that 

other mechanisms involving non-neuronal cells (i.e. glia) are likely to play a role in modulating 

neuronal oscillations at the network level (Table 1.1)52,58,71.  



9 

 

Altogether these studies suggest that the degree of neuronal network synchrony and coherence is 

strongly regulated by distinct cellular mechanisms that become active or inactive to meet 

behavioural demands. Although many processes have been suggested to impact on the generation 

and modulation of neuronal oscillations, the mechanisms that gear the transition between different 

oscillatory frequencies in the cortex, to allow environmental adaptation and thus survival, are still 

unknown.  

 

1.1.2 Methods to measure neuronal oscillations 

Electrical potentials are the result of the difference in voltage between two locations in the brain. 

These alterations in neuronal membrane voltage can be detected and monitored with high temporal 

and spatial resolution, thereby allowing the study of different neurophysiological aspects involved 

in the communication and computation of neuronal oscillations at the network level17,108,150.  

Almost 80 years ago, Hans Berger, a physician, neuro-psychiatrist and an autodidact in 

neurophysiology, was one of the first to record spontaneous electrical activity from the brain of 

dogs and cats using a new technique he termed electroencephalography (EEG)151. Since then he 

focused on optimizing his experimental methods to study “fluctuations in electrical current which 

are present at all times and which may be recorded from the surface of the cerebral cortex”152. His 

pioneering work allowed him to measure electrical potentials directly from the cortical surface, 

thus discovering the first types of brain waves (i.e. alpha) and their physiological role in both health 

and disease25. 

Today there are several tools that have been extensively applied to monitor brain activity. Here I 

will summarize the advantages and caveats that some of the most frequently used methods offer 

to explore the oscillatory behaviour of neuronal networks. 
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1.1.2.1 Extracellular recordings 

Following the development of EEG recordings, researchers improved this technique to allow direct 

measurements of network oscillations from the subdural region using grid electrodes placed on the 

cortical surface (electrocorticogram, ECoG)153, or even deeper inside the brain tissue with small-

sized electrodes to measure local field potentials (LFPs), also known as intracranial EEGs154,155.  

LFPs are electrophysiological signals obtained by the summed electric current flowing across local 

neuronal populations. The LFP signal is low-pass filtered, typically within the range of 100‐300 

Hz156, which removes the action potential component, mainly associated with fast fluctuations, 

and passes the lower frequency signal, believed to represent slow oscillating currents, including 

synchronized synaptic potentials157, afterpotentials of somatodendritic spikes158 and voltage-gated 

membrane oscillations57. Previous experiments based on extracellular recordings with 

conventional electrodes have been able to capture changes in cortical network dynamics as LFPs 

with high temporal resolution159,160. Interestingly, LFPs in the rodent olfactory bulb have been 

reported to follow respiratory rhythms during specific brain states (e.g. wakefulness, REM 

sleep)161. Additionally, LFP recordings from neocortical columns in the barrel cortex have 

revealed that layers V-VI are directly activated by thalamocortical projections, in opposition to the 

previous conception that sensory information propagates first through layer IV, then to layer II/III 

and finally to layers V-VI, which further suggests that layer IV is not a mandatory distribution hub 

for cortical activity162.  

Together, these studies indicate that LFP recordings are a powerful tool able to provide valuable 

information about the state of a whole network that cannot be obtained at present using intracellular 

recordings2,163. 

https://en.wikipedia.org/wiki/Frequency
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1.1.2.2 Functional imaging 

Other techniques that have been widely used to study neuronal oscillations include the 

magnetoencephalography (MEG), a non-invasive approach that measures magnetic fields 

generated by the electrical activity of synchronized neurons outside the skull, without the need of 

attaching electrodes to the scalp164. Unlike EEG, the MEG signal typically reflects intracellular 

currents with higher spatiotemporal resolution, as magnetic fields pass through the scalp and skull 

without any distortion165. Furthermore, MEG is more sensitive to superficial cortical activity, due 

to the more pronounced decay of  magnetic fields as a function of distance, thereby being currently 

used in the surgical treatment of epilepsy166. Despite the improved resolution, MEG is not an 

accurate method to obtain information about cortical circuits nor the underlying mechanisms 

giving rise to neuronal oscillations2.  

To achieve structural detail, as well as neurophysiological data, MEG is typically combined with 

functional magnetic resonance imaging (fMRI) as “magnetic source imaging” (MSI). fMRI is 

based on the detection of magnetic resonance energy from parts within a volume of tissue 

containing different amounts of water2. The hydrogen atoms of water representing magnetic 

dipoles are misaligned when a radio frequency pulse of energy is applied2. After direct application 

of “receiver oil” on the head, the energy emitted by these atoms going back to their original 

position generates contrast, which reflects the blood oxygen level, as well as cerebral blood flow 

and volume167,168, a mechanism that was first described in the 90’s as “blood oxygen level-

dependent (BOLD)” contrast169,170,171. Importantly, fMRI allows the study of the neuronal 

organization into networks and the visualization of dynamic connectivity patterns within different 

brain structures located in distant areas, both under normal physiology172,173 and pathology174,175.  
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In addition, several groups have provided evidence that the BOLD signal used in fMRI can 

indirectly measure neuronal firing or multi-unit activity (MUA)176,177,178, typically inferred from 

field recordings (e.g. intrinsic oscillations; excitatory postsynaptic potentials, EPSPs; inhibitory 

postsynaptic potentials, IPSPs; action potentials)179,180. However, this analogy needs to be 

carefully revised, as the BOLD signal mainly reflects astrocytic function supporting neuronal 

activity (e.g. glutamate uptake during neurotransmission)178, although the precise contribution of 

astrocytes and other glial cells to the BOLD signal remains dubious. 

1.1.2.3 Optical imaging 

Optical imaging techniques allow the simultaneous recording from multiple brain regions, which 

is useful for studying groups of neurons that are active during different behaviours181,182. In 

particular, voltage-sensitive dye imaging (VSDI) or extrinsic optical imaging is typically used 

for visualizing the overall network activity from different brain areas at both high spatial (down to 

20-50 µm) and temporal resolutions (down to milliseconds)183,184,185.  

VSDI is based on the action of extrinsic dyes, which bind to the external surface of cellular 

membranes (i.e. neurons and glial cells). Several dyes have been commercialized over the past 

decade, including absorption dyes (e.g. RH-155, NK3630)186,187, fluorescent red dyes (e.g. RH-

414, RH-795, JPW-1114, DI-4-ANEPPS, DI-2-ANEPEQ)12,188,189,190,191, and longer-wavelength 

fluorescent blue dyes (e.g. RH-1691, RH-1692, RH-1838)192,193,194. Following dye excitation with 

the appropriate wavelength, a molecular rearrangement occurs allowing the instantaneous 

emission of light, thereby transforming voltage signals into optical signals that are proportional to 

changes in the stained membrane potential and can be detected using a high-resolution fast-speed 

camera (i.e. charge-coupled device, CCD)195,196.  



13 

 

However, this technique has several limitations, most of them associated with the dye size itself, 

which limits its penetration depth into the cortex (~400-800 µm), typically corresponding to 

superficial layers192,197,198. Consequently, extracellular staining is restricted by the excess of 

inactive dye, which does not carry the signal but contributes to resting fluorescence199. As a 

consequence, over the past decades several studies have focused on optimizing VSDI recordings 

in different animal models, mainly by increasing the illumination and reducing the noise of the 

system196,198,199. Yet incrementing the brightness often leads to phototoxicity or photodamage 

associated with excited state reactions (e.g. disruptive oxygen free radicals) and can easily 

compromise the integrity of the membrane leading to reduced LFP and VSDI signals and 

eventually cell death200, which are probably the reasons why VSDI has been lagging behind other 

optical techniques, such as Ca2+ imaging201.   

Other technologies focus on directly modulating neuronal oscillations rather than monitoring the 

brain oscillatory activity while engaged in a specific task. These include pharmacological 

neuromodulation, as well as repetitive transcranial magnetic stimulation (rTMS)202,203 or 

transcranial alternating current stimulation (tACS)204,205, which offer the advantage of assessing 

the causality of neuronal oscillations to cognitive processes. Together, the combinations of 

different approaches (e.g. VSDI or Ca2+ imaging with LFP recordings or fMRI) and computational 

models have the power to better characterize biological confounding events and provide new 

insights into the processes occurring from single cells to neuronal network oscillations199,206,207,208.  

 

1.2 Glia: passive or active components in the cortex? 

The human brain contains two major cell populations, neurons and glia, which were originally 

observed using rudimentary microscopes more than 150 years ago209,210,211,212.  
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However, due to technical limitations of histological methods, together with poor microscopic 

resolution, glial cells and neurons were initially considered as a single anatomical unit213,214. 

Advances in electrophysiology and biochemistry allowed the first descriptions of non-nervous 

cells (i.e. glia) as structural independent entities215,216 and further showed that while neurons are 

electrically excitable and capable of discharging short voltage pulses known as action potentials217, 

glial cells are not. This observation led to the common assumption that glia are passive cells that 

essentially provide connective218,219 and nutritional support to neurons220. 

At the beginning of the 20th century, several studies provided evidence that the “glue” in the CNS 

was actually composed of different classes of glia, based on differences in morphology, function 

and brain location, including both microglial and macroglial cells (i.e. oligodendrocytes, 

astrocytes)221,222. Microglia are part of the immune system and survey the brain for damage and 

infection, engulfing dead cells and debris223,224. Microglial cells have also been implicated in 

synaptic remodelling by phagocytic mechanisms during normal brain function and become 

activated in many neurodegenerative diseases (e.g. Alzheimer’s Disease, AD)225,226. Despite being 

first described in 1899 as “mesoglia” derived from the mesoderm227, the formal identification of 

oligodendrocytes and their relation to myelin was demonstrated two decades later228,229. Notably, 

this lipid-rich membrane or myelin sheath enwraps axons and induces clustering of ion channels 

at nodes of Ranvier, thereby enhancing conduction velocity, which is essential for rapid electrical 

communication between neurons and their targets230. Thus, oligodendrocyte dysfunction leads to 

demyelination, which occurs in pathological states (e.g. multiple sclerosis, MS)231. Another 

macroglial cell type known as NG2-glia or “polydendrocytes” were identified by their expression 

of the Neural/Glial antigen 2 (NG2) chondroitin sulphate proteoglycan232,233.  
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NG2-glia are progenitor cells that eventually give rise to oligodendrocytes (also named 

oligodendrocyte progenitor cells, OPCs) and play a role in the formation of synapses234. Finally, 

astrocytes are polarized, star-shaped glial cells235 that were initially classified according to their 

anatomic location and morphological differences appreciated by Golgi staining236, as fibrous 

astrocytes of the white matter and protoplasmic astrocytes of the grey matter237,238. Similar to 

rodents and primates, human fibrous astrocytes are larger in diameter compared to protoplasmic 

astrocytes and possess fewer processes239 that are straighter and radially orientated240, establishing 

contact with nodes of Ranvier of myelinated axons241,242,243. On the other hand, human 

protoplasmic astrocytes are in closer proximity with neuronal cell bodies244 and possess highly 

branched processes spanning symmetrically ~100-200 µm from the soma245, thereby increasing 

the cortical volume and synaptic density covered by a particular astrocyte246.  

 

1.2.1 Glia during cortical development 

Except for the microglia, which enters the brain from the blood circulation early in an organism’s 

development222, gliogenesis of astrocytes and oligodendrocytes shares a common origin with 

neuronal cells in the cortex247,248.  

In early stages of cortical development, neuroepithelial precursor cells from the neuroectoderm in 

the transient proliferative embryonic zone, known as ventricular zone (VZ), give rise to radial glial 

cells (RGCs) that form bipolar radial fibers between VZ and the pial surface in the cortex249,250. 

Proliferative RGCs are neural stem cells that divide to form neuronal progenitors or migrating 

pyramidal neurons, which traverse the subventricular (SVZ) and intermediate (IZ) zones, while 

migrating along the long RGCs processes to reach their final destinations in the distant cortex or 

cortical plate (CP; Figure 1.1)251,252,253. 
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Figure 1.1 Neurogenesis and gliogenesis in the developing cerebral cortex. Schematic illustration 

showing the development of neurons and glial cells in the rodent cortex. Neurogenesis peaks at embryonic 

day 14 (E14). Radial glial cells divide to form premature pyramidal neurons that migrate along their 

processes to reach their final destination in the CP where mature pyramidal neurons will form an inside-out 

six-layered structure. Astrogenesis starts at postnatal day 2 (P2) from radial glial cells in the VZ or from 

intermediate progenitors located in the SVZ. Oligodendrocyte generation occurs at later stages in 

development (P14). MZ: marginal zone; CP: cortical plate; IZ: intermediate zone; SVZ: subventricular 

zone; VZ: ventricular zone 
 

Cohorts of new-born projection or pyramidal neurons generated early during development will 

eventually occupy a relatively narrow area within the mature cortex254 and each generation of 

postmitotic neurons will bypass the previous one, thereby forming the characteristic six-layered 

cortical structure255,256, starting from layer VI up to layer II, a phenomenon known as “inside-out 

gradient of neurogenesis”257, while layer I originates from the marginal zone (MZ) of the 

developing CP258 (Figure 1.1). 
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Once all neurons have migrated and positioned in their corresponding layers without 

replacement259, astrogenesis and oligodendrogenesis commence at later stages in the embryonic 

development (Figure 1.1). As RGCs mature, most give rise to typical star-shaped astrocytes during 

the perinatal period in different brain areas including the cortex, hippocampus, striatum, brain stem 

and hypothalamus260,261. Others might remain as specialized radial glia (i.e. Müller glia in the 

retina262, Bergmann glia in the cerebellum263, pituicytes in the neurohypophysis264), thus 

contributing to the heterogeneity of the astrocytic lineage that likely displays different gene 

expression patterns and functions265,266.  

In addition, grey and white matter astrocytes, as well as oligodendrocytes can originate from 

intermediate progenitors derived from radial glia located in the neonatal SVZ (i.e. tanycytes at the 

base of the third ventricle; Figure 1.1)267,268. However, some studies suggest that protoplasmic 

astrocytes may have additional origins, as Zhu et al. (2008)269 showed that they could also arise 

from NG2-glia in the grey matter of the ventrolateral forebrain at postnatal stages270, as NG2-glia 

share similar stellate morphology to astrocytes271, as well as widespread distribution throughout 

the CNS, being associated with specific network functions272. Altogether, RGCs play key roles 

during cortical development, not only acting as progenitor cells that give rise to both neurons and 

glia, but also as a scaffold for the cortical architecture and migrating neurons. Furthermore, despite 

sharing a common origin with neurons, glial cells are created through different pathways, which 

might help explain their developmental diversification even within the same brain region. 

 

1.2.2 The glia to neuron ratio conundrum 

Glial cells are present in all organisms with a CNS, from early invertebrates (e.g. C. elegans, 

Drosophila) to humans, with astrocytes the most ancient cell type273,274.  



18 

 

Despite being conserved during evolution in terms of morphology and size, the proportion of glial 

cells with respect to neurons, the glia (G) to neuron (N) ratio (GNR = G/N)275, or glial index as 

originally proposed by Friede in 1954276, was historically assumed to increase according to the 

animal’s brain or body size277,278 and along the phylogenetic scale279, due to observations that 

neuronal density decreased with increasing cortical volume280, with humans displaying a GNR of 

10:1281,282,283.  

However, the heterogeneity of glial and neuronal cell body densities in different brain areas (e.g. 

white vs grey matter)284, together with the lack of specific and robust molecular markers 

for  identifying glial subtypes led to controversial results in animal models, such as rodents285 or 

primates286. For instance, Terry et al. (1987)287, using a semiautomated image-analysis method, 

provided evidence that while neocortical neuronal density decreases with age, the number of glia 

increases. Two decades later, another group revealed varying numbers of total glial cells in the 

human cortex depending on the age, as well as on gender differences288. Using a stereological 

counting technique, they further showed that not all glial subtypes increase with age, as previously 

reported287. In fact, they observed that while the population of oligodendrocytes was correlated 

with neuronal loss during aging, the number of astrocytes remained constant. These studies claim 

for the importance of the counting technique when quantifying neurons and glia in different brain 

structures, rather than in the whole brain289.  

In 2005, the development of the “isotropic fractionator” method by Herculano-Houzel and Lent290, 

derived from the “direct enumeration” method291, which consists of homogenizing fixed brain 

tissue into a homogeneous suspension of isolated cell nuclei that are counted as total neuronal or 

non-neuronal cells (i.e. NeuN positive vs negative respectively), enabled a more systematic 

determination of the GNR across different species in both healthy and diseased brains.  
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Compared to previous stereological methods, this non-stereological counting technique is faster 

(~24 hours), less time-consuming and can be applied for the quantitative measurement of cells 

either in whole brain or within brain structures independent of brain volume, both in normal 

physiology and pathology292. Using this technique, more recent studies showed that the human 

brain contains equal numbers of neurons and non-neuronal cells293. This observation was already 

supported by previous histological data showing a GNR of ~0.99294,295 and similar glial densities 

in primates and other mammals296, thereby demystifying the widespread notion that the GNR 

uniformly scales with brain size. Instead, the GNR has been negatively correlated with neuronal 

density across brain structures and species297,298, with decreased neuronal densities, indicative of 

larger neurons, related to higher GNRs.  

These observations suggest that (1) the heterogeneity in the GNR is likely due to a variation in 

neuronal densities and that (2) GNRs increase as a function of neuronal size. Hence, several studies 

proposed that species evolved increased GNRs to support the higher energetic and metabolic 

demands of larger neurons278,283, as initially proposed277. However, later estimations of the average 

metabolic cost or glucose usage per neuron, based on total neuronal and non-neuronal cell numbers 

counted using the isotropic fractionator method, revealed that brain metabolism is best correlated 

with the total number of neurons, rather than brain mass or neuronal density, leading to the 

hypothesis that each neuron possesses a “fixed energy budget” that is independent of its size299. 

As a consequence, other groups raised alternative explanations regarding the increased number of 

glial cells per neuron as they become larger, including a potential role in effective K+ removal 

following neuronal activity especially in thicker tissues, such as the cerebral cortex300.  

Furthermore, the increased functional competence of the adult human brain has been linked to the 

greater architectural complexity and pleomorphism of neocortical protoplasmic astrocytes.  
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Indeed, protoplasmic astrocytes in humans are typically located in layers II-VI and display 

different properties compared to rodent astrocytes301, as supported by observations that human 

neocortical astrocytes are 2.6-fold larger in diameter, increase their processes by 10-fold to reach 

further distances, and propagate Ca2+ waves significantly faster than rodent astrocytes240.  

Despite some dissimilarities observed throughout evolution, the overall stability of both structural 

and electrophysiological properties in glial cells across species suggests that they perform 

fundamental roles in brain physiology. Therefore, future studies should consider reciprocal 

functional and metabolic interactions between glial cells and neurons to better characterize their 

real contribution to brain function. 

 

1.2.3 Astrocytes under the spotlight 

In the 19th century, Ramón y Cajal proposed the insulation theory, probably the first proposition 

claiming that astrocytes, rather than acting as simple supporting cells, were directly involved in 

modulating neuronal activity by isolating neighbouring neurons302.  

In support of this view, Cajal further revealed that “the neuroglia is abundant where intercellular 

connections are numerous and complicated, not due to the existence of contacts, but rather to 

regulate and control them, in such a manner that each protoplasmic expansion is in an intimate 

relationship with only a particular group of nerve terminal branches”303 and “intended perhaps to 

produce hormones associated with the brain activity”216. These early considerations suggested that 

astrocytes are strategically located close to synapses, which allow them to critically regulate the 

overall network function, as proposed previously304,305.  
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Today, glial cells are no longer considered a homogenous population exerting supporting roles in 

the brain, but instead, studies in the past decades revealed essential contributions of glial cells270, 

in particular of astrocytes due to their close association with synapses, to many physiological brain 

functions, including synaptogenesis306, metabolic coupling307, nitrosative regulation of synaptic 

release in the neocortex308, synaptic transmission309 and plasticity310.  

1.2.3.1 GFAP and the actin cytoskeleton  

The architecture of protoplasmic astrocytes changes during brain development and according to 

molecular and gene expression patterns, which supports their physiological role265,266. The 

astrocytic morphology is mainly composed of the actin cytoskeleton and intermediate filaments311, 

including vimentin in early stages of cortical development, which is progressively replaced by the 

glial fibrillary acidic protein (GFAP) in differentiated astrocytes312,313. However, despite being 

extensively used as an intracellular specific marker of mature astrocytes314, several studies have 

shown that not all astrocytes express GFAP315, not all cells expressing GFAP are astrocytes316 and 

that GFAP immunostaining does not reveal the complete extent of the astrocytic domain in 

rodents246, as it is often not detectable in the cell body nor in the finest astrocytic processes317. 

Over the past decades, several research groups have demonstrated the importance of the actin 

cytoskeleton and intermediate filaments in modulating astrocytic morphology both in 

physiological and pathological conditions (e.g. neuroinflammation)318. For instance, Hanley and 

colleagues (2013)319 showed that astrocytes require high activation of the Arp2/3 complex, an 

actin-binding protein (ABP), to maintain and modulate their typical stellate morphology. Palladin, 

another ABP expressed predominantly in cortical astrocytes, is upregulated in response to brain 

injury320, thus supporting its role in actin assembly and shape remodelling during 

neuroinflammation.  
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Whereas some studies using transgenic knock-out (KO) mice showed that GFAP is not necessary 

to support physiological astrocytic development, morphology or function321, others found that 

GFAP is essential in pathological processes, such as reactive astrogliosis317,322, which may lead to 

the formation of glial scars with permanent tissue rearrangement323. In addition, overexpression of 

GFAP has been associated with morphological alterations (e.g. hypertrophy of astrocytic 

processes)324, loss of astrocytic domain organization325, impaired neuronal-astrocytic 

interactions326 and neurodegenerative disorders (e.g. Alexander’s disease)327,328. 

1.2.3.2 Astrocytic channels, receptors, pumps and co-transporters 

Protoplasmic astrocytes show a diverse expression of receptors, ion channels, pumps (i.e. ATPase) 

and cotransporters in different brain areas (e.g. hippocampus, cortex, brain stem, thalamus)270,329 

that allow them to dynamically interact with neurons through several pathways330,331,332. 

Electrophysiological studies together with molecular genetic approaches have shown that cortical 

astrocytes express both ligand-gated and G protein-coupled receptors (GPCRs), such as N-methyl-

D-aspartate (NMDA) receptors333 and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptors334. Moreover, astrocytes express receptors for most neurotransmitters and 

neuromodulators, including metabotropic glutamate receptors (mGluRs)335, purinergic P2Y 

adenosine triphosphate (ATP) receptors336, gamma-aminobutyric acid (GABA) receptors337, as 

well as receptors for ACh338,339, Serotonin (5-Hidroxytryptamine, 5-HT)340, Histamine341, 

Noradrenaline (NE)342,343 and Dopamine (DA)344, coupled to second messenger systems.  

Notably, astrocytes are characterized by a relatively more hyperpolarized RMP compared to 

neurons, typically ranging from -70 mV to -80 mV345,346.  

 

https://en.wikipedia.org/wiki/Gamma-aminobutyric_acid
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Pharmacological studies in genetically engineered mice found that Ba2+-sensitive, weakly inward 

rectifying K+ (Kir) channels, which are highly expressed at synapses and astrocytic end-feet, were 

crucial in setting the negative RMP in cortical astrocytes347,348. Indeed, loss of functional Kir 

channels has been associated with neurological diseases (e.g. epilepsy349,350; amyotrophic lateral 

sclerosis, ALS351; AD352; Huntington’s Disease, HD353; retinal degeneration354; malignant 

gliomas355), supporting their physiological value in the CNS.  

Other ion channels, like L-type Ca2+ channels, were initially identified in cortical astrocytes in 

vitro356 and later confirmed in situ357. Despite the existence of voltage-gated Na+ channels, which 

has been demonstrated in astrocytic cultures358 and in brain slices from different brain regions (e.g. 

corpus callosum, spinal cord, hippocampus)359,360,361, the functional expression of these channels 

in cortical astrocytes in vivo still has to be confirmed362. Aside from channels, ions can cross 

astroglial membranes through exchangers (e.g. Na+/Ca2+ exchanger, NCX)304,363, pumps (e.g. 

Na+/K+ ATPase, NKA)364,365 and transporters (e.g. Na+-K+-2Cl– cotransporter, NKCC)366,367, 

which are also expressed in astrocytes. Altogether, astrocytes express various K+, as well as other 

ion channels displaying regional differences and specific subcellular distributions.  

1.2.3.3 Bidirectional interactions between neurons and astrocytes 

In 1895, Cajal proposed that astrocytes exert a major role in modulating brain function during 

different behavioural states (e.g. sleep, wakefulness)302. More than a century later, with the 

development of new tools, including the patch-clamp technique, as well as the confocal and multi-

photon fluorescence imaging methods190,368, the initial observations by Ramón y Cajal about 

astrocytes as potential modulators of the brain circuitry are gaining more support.  
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Despite lacking the ability to fire action potentials, astrocytes possess numerous metabotropic 

receptors coupled to second messenger systems that allow their communication with neurons, as 

well as with other astrocytes mainly via Ca2+ signals369,370. Astrocytic Ca2+ signals can occur both 

independently of neuronal activity or following neurotransmitter release, and include intrinsic Ca2+ 

oscillations within individual cells and Ca2+ waves that propagate from one cell to another371,372. 

Interestingly, spontaneous Ca2+ oscillations differ between cortical layers in vivo, being more 

frequent and asynchronous in astrocytes from layer I compared to layer II/III, suggesting 

functional network segregation imposed by astrocytic function373. Similarly, computational 

modelling showed that the propagation of astrocytic Ca2+ waves is highly variable between brain 

regions depending on the topology of the astrocytic network, with short-distance connections 

favouring spreading of Ca2+ waves over wider areas374. In addition, several studies have provided 

evidence that astrocytes respond to different neuronally released neurotransmitters and 

neuromodulators (e.g. ACh, 5-HT, Histamine, NE, DA) by eliciting Ca2+ elevations that trigger 

signalling cascades (e.g. Ca2+-dependent phosphatidylinositol-phospholipase C, PLC, pathway), 

leading to regulated increases in the intracellular or extracellular concentrations of ions (e.g. Na+, 

Ca2+, K+) and gliotransmitter release (e.g. ATP, glutamate, adenosine, D-serine)338,375,376,377,378,379. 

For instance, activation of these receptors in astrocytes leads to PLC-mediated hydrolyzation of 

phosphatidylinositol 4,5-biphosphate (PIP2), resulting in the formation of inositol 1,4,5-

triphosphate (IP3) and release of diacylglycerol (DAG) in the cytosol380. Finally, IP3 binds to its 

receptor on the endoplasmic reticulum (ER) leading to Ca2+ release from internal stores381 (Figure 

1.2). Furthermore, elevations in the intracellular Ca2+ concentration ([Ca2+]i) stimulate the IP3 

receptor, hence promoting bigger increases in [Ca2+]i until excessive levels inhibit the IP3 receptor, 

a process known as “Calcium-Induced-Calcium-Release” (CICR)382.  
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Figure 1.2 Neuromodulators evoke [Ca2+]i increases in astrocytes. a-e) Schematic diagrams describing 

the main type of astrocytic receptors and signalling cascades activated by Acetylcholine (ACh, a), Serotonin 

(5-HT, b), Histamine (c), Noradrenaline (NE, d) and Dopamine (DA, e). Activation of muscarinic ACh 

receptors (M1-3, a), 5-HT2 receptors (b), H1 receptors (c), α1-adrenergic receptors (d) and D2 receptors (e) 

results in Ca2+ release from internal stores (endoplasmic reticulum, ER). PLC: phospholipase C, PIP2: 

Phosphatidylinositol 4,5-bisphosphate, DAG: D-1,2-Diacilglicerol, PKC: protein kinase C, IP3: inositol 

1,4,5-triphosphate, Ac: adenylyl cyclase, cAMP: 3',5'-cyclic adenosine monophosphate, PKA: protein 

kinase A, PLA2: phospholipase A2, GLT-1: glutamate transporter 1, NKA: Na+-K+ ATPase pump, AQP-4: 

aquaporin 4, OCT3: organic cation transporter 3 
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More recently, Mariotti and colleagues (2016, 2018)383,384 demonstrated that astrocytic modulation 

and signalling are circuit-specific, as cortical astrocytes not only respond to excitatory inputs, but 

also react to inhibitory interneurons (i.e. parvalbumin vs somatostatin) both in situ and in vivo, by 

eliciting weak or strong [Ca2+]i elevations following activation of GABAB receptors linked to Gi/o-

coupled receptors and IP3 signalling. In addition, two-photon imaging experiments revealed that 

cortical astrocytes are fast enough to respond to sensory stimulation by evoking fast Ca2+ events 

that were independent of both neuromodulation and IP3-mediated signalling385. Together, these 

results suggest that astrocytes are able to process different patterns of network activation with a 

variety of Ca2+ signals in order to decode and integrate local synaptic activity, as well as other 

physiological processes (e.g. neurovascular coupling).  

Hence, by responding to different neuronal populations with activity-driven Ca2+ elevations, 

astrocytes take part in many physiological processes, including blood vessel vasodilation and 

constriction through nitric oxide308,386, K+ signalling387, release of trophic factors (e.g. fibroblast 

growth factor, neurotrophin-3)388, metabolic agents (e.g. L-lactate)310 or inflammatory mediators 

(e.g. tumour necrosis factor-α)389 involved in network disorders, together with synaptic 

transmission390 and plasticity391,392. In fact, gliotransmitters released through several pathways 

(e.g. exocytosis from storage organelles or via anion channels and pumps in the plasma membrane 

from the cytosol) can activate neuronal receptors393,394, thereby establishing reciprocal interactions 

between neurons and astrocytes that result in the overall modulation of the network excitability 

and behaviour395,396 (Figure 1.3). Consistently, astrocytic [Ca2+]i rises lead to glutamate release, 

which targets extrasynaptic NR1/NR2B-containing NMDA receptors in neurons, resulting in 

changes in individual cellular excitability, as well as in activation of synchronous activities within 

groups of neurons397.  
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Figure 1.3 Gliotransmission pathways for synaptic regulation. Synaptically released neurotransmitters 

activate astrocytic receptors leading to [Ca2+]i increases and gliotransmitter release from astrocytes, which 

can affect synaptic transmission both presynaptically, via glutamate, ATP or adenosine, and 

postsynaptically, via glutamate, D-serine or GABA. AA: arachidonic acid, PGs: prostaglandins, 20-HETE: 

20-hydroxyeicosatetraenoic acid, EETs: epoxyeicosatrienoic acids, PLC: phospholipase C, IP3: inositol 

1,4,5-triphosphate, Ado: adenosine, A1: adenosine’s A1 receptor, P2Y1: ATP’s P2Y1 receptor, P2X7: ATP’s 

P2X7 receptor, Glu: glutamate, mGluR5: metabotropic glutamate receptor 5. Adapted from Bazargani and 

Attwell (2016)398 

 

Astrocytes achieve long distance communication not only via Ca2+ waves but also through ATP 

release399,400, which is followed by its degradation to adenosine by extracellular nucleotidases, 

leading to synaptic inhibition of neurotransmission401. Consistently, ATP release from neocortical 

astrocytes has been found to activate purinergic currents in pyramidal neurons, followed by 

attenuation of synaptic and tonic inhibition402. These results suggest that cortical astrocytes, via 

exocytosis of ATP, could also play a role in the modulation of neuronal GABA release and thus 

phasic and tonic inhibition, which eventually could contribute to the generation of 

hypersynchronous oscillations (e.g. status epilepticus) at the network level.  
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Moreover, the fact that astrocytes can regulate the activity of individual neurons prompted Covelo 

and Araque (2016)403 to propose a new concept of network modulation termed “lateral astrocyte 

synaptic regulation”. Accordingly, astrocytic regulation of synaptic transmission is heterosynaptic, 

involving the active synapse together with distant tripartite synapses communicating via a form of 

paracrine signalling that depends on the morphological and functional properties of astrocytes, 

thereby acting as nodes that can influence neuronal properties over wide brain regions404. 

However, gliotransmitter release has been reliably demonstrated only in vitro and brain slice 

experiments are often accompanied by manipulations (e.g. high frequency stimulation) that can 

affect astrocytic channels or receptors leading to impaired signalling cascades. This experimental 

design imposes questions about the physiological role of gliotransmission in the brain. Although 

previous studies found no correlation between astrocytic Ca2+ signalling and gliotransmitter 

release405,406,407, there is increasing evidence supporting the importance of both the topology and 

function of astrocytic networks for neuronal-astrocytic communication and control of neuronal 

network activity. Consequently, astrocytic alterations likely lead to aberrant modulation of both 

synaptic transmission and network synchronization, which is also accompanied by impaired 

behavioural performance. However, little is known about how neurons and astrocytes interact to 

mediate transitions between different oscillatory regimes in the cortex.  

 

1.3 Astrocytic modulation of neuronal excitability through K+ 

spatial buffering 

The following review article published in Neuroscience and Biobehavioural Reviews in March 

2017 provides a comprehensive introduction to the functional role astrocytes play in network 

modulation through their K+ clearance capabilities305, a theory that was first raised 50 years ago408. 
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1.4 Hypothesis and aims 

We hypothesize that the strategic location of cortical astrocytes as part of the tripartite synapse 

allows them to respond to network demands and to fine-tune individual neuronal membrane 

properties, by specifically manipulating [K+]o through K+ clearance mechanisms, thereby leading 

to the recruitment and synchronization of neuronal assemblies, which influences the transitions 

between brain waves oscillating at different frequencies, and thus behaviour.  

 

The aims of this thesis are: 

1. To investigate the impact of astrocytic K+ clearance mechanisms on neuronal network 

oscillations and on individual neuronal membrane properties within different subcellular 

compartments.  

 

2. To describe specific contributions of astrocytic K+ clearance mechanisms, including net K+ 

uptake and K+ spatial buffering, as well as passive diffusion to the spatiotemporal dynamics 

and rate of K+
 clearance.  

 

3. To identify potential neuronal mechanisms affecting the astrocytic K+ clearance processes.  
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CHAPTER 2: 

ASTROCYTIC MODULATION OF NEURONAL 

NETWORK OSCILLATIONS 

 

 

 

 

“Discovering a dynamic brain phenomenon is one thing. Understanding its 

meaning and its role in behaviour and cognition is quite another.”  

 —György Buzsáki 

 

2.1 Introduction 

Switching between different behavioural states in response to environmental changes requires 

alteration of different network oscillatory regimes and being able to mediate the transition among 

the different frequencies at which these oscillations fluctuate. The brain achieves this goal by fine-

tuning neuronal oscillations that are associated with different brain functions and behaviours 

(Table 1.1, Chapter 1), thus allowing adaptation and survival.  

At least ten distinct mechanisms have been suggested to affect the generation of neuronal network 

oscillations in the cortex, including changes in cellular excitability or in the concentration of 

extracellular ions (i.e. [K+]o; Chapter 1)2,11. However, the mechanism that gears the transition 

between different oscillatory frequencies, thereby leading to switching between behavioural states 

to allow adaptation and our own survival, remains unclear. 
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The following paper published in Scientific Reports (Nature Publishing Group) in August 2018 

investigates the potential role of astrocytic K+ clearance mechanisms in modulating cortical 

oscillatory dynamics at different frequencies both at the network and cellular levels409.  

Sections 2.2 and 2.3 provide further methods and results not included in the original paper relating 

to (1) extracellular recordings of the network activity following facilitation of K+ clearance 

mechanisms after photolysis of caged guanosine-5'-triphosphate (GTP) compounds, and (2) 

intracellular recordings from different subcellular compartments of layer V pyramidal neurons, 

including proximal and distal apical dendrites, which provide additional support to the project 

hypothesis, as discussed in section 2.4. 
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Supplementary Figure S1. Measuring network excitability. a) Traces of extracellular recordings 

showing the network activity before and after brief (1 second) application of 30 mM KCl (red arrow), in 

normal aCSF (3mM K+, top) and after bath application of 100 μM BaCl2 (middle) or Gap-26/27 (bottom). 

For subsequent analysis, the network activity was divided into three episodes: “Baseline”, the period prior 

to stimulation; “High K+”, the immediate period following application of 30 mM KCl. The duration of the 

“High K+” period was set to 10 seconds as this was the average time in which the inter-spike intervals was 

<5 seconds (3 mM K+ aCSF, n=15). The third period was termed “Recovery”, as this is the period where 

[K+]o decreases to baseline levels due to diffusion and astrocytic K+ clearance. The duration of the 

"Recovery” period was set as the period where the inter-spike intervals were <10 seconds. b) Bar graph 

depicting the impact of impairment of K+ uptake (BaCl2, n=16) and gap junction blockers (Gap-26/27, 

n=13) on the duration of the “Recovery” period. c) The power spectrogram of extracellular oscillations 

following KCl application (time 0, red triangles) depicting the increase in power at higher frequencies 

during the “High K+” (first 10 seconds) and “Recovery” (from 10 seconds onwards) periods. **p < 0.01; 

student t-test 
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Supplementary Figure S2. Power spectrum analysis of low frequency network oscillations. Power 

spectrum analysis depicting the averaged (line) and standard error values (shade) of the dominant oscillation 

frequencies governing “Baseline” (a), “High K+” (b) and “Recovery” (c) periods depicting maximal power 

at oscillation frequencies <1 Hz under normal aCSF conditions. 
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Supplementary Figure S3. The impact of [K+]o on the resonance frequency. a) Impedance amplitude 

profile depicting the mean (line) and standard deviation values (shade) of the maximal voltage response to 

a subthreshold chirp stimulation (10 pA), before, during and after (colour-coded) stimulation at different 

concentrations of KCl (5 -15 mM) under normal aCSF conditions. Note the shift towards higher frequencies 

during the “High K+” period. Inset - schematic representation of the Full Width at Half Amplitude (FWHA) 

calculated by MATLAB. The function first measures the maximal amplitude of the resonance frequency 

curve from baseline values at ~20 Hz to maximal peak, and then measures the full width of the maximum 

amplitude. b, c) ZAP profile under BaCl2 (b) and Gap-26/27 (c) conditions. Note the shift towards higher 

frequencies during “High K+” and “Recovery” periods compared to normal aCSF. 

 

 

 

 

 

 

 

a 

b 

c 



59 

 

 
Supplementary Figure S4. High [K+]o enhances astrocytic coupling in the cortex. a) Measuring 

astrocytic coupling through biocytin labelling. Left – image of an astrocyte from GFAP-GFP mouse filled 

with biocytin through the recording electrode (12 minutes) to determine its direct connections with 

surrounding astrocytes. Right – Confocal images (20x objective) showing the biocytin-stained astrocytic 

network in layer II/III of the somatosensory cortex from GFAP mouse under normal aCSF (middle) and 

following application of 30 mM KCl (right). b) Local application of 30 mM KCl significantly increases the 

degree of coupled astrocytes in layer II/III of the cortex. **p < 0.01; student t-test 
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[K+]o (mM) RMP 

(mV) 
Rin (M) Rheobase 

(pA) 

Spike width (ms) fR 

(Hz) 

FWHA 

(Hz) 

3 aCSF -65.10.5 

(n=66) 

248.910.5 

(n=65) 

47.84.1 (n=68) 2.30.1 (n=70) 1.40.1 

(n=51) 

2.10.3 

(n=51) 

 

5 

Before 

KCl puff 
-65.81.2 

(n=13) 

264.722.5 

(n=14) 

46.26.8 (n=14) 2.30.2 (n=15) 1.40.2 

(n=12) 

2.20.6 

(n=12) 

During 

KCl puff 
-57.91.4 

(n=13) 

247.025.4 

(n=14) 

25.64.6 (n=13) 2.40.2 (n=14) 2.0032 

(n=12) 

2.60.8 

(n=12) 

After KCl 

puff 
-65.31.8 

(n=12) 

257.030.1 

(n=13) 

47.57.2 (n=13) 2.30.1 (n=14) 1.30.2 

(n=11) 

2.30.7 

(n=11) 

 

10 

Before 

KCl puff 
-65.11.7 

(n=13) 

255.929.4 

(n=12) 

47.98.7 (n=14) 2.20.2 (n=15) 1.30.3 

(n=12) 

2.40.8 

(n=12) 

During 

KCl puff 
-52.81.2 

(n=13) 

189.227.2 

(n=12) 

21.14.6 (n=13) 2.70.2 (n=13) 2.00.2 

(n=10) 

2.70.4 

(n=10) 

After KCl 

puff 
-64.11.8 

(n=12) 

240.736.5 

(n=12) 

48.38.2 (n=13) 2.30.2 (n=13) 1.30.2 

(n=12) 

2.21.1 

(n=12) 

 

15 

Before 

KCl puff 
-64.40.9 

(n=17) 

232.818.8 

(n=17) 

47.310.1 

(n=17) 

2.30.1 (n=17) 1.50.2 

(n=13) 

1.80.9 

(n=13) 

During 

KCl puff 
-49.21.2 

(n=17) 

169.114.8 

(n=16) 

17.92.8 (n=16) 3.20.3 (n=16) 2.10.3 

(n=13) 

2.91.0 

(n=13) 

After KCl 

puff 
-64.21.8 

(n=16) 

223.925.0 

(n=16) 

50.48.1 (n=16) 2.40.2 (n=16) 1.20.1 

(n=13) 

1.90.4 

(n=13) 

 

30 

Before 

KCl puff 
-65.01.0 

(n=18) 

247.223.2 

(n=17) 

49.77.1 (n=18) 2.40.2 (n=18) 1.50.2 

(n=14) 

1.90.2 

(n=14) 

During 

KCl puff 
-38.61.3 

(n=18) 

125.514.4 

(n=16) 

12.31.0 (n=16) 4.40.6 (n=15) 2.50.2 

(n=12) 

3.81.1 

(n=12) 

After KCl 

puff 
-60.91.9 

(n=18) 

43.05.9 

(n=16) 

50.07.9 (n=16) 2.60.1 (n=15) 1.30.2 

(n=11) 

2.10.5 

(n=11) 

Supplementary Table S1. The impact of extracellular K+ on the biophysiological properties of the 

soma of layer V cortical neurons. Data is reported as mean ± S.E.M (n = number of neurons recorded). 
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2.2 Extended material and methods 

2.2.1 Animals and slice preparation 

For extracellular recordings of the network activity we used P21-P28 days-old GFAP-GFP mice, 

in which astrocytes are selectively tagged with the green fluorescent protein (GFP)  under a GFAP 

promoter (strain 003257, Jax laboratories). To simplify the technical challenges involved in 

dendritic recordings, Wistar rats (P21-P35) were used to perform proximal and distal recordings 

from apical dendrites in layer V pyramidal neurons. Animal handling and slice preparation were 

performed as previously described in section 2.1. 

 

2.2.2 Electrophysiological recording and stimulation 

The electrophysiological setup and steps following slice incubation in the BraincubatorTM, as well 

as stimulation protocol for both extracellular and intracellular recordings are described in detail in 

section 2.1.  For apical dendritic recordings, I used high impedance patch pipettes (10-12 MΩ) 

containing in mM: 130 K-Methansulfate, 10 HEPES (4-(2- hydroxyethyl)-1-

piperazineethanesulfonic acid), 0.05 EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-

tetraacetic acid), 7 KCl, 0.5 Na2GTP, 2 Na2ATP, 2 MgATP, 7 phosphocreatine, and titrated with 

KOH to pH 7.2 (∼285 mOsm). Membrane potentials were recorded in current clamp mode, as 

previously described for somatic recordings (section 2.1). Dendritic recordings were grouped 

according to their distance from the soma (0 µm). Proximal recordings were defined as recordings 

from distances between 0-100 µm. Greater distances (>100 µm) were classified as distal 

recordings. In cases were dendrites were difficult to observe under differential interference contrast 

(DIC) optics, dual somato-dendritic recordings were performed with patch pipettes filled with the 

same internal solution and the fluorescent dye Alexa Fluor-488 (Molecular Probes; Figure 2.4 B).  
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Dendritic membrane properties were obtained before, during and after (10 sec) local application 

of high potassium chloride (KCl, 30 mM) through a puffing pipette placed in the vicinity of the 

recording electrode. Following brief application of KCl (~1 sec), the puffing pipette was removed 

to allow K+ washout for 2 minutes before resuming intracellular recordings, as previously 

described (section 2.1). 

 

2.2.3 Drugs 

To measure the impact of global activation of G-proteins by GTP, brain slices were incubated with 

Na+ salt compounds (NPE-caged GTP, 100 μM, Jenna Bioscience) for 1 hour to allow diffusion 

of the caged molecules. Local photolysis410 with ultraviolet light (UV, ~340 nm) was applied in 

the vicinity of the recoding electrode for 5 seconds prior to stimulation with KCl (Figure 2.1 A). 

The application of pharmacological agents used to impair astrocytic K+ clearance mechanisms, 

including Kir4.1 channels with barium chloride (BaCl2) or gap junctions (GJs) with a mixture of 

connexin 43 (Cx43) mimetic peptides (Gap-26-27), is described in section 2.1. 

 

2.2.4 Statistical analysis 

Similar to previous experiments detailed in section 2.1, analysis of extracellular and intracellular 

recordings is based on three episodes corresponding to different stages of the K+ clearance process, 

including “Baseline”, “High K+” and “Recovery”.  

Unless stated, data is reported as mean ± S.E.M. Statistical comparisons were done with Prism 7 

(GraphPad So ware; San Diego, CA) using two-tailed unpaired or paired student t-test, as well as 

one-way ANOVA followed by Tukey’s post hoc test, according to the experimental design.  
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Power spectrum density (PSD) and impedance amplitude profile (ZAP) to reveal the resonance 

frequency (fR) were analysed using custom-made codes written with MATLAB (MathWorks), as 

stated in the previous section 2.1. Probability values < 0.05 were considered statistically 

significant. 

 

2.3 Extended results 

The present section provides complimentary experiments that support a crucial role for astrocytic 

K+ clearance mechanisms in modulating subcompartments of individual neurons underlying the 

generation of cortical oscillations at the network level.  

 

2.3.1 Facilitation of net K+ uptake modulates cortical oscillations 

In a separate series of experiments, I studied the impact of facilitation of the astrocytic net K+ 

uptake process by global activation of G-proteins via focal photolysis of NPE-caged GTP, as 

reported previously411. Focal release of GTP for 5 seconds prior to local application of high K+ 

(~30 mM KCl) led to a significant decrease of the multi-unit frequency and increased the inter-

spike intervals during the “High K+” period (0.48±0.09 Hz, uncaged GTP n=18 vs 2.45±0.39 Hz, 

normal aCSF n=15; p < 0.01, unpaired student t-test; p < 0.01, KS-test, Figure 2.1 B-D).  

However, GTP release did not affect the “Recovery” period, as neither the interspike-intervals (p 

> 0.05, KS-test, Figure 2.1 D) nor the average duration of this episode were significantly different 

from control conditions (artificial cerebrospinal fluid, aCSF), despite showing an increasing trend 

(p = 0.07, unpaired student t-test, Figure 2.1 C).  
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Figure 2.1 Modulation of net K+ uptake via GTP release impacts on cortical network dynamics. a) 

Image of the experimental setup (top) depicting the area (purple) that was photo-activated with UV light 

(~340 nm) for 5 seconds prior to local application of 30 mM KCl and representative extracellular recording 

(bottom) of the network activity following local photostimulation of 100 μM NPE-caged-GTP (purple). b) 

Bar graph depicting the impact of photolysis of caged GTP compounds on the average duration of the 

“Recovery” period (18±3.9 seconds aCSF vs 26±2.2 seconds uncaged GTP; p > 0.05, unpaired student t-

test). c) Analysis of the network excitability during the different episodes (colour-coded) indicating an 

increase of the number of spikes recorded following local application of KCl (“High K+”), which decreases 

during the “Recovery” period in normal aCSF. Enhancement of net K+ uptake via Kir channel upregulation 

(through local uncaging of GTP prior to the KCl stimulus) leads to a reduction of the number of spikes 

during the “High K+” period and increase during the “Recovery” episode, compared to control conditions 

(p < 0.01, unpaired student t-test). d) Cumulative probability distribution of inter-spike intervals during the 

“High K+” (continuous lines) and the “Recovery” (dashed lines) periods showing a right shift following 

photolysis of caged GTP during the “High K+” episode (p < 0.01, KS-test). Data is reported as mean ± SEM 

(uncaged GTP n=18; aCSF n=15). **p < 0.01; unpaired student t-test 

 

 

c 

b 

** 
n.s. 

R
e
c
o

v
e
ry

 d
u

ra
ti

o
n

 (
s
e

c
) 

Inter-spike interval (sec) 



65 

 

This tendency, together with the observed increase of the multi-unit frequency compared to normal 

aCSF conditions during the “Recovery” period (p < 0.01, unpaired student t-test, Figure 2.1 B), 

may be due to the fact that GTP affects numerous intracellular processes, including inhibition of 

Cx43 activity and thus astrocytic GJ coupling412.  

Moreover, GTP uncaging resulted in a substantial decrease in the oscillation power during the 

“High K+” episode (Figure 2.2 A), in particular at frequencies in the beta and gamma range 

compared to normal aCSF conditions (0.009±0.002 μV2 vs 0.019±0.002 μV2 at beta band, 

0.007±0.002 μV2 vs 0.021±0.003 μV2 at gamma band; p < 0.01, unpaired student t-test, Figure 2.3 

D-E).  

 
Figure 2.2 Facilitation of net K+ uptake affects the power of cortical networks oscillations. a) Power 

spectrum analysis depicting the averaged (line) and standard error (shade) values of the dominant oscillation 

frequencies governing the “Baseline”, “High K+” and “Recovery” periods, under normal aCSF vs enhanced 

astrocytic net K+ uptake conditions following photolysis of caged GTP compounds. Note the shift towards 

lower frequency oscillations following GTP uncaging compared to normal conditions. 

 

In addition, the oscillation power during the “Recovery” period was significantly higher at the 

delta, theta and gamma bands (p < 0.05, unpaired student t-test; Figures 2.2 A, 2.3 A, B, E), 

indicating a decrease in K+ spatial buffering through astrocytic networks and thus an increase in 

neuronal excitability at these frequencies. 
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Figure 2.3 Enhancement of net K+ uptake modulates the power of cortical oscillations at multiple 

frequencies. a-e) Power spectrum density of cortical oscillations was divided into five frequency bands: 

delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (>30 Hz). The average power 

for each frequency band was plotted during the “Baseline”, “High K+” and “Recovery” periods. Comparison 

of the average power during the “High K+” period reveals that facilitation of K+ clearance via local release 

of GTP compounds leads to a significant decrease of the oscillation power at beta and gamma frequencies. 

Comparison of the average power during the “Recovery” period shows a significant rise in the power of 

delta, theta and gamma frequencies once astrocytic net K+ uptake is facilitated. The box upper and lower 

limits are the 25th and 75th quartiles, respectively. The whiskers depict the lowest and highest data points, 

while the horizontal line through the box represents the median. Data is reported as mean ± SEM. *p < 

0.05; **p < 0.01; unpaired student t-test 
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2.3.2 The impact of high [K+]o on different subcellular compartments of 

layer V pyramidal neurons 

Dendrites play a critical role in regulating and filtering inputs to integrate the overall network 

activity413. In addition, the fact that neuronal membrane resonance significantly differs between 

subcellular compartments414 led us to further examine the impact of high levels of [K+]o, namely 

30 mM, specifically on the excitability and resonant properties of both proximal and distal apical 

dendrites from layer V pyramidal neurons in the somatosensory cortex (Figure 2.4). 

 

 

Figure 2.4 Experimental setup for dendritic recordings from layer V cortical neurons. a) DIC image 

showing the experimental setup for whole-cell patch-clamp recordings from layer V pyramidal neurons in 

the somatosensory cortex. KCl (~30 mM) was locally applied to the vicinity of the recording electrode 

using a puffing pipette (*). b-c) Representative DIC images showing the position of the recording electrode 

on proximal (b, < 100 µm) or distal (c, > 100 µm) apical dendrites of layer V cortical neurons. Note the 

filling of the soma and dendrite using Alexa Fluor-488 in the intracellular solution (b, lower left inset). 

 

Under physiological conditions, local application of 30 mM KCl puffs had similar effects on 

membrane properties of both proximal (n=23) and distal dendrites (n=7) compared to the soma 

(n=18). These included depolarization of the RMP, which recovered back to baseline values after 

KCl washout  (p < 0.01, unpaired student t-test, Table 2.1), and decrease in the input resistance 

(Rin), which was greater at distal dendrites during the “High K+” period compared to the soma (p 

< 0.01, unpaired student t-test, Figure 2.5 A-B, Table 2.1).  

a b c 

10 µm 10 µm 
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Distance 

(µm) 

30 mM 

KCl 

RMP 

(mV) 

Rin (M) Rheobase 

(pA) 

Spike width 

(ms) 

Ih (mV) fR (Hz) 

Proximal 

< 100 

 

Baseline -67.5±0.9 214.1±14.1 51.2±6.8 2.4±0.1 5.2±0.5 1.6±0.2 

High K+ -40.4±1.1 111.4±12.8 18.7±3.8 3.5±0.3 1.9±0.4 5.7±0.6 

Recovery -65.8±1.0 190.4±15.5 57.8±6.4 2.5±0.1 5.5±0.8 1.7±0.2 

Distal 

> 100 

Baseline -66.7±4.7 179.4±12.6 83.3±15.2 3.2±0.6 7.6±1.9 6.6±1.6 

High K+ -41.6±3.7 85.70±25.3 29.2±10.0 6.6±0.7 2.0±1.2 3.9±0.3 

Recovery -61.8±1.1 171.7±22.7 61.7±26.8 4.0±0.3 9.2±2.0 2.3±0.2 

Table 2.1 The impact of high [K+]o on the physiological properties of proximal and distal dendrites 

from layer V cortical neurons. Data is reported as mean ± S.E.M. 

 

During the “Baseline” episode, the spike rheobase was higher at distal dendrites (83.3±15.2 pA) 

compared to proximal dendrites (51.2±6.8 pA; p < 0.01, unpaired student t-test, Figure 2.5 C, 

Table 2.1) and the soma (47.84.1 pA, Supplementary Table S1), indicating that neuronal 

excitability reduces with increasing distance from the soma. Application of high levels of [K+]o led 

to a decrease of the rheobase (Figure 2.5 C) and increase of the spike width at half amplitude 

(SWHA) both at proximal and distal dendrites, the latter showing a more significant effect reaching 

average values of 6.6±0.7 milliseconds (p < 0.01, unpaired student t-test, Figure 2.5 D), while 

somatic spikes were narrower (4.4±0.6 milliseconds, Supplementary Table S1) under the same 

conditions (“High K+” episode).  

Narayanan and Johnston previously showed that hippocampal neurons display increased resonance 

frequencies with increasing distance from the soma414. Consistent with their results, during 

“Baseline” conditions the resonance frequency of layer V cortical neurons followed the same 

trajectory, reaching higher values in distal dendrites, in particular at ~300 µm (11.5±1.3 Hz vs 

1.4±0.1 Hz at the soma; p < 0.01, unpaired student t-test, Figure 2.5 E).  

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are responsible for mediating 

Ih currents that are activated following hyperpolarization of the membrane potential415 and are 

required for the regulation of both neuronal excitability and network synchronous activity137.  



69 

 

 
 

Figure 2.5 High [K+]o alters dendritic neuronal excitability and resonance properties. a) A plot of the 

current pulse intensity (I) vs the voltage deflection (equilibrium membrane potential, Vm) was used to assess 

the input resistance (scale bar  x = 100 ms, y = 4 mV).  
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b) Elevation of [K+]o following local application of KCl (~30 mM) leads to a transient decrease of the input 

resistance (Rin) in both proximal (black) and distal (grey) dendrites during the “High K+” episode. c-d) Plots 

depicting the transient impact of 30 mM KCl puffs on spike rheobase (c) and spike width at half amplitude 

(SWHA, d) in proximal (black) and distal (grey) dendrites. e) The resonance frequency (fR) increases with 

increasing distance from the soma under normal aCSF. f) High [K+]o (~30 mM) significantly reduces sag 

amplitudes in both proximal and distal dendrites. Inset - sample trace depicting the sag amplitude recorded 

from the neuronal soma following administration of hyperpolarizing current (soma n=18; proximal 

dendrites n=23; distal dendrites n=7). Data is reported as mean ± SEM. Asterisks represent significance 

levels between different episodes within the same group (proximal or distal dendrites). Pound signs 

represent significance levels between different groups (proximal vs distal dendrites) at the same episode. 

#p < 0.05; unpaired student t-test; *p < 0.05; **p < 0.01; paired student t-test 

 

Analysis of the hyperpolarization-“sag” amplitude (Figure 2.5 F, inset), mainly mediated by the Ih 

currents, indicated a reduction following administration of 30 mM KCl puffs (“High K+” period), 

especially at distal dendrites (>100 µm), which recovered back to normal values during the 

“Recovery” episode (p < 0.05, paired student t-test, Figure 2.5 F). 

Interestingly, distal dendrites showed significantly higher average sag amplitudes (7.6±1.9 mV) 

compared to the soma (4.1±1.5 mV) and proximal dendrites (5.2±0.5 mV) at “Baseline” [K+]o 

levels (~3 mM), which is consistent with a trend showing a decrease in Rin away from the soma (p 

> 0.05, unpaired student t-test, Table 2.1) and previous studies suggesting an increased density of 

HCN channels at distal locations416,413. 

 

2.3.3 Altered astrocytic K+ clearance modulates neuronal dendritic 

excitability and resonance properties 

To examine the impact of local alterations in astrocytic K+ clearance mechanisms on proximal 

dendrites of nearby layer V cortical neurons, similar experiments were performed in the presence 

of 100 μM BaCl2 or selective astrocytic GJ blockers (Gap-26/27) to impair net K+ uptake via Kir4.1 

channels or K+ spatial buffering through astrocytic networks, respectively (Figure 2.6).  
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Figure 2.6 Modulation of astrocytic K+ clearance affects dendritic excitability. a-e) Plots depicting the 

transient impact of high K+ (~30 mM) on the resting membrane potential (RMP, a), input resistance (Rin, 

b), sag amplitudes (c), spike rheobase (d) and spike width at half amplitude (SWHA, e) under impaired K+ 

clearance conditions (100 μM BaCl2 and Gap-26-27) on proximal dendrites (up to 100 µm from the soma) 

during the “Baseline” (blue), “High K+” (red) and “Recovery” (green) episodes. High [K+]o (~30 mM) 

significantly reduces sag amplitudes on proximal dendrites under Kir4.1 channel (top) and GJ blockade 

(bottom) conditions, which persist during the “Recovery” period. f) Impedance frequency (ZAP) profiles 

depicting the averaged (mean) and standard deviation (shade) values of the resonance frequency recorded 

from proximal dendrites under normal aCSF (left), 100 μM BaCl2 (middle) and GAP-26/27 (right) 

conditions. Note the shift towards higher frequencies during the “High K+” (red) and “Recovery” (green) 

periods under altered K+ clearance conditions compared to normal aCSF conditions. (aCSF n=23; BaCl2 

n=22; Gap-26-27 n=22). Data is reported as mean ± SEM. *p < 0.05; **p < 0.01; paired student t-test 

 

   

   

   
aCSF BaCl2 Gap-26/27 

S
a
g

 a
m

p
li

tu
d

e
 (

m
V

) 



72 

 

During the “High K+” episode, blockade of astrocytic K+ clearance at different stages led to 

depolarization of the RMP, decreased Rin and spike rheobase, as well as increased SWHA in 

proximal dendrites (BaCl2 n=22; Gap-26/27 n=22; p < 0.0001, one-way ANOVA with Tukey’s 

post hoc test, Figure 2.6 A-B, D-E). Similarly, analysis of Ih conductances identified a reduction 

of the sag amplitude during the “High K+” episode under altered K+ clearance conditions compared 

to the “Baseline” period prior to stimulation (p < 0.01; paired student t-test; Figure 2.6 C). 

Furthermore, these alterations in membrane properties persisted during the “Recovery” period 

when K+ clearance was impaired (Figure 2.6), compared to dendritic recordings under normal 

aCSF, which recovered back to baseline values after KCl washout (Figure 2.5).  

Proximal dendritic recordings of the resonance frequency revealed that the range of frequencies 

affected during the “High K+” episode was higher (6-10 Hz, Figure 2.6 F), compared to somatic 

recordings resonating at ~1-2 Hz (Figure 7, Supplementary Table S1; section 2.1). Moreover, 

whereas under normal aCSF conditions the resonance frequency in proximal dendrites at the 

“Recovery” period returned to baseline values, alterations in astrocytic K+ clearance conditions 

led to a persistent resonation at higher frequencies, both during the “High K+” and “Recovery” 

periods (Figure 2.6 F).  

 

2.4 Extended discussion 

Previous studies reported that network oscillations are dependent on K+ dynamics51,142,304,417,418, 

however the exact mechanism still remains to be resolved. In this chapter409, I have shown that 

impairments in astrocytic K+
 clearance mechanisms enhance individual somatic excitability 

properties, depicted as a decrease of the Rin, reduction of the membrane time constant (τ) and RMP 

depolarization.  
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Together with alterations of the active membrane properties, these changes impose alterations in 

network excitability that affect both low and high frequency oscillations (section 2.1).  

Additional extracellular recordings of the network activity further showed that facilitation of 

astrocytic net K+ uptake by activation of G-proteins had a dual impact on the network oscillatory 

behaviour, expressed first as reduced excitability during the “High K+” period, followed by 

enhanced excitability during the “Recovery” period. While reducing the multi-unit frequency 

(Figure 2.1) and oscillation power at the beta and gamma range during the “High K+” period as 

expected (Figures 2.2-2.3), photolysis of caged GTP compounds led to a slight increase of the 

multi-unit frequency (Figure 2.1) and oscillation power at the delta, theta and gamma frequency 

bands during the “Recovery” period (Figures 2.2-2.3). This multifaceted impact is probably due 

to the complex activity of G-proteins on intracellular processes in both neurons and glial cells, 

which on one hand facilitates net K+ uptake by activation of Kir channels411, and on the other hand 

reduces K+ spatial buffering via the astrocytic syncytium by downregulating astrocytic coupling 

via Cx43412.  

Active dendrites are essential players in the computations of neuronal circuits due to their 

frequency-dependent processing capabilities of slow vs fast inputs, which allow them to integrate 

or filter inputs from other neurons, thus optimizing the preferred network oscillation activity413,419. 

Our previous experiments provided evidence that the resonance frequency at the soma fluctuates 

around 1 Hz (section 2.1). Furthermore, modulation of the K+ clearance process at different stages 

using BaCl2 or GJ blockers led to a shift of the peak resonance frequency at the soma up to ~5 Hz 

and ~7 Hz, respectively. However, these frequencies are still below beta (12-30 Hz) and gamma 

(>30 Hz) oscillatory frequencies, which are the main frequencies affected at the network level 

under altered K+ clearance conditions (section 2.1).  
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Network oscillations are mainly affected by subthreshold oscillations occurring in the dendrites. 

Indeed, our complimentary dendritic recordings showed that the resonance frequency in layer V 

pyramidal neurons rises exponentially with increasing distance from the soma, reaching the highest 

values at around ~300 µm on apical dendrites (Figure 2.5), as previously reported for hippocampal 

neurons414. Modulation of astrocytic K+ clearance mechanisms led to alterations in the resonance 

behaviour of dendrites at higher frequencies >10 Hz and fluctuations at wider frequency ranges 

compared to the soma (Figure 2.6). These results support our previous observations that 

modulation of the K+ clearance machinery in cortical astrocytes has the potential to impact on high 

frequency oscillations, mainly in the beta and gamma frequency bands (section 2.1). Interestingly, 

previous observations revealed a role for HCN channel-mediated Ih currents in modulating the 

neuronal resonance frequency136, as well as synaptic and dendritic integration420. Consistent with 

this view, the observed alterations in neuronal sag amplitudes under high [K+]o (~30 mM) could 

be one of the underlying mechanisms explaining the shifts of the resonance frequency towards 

higher frequencies during the “High K+” episode.  

Altogether I show that modulation of different phases in the K+ clearance process, either at the 

uptake level or buffering through the astrocytic network, results in alterations of the excitability 

profile of different subcellular compartments within individual neurons that critically influence 

and correlate with the observed alterations in the network oscillatory activity, thereby supporting 

an active role for the astrocytic-mediated K+ homeostasis in modulating neuronal excitability and 

network oscillations. 
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CHAPTER 3: 

QUANTITATIVE DETERMINATION AND DETECTION 

OF EXTRACELLULAR K+ ALTERATIONS 
 

 

 

 

“We shall not fail or falter; we shall not weaken or tire…  

Give us the tools and we will finish the job.” 

—Winston Churchill  

 

3.1 Introduction 

K+ homeostasis in the CNS is paramount for proper brain activity. The extracellular K+ 

concentration ([K+]o) is normally maintained at low levels (~3 mM), which relies on effective 

removal of excessive K+ accumulation from the synaptic cleft occurring following neuronal 

activity. Since increases above ceiling or plateau levels (>12 mM)421 lead to membrane potential 

depolarization, and thus enhanced excitability422,423, maintaining K+ homeostasis is essential for 

normal physiology. In the brain, this crucial process is mainly mediated via passive diffusion 

through the extracellular space and active transport through astrocytes424. Hence, alterations of the 

astrocytic K+ clearance rate can lead to pathological conditions, such as epileptic seizures or 

spreading depression, reviewed by305 (Chapter 1). 

To better understand the impact of cellular mediators on the spatiotemporal dynamics of the K+ 

clearance process within the astrocytic domain, it is imperative to quantitatively determine how 

[K+]o is dispersed under both physiological and pathological conditions.  
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However, despite the initial proposal of the astrocytic K+ spatial buffering hypothesis more than 

50 years ago425, we are still lacking evidence and an accurate description of the temporal spreading 

and local distribution of K+ ions across GJ-mediated astrocytic networks.  

K+-selective microelectrodes detect electrical potentials in response to changes in [K+]o
426, thus 

providing an accurate and reliable tool to measure the temporal dynamics of [K+]o. Indeed, this 

approach has been the method of choice over the past decades by many research groups in order 

to decipher the molecular identity of astrocytic K+ spatial buffering and net K+ uptake mechanisms, 

both under physiological423,427,428 and pathological353,429,430,431 conditions.  

Early in vivo studies of K+ spatial buffering used K+-selective microelectrodes to show that cortical 

astrocytes are able to buffer [K+]o towards local or more distal areas, depending on the behavioural 

state (sleep vs seizures)51. Following those observations, Amzica’s group (2011)423 further 

developed a micro-optrode, consisting of optical fibers coupled to a double-barrelled K+-selective 

microelectrode, which allowed them to simultaneously follow the network activity while recording 

both intracellular and extracellular K+ alterations in mice performing different behaviours. Their 

findings suggest that comatose states were associated with a decrease of ~1.3 mM in [K+]o 

accompanied by an increase of the intracellular K+ (~40 %), whereas paroxysmal discharges were 

associated with higher variability of [K+]o, likely reflecting the involvement of different cell types 

(e.g. glia vs neurons). To better comprehend the role of GJs during K+ spatial buffering, 

Bazzigaluppi and colleagues (2017)432 also took advantage of K+-selective microelectrodes to 

demonstrate that in vivo blockade of astrocytic connectivity results in elevated [K+]o (~10 mM), 

which depresses somatosensory evoked LFPs without inducing seizures in the neocortex, 

suggesting that the spatiotemporal nature of the increase in [K+]o (global through all brain regions 

vs local) can determine the nature of cortical oscillations.  
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K+-selective microelectrode experiments have also revealed alterations in [K+]o associated with net 

K+ uptake mechanisms. For instance, astrocytic depolarization and decrease of the NKA pump-

mediated K+ influx, as occurs during hyperammonemia, result in transient elevations of [K+]o
433. 

Additionally, Ca2+-mediated activation of the NKA pump in astrocytes decreases [K+]o, which 

leads to neuronal hyperpolarization and reduced network excitability304. Together these studies 

imply a role for astrocytes in modulating neuronal synchronization to engage specific network 

activity, as previously suggested304,305.  

While the temporal resolution of K+-selective microelectrodes has improved over the past decades, 

with lower capacitance and resistance leading to faster response times in the millisecond range434, 

they still show narrow spatial resolution, providing limited information from single-point 

measurements435. This configuration makes it difficult to follow the spread and distribution of K+ 

ions across brain regions, even using several K+-selective microelectrodes simultaneously. 

Moreover, since these electrodes are not commercially available, special skills are needed to build 

them and consequently direct demonstration of the astrocytic K+ spatial buffering process in vivo 

still remains technically challenging436.  

To overcome this limitation and provide a detailed spatiotemporal mapping of the distribution of 

K+ ions, scientists developed imaging approaches, such as K+-sensitive fluorescent probes435,437. 

However, K+ imaging is still an emerging field with very few available indicators, including 

Potassium-Binding Benzofuran Isophthalate (PBFI), which requires far-UV excitation and shows 

several limitations in terms of intracellular loading, weak fluorescence and low affinity for K+423. 

In 2014, Rimmele and Chatton developed a novel K+ indicator called Asante Potassium Green-1 

(APG-1), characterized by easy loading into the cells, slow leakage and good photostability438.  



78 

 

Since then, optimized probes of APG-1 have been released, including APG-2 and its intracellular 

version APG-2 AM. Whereas APG-2 AM is useful for monitoring changes in the intracellular K+ 

concentration ([K+]i)
438, the extracellular version (APG-2 salt) can be used to monitor [K+]o by 

means of wide-field fluorescence fluctuations439. Recently, APG probes, once commercialized by 

TEFLabs, have been renamed to Ion Potassium Green (IPG) fluorescent indicators and are 

available from the Ion Indicators website (https://ionindicators.com/). 

In our previous experiments, I showed that i) high [K+]o impacts the network excitability and 

oscillation amplitude across a wide range of frequencies, and that ii) impairments of different 

stages in the astrocytic K+ clearance process affect both neuronal excitability and resonance 

frequency of individual neurons, which correlates with the observed changes in the network 

oscillation frequency409 (Chapter 2). In order to study the spatiotemporal dynamics and effectors 

of the astrocytic K+ clearance process I have used a combination of both K+-selective 

microelectrodes and K+ imaging techniques. 

 

3.2 Materials and methods 

3.2 1 Animals and slice preparation 

For [K+]o measurements with K+-selective microelectrodes combined with K+ imaging, I used 4-

6-week-old B6SJL/J mice. Animal handling and slice preparation were performed as previously 

described in Chapter 2. 

 

3.2.2 Double-barrelled K+-selective microelectrodes 
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There are different types of K+-selective microelectrodes, such as liquid-membrane, gas-

membrane, all-solid state or concentric electrodes, which can be built from different glass 

capillaries, including single-barrelled, double-barrelled, multi-barrelled or theta glass440. Despite 

having many options when building them, most K+-selective microelectrodes share its basic 

structure consisting of two separate channels in close proximity, one acting as the ion (i.e. K+) 

sensor that contains a cocktail ionophore and the other one serving as the reference441,442. 

Three types of K+-selective microelectrodes were tested for optimization procedures, including 

single-barrelled electrodes (SB), double-barrelled electrodes with big tips of ~3 µm (DB-3) and 

double-barrelled electrodes with small tips of ~1 µm (DB-1), which I found to be the most accurate 

and stable electrodes when measuring alterations in [K+]o following KCl puffs at various 

concentrations, thereby becoming the electrode of choice for the K+ clearance rate experiments 

detailed below (Appendix Figure 1, Appendix Table 1). 

3.2.2.1 Preparation  

In order to build K+-selective microelectrodes, a hydrophobic K+ ionophore is needed to fill the 

sensor barrel. However, under normal ambient conditions, the inner surface of the glass capillaries 

is usually covered with chemically bound hydroxyl groups and water molecules443, thus making it 

hydrophilic. If this ionophore is introduced into an untreated hydrophilic glass capillary, it will be 

immediately displaced once the tip of the K+-selective microelectrode touches the aCSF solution. 

Hence, the first step in building K+-selective microelectrodes consists of rendering the inner 

surface of the sensor channel hydrophobic through a process called “silanization”434. Silanes are 

silicon compounds that replace the hydrogen from the hydroxyl groups present on the inner surface 

of the glass capillaries by a silicon atom, making them hydrophobic, hence the term 

“silanization”444,445. 
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Cleaning and pulling: A successful silanization process requires very careful cleaning of 

the glass capillaries. Different cleansing treatments have been widely used during the past decades, 

including acetone with absolute ethanol washes434 or nitric acid, followed by distilled water 

rinses444. In our lab, double-barrelled borosilicate glass capillaries with filament (O.D.: 1.5 mm; 

I.D.: 0.86 mm; Sutter Instrument) were cleansed overnight with acetone 100 %, followed by 3 

rinses with absolute ethanol, as previously described441.  

A vertical puller (P-30 micropipette puller, Sutter Instrument) with 3 heating protocols (Heat #1, 

999 x1 times; Heat #2, 946 x2 times; Pull 220) was used to build double-barrelled glass electrodes 

with small tips (~1 µm) separated by a distance of ~20 µm.  

Silanization: The pulled glass capillaries can be incubated with silanes, either via 

pressure/suction of the liquid compounds or incubation of the preheated chemical vapours. While 

many silane compounds are available, aminosilanes, such as trimethylchlorosilane (TMCS444), 

dimethyltrimethylsilylamine (TMSDMA436), dimethyldichlorosilane (DMDCS423,432) or 

hexamethyldisilazane (HMDS434), have proven to be more effective than chlorosilanes in 

rendering the surface of the glass hydrophobic444. The method I used consisted of preheating 20 

ml of HMDS liquid at 40°C to allow the vapor to get inside the cleansed glass capillaries, which 

were vertically placed on a custom-made holder on top of the bottle containing the pre-warmed 

silane for 70 minutes (Figure 3.1 A).  

Of relevance, silanization of the reference barrel must be avoided (e.g. by applying dental wax at 

the bottom end), as otherwise some interference between channels might appear. Another 

important consideration is the ambient humidity, as silanes can react with water molecules, thereby 

leading to polymerization and formation of silicones444.  
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Figure 3.1 Building K+-selective microelectrodes. a) Images depicting the main silanization steps for 

building K+-selective microelectrodes (from top to bottom): a custom-made holder with pulled glass 

capillaries facing up is placed on top of a pre-warmed HMDS bottle (~20 ml) at 40°C for 70 minutes. After 

silanization, capillaries are transferred to a heat-proof plastic stand and placed into the furnace at 200°C for 

2 hours. Capillaries are then kept dry in the desiccator until experimental use. b) Schematic illustration 

showing the architecture of a double-barrelled K+-selective microelectrode with a tip diameter of ~1 µm 

and an interchannel distance of ~20 µm. The sensor barrel is first filled with a K+ ionophore cocktail 

(yellow) and backfilled with 100 mM KCl (blue).  
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The reference channel is filled with HEPES-buffered saline solution (grey). Chlorinated silver wires are 

inserted into both channels and connected to the corresponding head stages of a custom-built differential 

amplifier attached to a digitizer (Digidata 1440). c) Picture of the experimental workspace under the 

microscope depicting the K+-selective microelectrode (left), the 20x oil-immersion objective lens (middle) 

and the puffing KCl electrode connected to a PM2000 programmable cell microinjector (Picospitzer, top 

right inset). d) Calibration of K+-selective microelectrodes. Left - traces depicting the change in voltage 

following insertion of the K+-selective microelectrode into saline with different [K+]o. Right - Half-

logarithmic plot of [K+]o vs Vk (equilibrium potential for K+) from individual calibration recordings used to 

determine the slope for future [K+]o measurements. 

 

For this reason, after silanization, capillaries were transferred to a heat-proof plastic stand, placed 

in the furnace to dry out for 2 hours at 200°C and stored in a desiccator for several weeks until 

use434 (Figure 3.1 A). 

Salines: On the day of the experiment, the silanized sensor channel was filled using a 

Hamilton syringe with a small amount (~0.5 µl) of K+ ionophore cocktail B (Sigma) with the 

carrier molecule valinomycin, a dodecadepsi-peptide that binds K+ in a fully enclosed internal 

polar cavity. 

The lipophilic sensor was then overlaid with an aqueous solution consisting of 100 mM KCl, with 

caution not to insert additional air bubbles (Figure 3.1 B). The reference barrel was filled with a 

HEPES-buffered saline solution (containing in mM: 125 NaCl, 2.5 KCl, 2 CaCl2, 2 MgSO4, 1.25 

NaH2PO4 and 25 HEPES, buffered with NaOH to pH of 7.4), similar in composition to the 

extracellular aCSF434. If silanization is successful, the ionophore should be seen as a clearly 

concaved surface against the backfilled solution (Figure 3.1 B).  

Once both barrels of the K+-selective microelectrode were filled, chlorinated silver wires were 

inserted into the sensor and reference channels, without touching each other, until they reached the 

backfill (avoiding the sensor) and the HEPES-buffered solutions, respectively, and were 

electronically connected to their corresponding head stages of a custom-built differential amplifier 

(Figure 3.1 B) attached to a digitizer (Digidata 1440).  
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Notably, K+-selective microelectrodes were always placed in the same position on the holder, with 

the sensor channel towards the microscope and the reference channel closer to the researcher 

(Figure 3.1 C). 

3.2.2.2 Calibration 

The voltage response of the silanized K+-selective microelectrodes was calibrated before and after 

experiments within the experimental chamber by placing the electrode in aCSF containing 

different KCl concentrations (2.5 mM or “normal” aCSF, 4 mM, 10 mM, 15 mM and 30 mM).  

Calibration solutions were prepared from a “K+-free” stock solution containing (in mM): 0 KCl, 

125 NaCl and 25 HEPES, buffered with NaOH to pH of 7.4, as previously described441. Once the 

electrode potential reached a steady state, a dose-response curve was calculated using a half-

logarithmic (Log10) plot. A linear plot of the data reveals the slope (s), which has been established 

to be around -58 mV for K+-selective microelectrodes with some deviation accepted434, as shown 

in Figure 3.1 D. The slope value can then be fit into equation 1 to determine the change in [K+]o 

(∆[K+]o) at that particular area, according to the Nernst Equation434, where s is the calibration slope 

and [K+]B is the baseline [K+]o (~2.5 mM), while the difference in the Nernst potential for 

potassium (∆Vk) reflects the changes in the potential of the K+ sensor during the experiment.   

Equation 1:   

 

K+-selective microelectrodes were considered good if the recorded voltage baseline was stable and 

the voltage response was essentially the same before and after its experimental usage (~10 % 

deviation). 
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3.2.2.3 Optimization 

One way to optimize the electrode response times is by achieving shorter distances between the 

sensor and the reference channels, for instance using theta glass capillaries. Although they are easy 

to build, the septum that separates both barrels becomes thin and porous after pulling, which often 

leads to poor silanization, due to salt bridge formation and interference between channels441. More 

recently, higher resolution times have been achieved using concentric electrodes, although their 

construction is time-consuming and requires specific technical skills434,446. Alternatively, it is 

possible to reduce the amount of ionophore inside the sensor barrel.  

The concentration gradient between the liquid outside and the backfill solution inside of the 

electrode drives the diffusion of K+ ions through the sensor layer and generates an electric 

potential441. For this reason, the less ionophore thickness (less distance between aqueous phases 

outside and inside the electrode), the faster responses to K+ changes in the medium. In order to get 

such low quantities of ionophore of about ≤1 µl, I used Hamilton syringes of 0.5 µl to load the 

ionophore into the glass capillary. This optimization step greatly reduced both the rise and decay 

times of [K+]o transients measured with DB-1 electrodes compared to other suboptimal electrodes 

(i.e. SB or DB-3 electrodes; Appendix Figure 1, Appendix Table 1).  

Finally, to apply accurate quantities of K+, I took advantage of the semi-automatic PM2000 

Programmable Cell Microinjector (“Picospitzer”, MicroData Instrument, Inc.), which allowed 

injecting pressure controlled KCl puffs with high temporal resolution (Figure 3.1 C).  

 

3.2.3 Electrophysiological recording and stimulation 

The recording chamber was mounted on an Olympus BX-51 microscope equipped with IR/DIC 

optics and Polygon 400 patterned illuminator (Mightex).  
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Following the recovery period in the BraincubatorTM, slices of somatosensory cortex were 

mounted in the recording chamber, for a minimum of 15 minutes, to allow them to warm up to 

room temperature (~22°C) and were constantly perfused at a rate of 2-3 ml/min with carbogenated 

aCSF. Recordings with optimized K+-selective microelectrodes and K+ imaging were made from 

layer II/III of the somatosensory cortex under normal aCSF or altered K+ clearance conditions. K+-

selective microelectrodes were placed nearby a selected “astrocyte Alpha” stained with 

Sulforhodamine 101 (SR101).  

Different KCl concentrations, corresponding to low (~5 mM), high (~15 mM) and excessive (~30 

mM), were locally applied at a constant distance (~10 µm) from the K+-selective microelectrode 

through a puffing pipette with tip diameter of 1 μm (∼2-3 MΩ; O.D.: 1.0 mm; I.D.: 0.58 mm; 10 

cm length; SDR clinical technology) for 0.1-seconds (input pressure ~77.6 psi) using a Picospitzer, 

as detailed above. 

 

3.2.4 K+ imaging 

To ensure specific staining of astrocytes, dye loading with fluorescent K+ probes was performed 

in combination with SR101, a water-soluble red fluorescent dye useful for rapid and high-contrast 

identification of astrocytes through local dye uptake, followed by GJ-mediated spread447. SR101 

loading was achieved by incubating slices in 2 ml of aCSF with 1 µM SR101 at 37°C for 20 

minutes. 

3.2.4.1 Intracellular fluorescent K+ indicator APG-2 AM  

The intracellular fluorescent K+ indicator APG-2 AM (TEFlabs, Kd = 18 mM, 50µg) was first 

diluted in 50 µl of DMSO and 2.5 µl of 20 % Pluronic acid.  
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After 15 minutes of sonication, the stock solution was dissolved in 2 ml of aCSF (containing in 

mM: 125 NaCl, 2.5 KCl, 1 MgCl2, 1.25 NaH2PO4, 2 CaCl2, 25 NaHCO3, 25 glucose; saturated 

with carbogen, 95 % O2 − 5 % CO2 mixture, pH 7.4) to a final concentration of 12 µM. Brain slices 

were incubated at 37°C for 50 minutes in order to allow the dye to diffuse into the cells where non-

specific esterases hydrolyse the AM to release the dye. Stock solutions were stored at -20°C. 

3.2.4.2 Extracellular fluorescent K+ indicator APG-2 salt  

The extracellular fluorescent K+ indicator APG-2 salt (TEFlabs, Kd = 18 mM, 25µg) was 

dissolved in 225 µl of aCSF (containing in mM: 125 NaCl, 2.5 KCl, 1 MgCl2, 1.25 NaH2PO4, 2 

CaCl2, 25 NaHCO3, 25 glucose; saturated with carbogen, 95 % O2 – 5 % CO2 mixture, pH 7.4) to 

a stock solution at final concentration of 100 µM. The stock solution was either diluted with the 

aCSF from the recording chamber (~ 2 ml aCSF) or mixed with the 30 mM, 15 mM or 5 mM KCl 

solution in the puffing pipette to reach a final concentration of 1 µM. Stock solutions were stored 

at -20°C. 

3.2.4.3 Image acquisition 

Following incubation with APG-2 AM and SR101, slices were transferred back to the 

BraincubatorTM for 20-30 minutes prior to any experimental recordings. Fluorescence images were 

acquired using a high numerical aperture (NA, 1.0) 20x oil-immersion objective lens 

(XLUMPlanFLN, Olympus). For APG-2 imaging, the excitation light was filtered through a 470–

495 nm band pass filter and the emission light passed through a 510–550 nm band pass filter. 

SR101 was excited at 510-550 nm and emitted at 640 nm. Consecutive images (500 frames with 

200 ms intervals) were acquired in combination with K+-selective microelectrode recordings using 

a 12-bit cooled CCD camera, controlled by the software Micromanager (ImageJ).  
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3.2.4.4 Image analysis 

Image J/Fiji (http://fiji.sc/Fiji)448 and GraphPad Prism software were used to analyse the APG-2 

AM and salt fluorescence images under the different conditions. Fluorescence signals were 

quantified by measuring the mean pixel value of a manually selected somatic area of an astrocyte 

(region of interest, ROI) for each frame of the image stack. Delta (Δ) F/F0 values were measured 

by calculating the ratio between the change in fluorescence signal intensity (ΔF) and baseline 

fluorescence (F0), corresponding to the averaged minimum intensity value of the first 5 frames. 

To reduce the bleaching effect and highlight changes in fluorescence intensity between frames, 

raw image sequences were processed using the TopoJ tool.  

To measure the spatial distribution of K+ ions, sholl analysis was applied using a scale of 50 µm 

between concentric circles. Data from ROIs corresponding to identified astrocytes (double-stained 

for SR101 and APG-2 AM) within the field of view were exported to GraphPad Prism and the 

fluorescence ΔF/F0 change was analysed. K+ elevations were defined as transient increases above 

baseline values (ΔF/F0 = 0). Area under the curve (XY analysis) was applied to extract the starting 

and ending frames for each K+ transient, as well as the amplitude using the function “Peak Y – 

Baseline”, defined as the average of the first 5 frames. Finally, GraphPad Prism data was loaded 

into excel to reveal the rise and decay times for K+ elevations and corresponding averages were 

calculated across conditions.  

 

3.2.5 Drugs 

All drugs were stored as frozen stock solutions and were added to aCSF just before recordings. 

Some experiments were performed in the presence of BaCl2 
(100 μM, Sigma Aldrich) in the bath 

solution to block astrocytic Kir4.1 channels.  



88 

 

To assess the role of Cx43-composed GJs, brain slices were incubated with a mixture of GAP-26 

(200 μM, AnaSpec) and GAP-27 (300 μM, AnaSpec) for 15 minutes and then transferred to the 

recording chamber for electrophysiological recordings.  

 

3.2.6 Statistical analysis 

Unless stated, data is reported as mean ± S.E.M. Statistical comparisons were done with Prism 7 

(GraphPad Software; San Diego, CA) using one-way or two-way ANOVA followed by Tukey’s 

post hoc test, according to the experimental design. Probability values < 0.05 were considered 

statistically significant. 

 

3.3 Results 

3.3.1 The impact of astrocytic K+ clearance mechanisms on [K+]o temporal 

dynamics  

To quantitatively measure the astrocytic K+ clearance time course, I have optimized a method in 

our lab for building double-barrelled K+-selective microelectrodes, as described in the methods 

section 3.2 (Appendix Figure 1, Appendix Table 1). Optimized electrodes were used to monitor 

[K+]o changes following local application of different KCl concentrations, namely low (~5 mM), 

high (~15 mM) and excessive (~30 mM). K+-selective microelectrodes were calibrated before and 

after experiments, as previously stated. For analysis purposes, a MATLAB code was developed to 

calculate the amplitude (from baseline to peak), the rise time (10-90 %), the decay time (90-10 %) 

and the peak area (top 10 %) of the K+ transients (Figure 3.2 A).  
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Figure 3.2 Measurements of [K+]o in acute brain slices. a) Sample trace of a [K+]o recording depicting 

the peak parameters (amplitude, rise time, decay time, peak area) calculated with MATLAB (MathWorks) 

following local application of KCl (arrow). b) Average traces of [K+]o recordings depicting the mean (line) 

and standard error (shade) values of the average K+ clearance time course following local application of 30 

mM (red), 15 mM (green) and 5 mM (blue) KCl puffs under normal aCSF conditions. c-d) DIC image (c) 

showing the experimental setup. K+-selective microelectrodes are placed in layer II/III of the somatosensory 

cortex nearby an astrocyte (“astrocyte Alpha”, yellow circle) stained with SR101 (d). A puffing pipette (*) 

is used to locally increase [K+]o at a constant distance from the recording electrode (~10 µm). e) Quantitative 

analysis of the impact of 30 mM, 15 mM and 5 mM KCl puffs on the K+ clearance rate (in mM/sec, right) 

obtained by dividing the [K+]o amplitude (in mM, left) by the 90-10 % decay time (in sec, middle) of the 

K+ transients (30 mM n=14 recordings, 15 mM n=16 recordings, 5 mM n=15 recordings). Scale bar 20 µm. 

Data is reported as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.0001; one-way ANOVA  
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Experiments were performed by placing a K+-selective microelectrode in layer II/III of the 

somatosensory cortex, close to a selected “astrocyte Alpha” (stained with SR101). A puffing 

pipette was located at a constant distance of 10 µm from the recording electrode in order to apply 

short (100 milliseconds) and local increases of KCl at various concentrations (30 mM, 15 mM and 

5 mM KCl), as depicted in Figure 3.2 B-D.  

Under normal physiological conditions, local application of KCl led to [K+]o increases (in mM) of 

9.19±0.65 for 30 mM KCl (n=14), 4.38±0.34 for 15 mM KCl (n=16) and 1.38±0.11 for 5 mM KCl 

(n=15, p < 0.0001, one-way ANOVA with Tukey’s post hoc test, Figure 3.2 E). The differences 

between the applied concentrations (puff) and the measured concentrations at the K+-selective 

microelectrode were due to the dilution of the applied KCl solution.  

The average [K+]o recovery time-course (decay slope) following local application of 30 mM KCl 

(n=14) was 4.78±0.26 seconds, which decreased to 3.96±0.18 seconds and 2.45±0.15 seconds, 

following application of 15 mM KCl (n=16) and 5 mM KCl (n=15), respectively (p < 0.0001, one-

way ANOVA with Tukey’s post hoc test, Figure 3.2 E). The K+ clearance rate was calculated by 

converting the voltage to concentration using equation 1 from section 3.2 and dividing the [K+]o 

amplitude by the average decay times. Under normal aCSF, the K+ clearance rate was 

concentration-dependent, ranging from 2.02±0.14 mM/sec at excessive [K+]o (30 mM; n=14), to 

1.09±0.09 mM/sec at high [K+]o (15 mM; n=16) and 0.56±0.05 mM/sec at low [K+]o (5 mM; n=15; 

p < 0.0001, one-way ANOVA with Tukey’s post hoc test, Figure 3.2 E, Appendix Table 2). These 

results suggest that our custom-built K+-selective microelectrodes are very sensitive and capable 

of deciphering small changes in [K+]o, which usually occur during physiological neuronal activity. 
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I next performed similar experiments to assess the specific contributions of astrocytic K+ clearance 

mechanisms on the removal of [K+]o from the extracellular milieu. To assess the impact of net K+ 

uptake on the K+ clearance rate, slices were bath applied with BaCl2 (100 µM) that selectively 

blocks Kir4.1 channels, as previously reported449. Bath application of BaCl2 significantly (F(1, 83) = 

103.6, p < 0.0001, two-way ANOVA) reduced the K+ clearance rate for all [K+]o tested (30 mM, 

0.66±0.07 mM/sec, n=18; 15 mM, 0.71±0.04 mM/sec, n=14; 5 mM, 0.28±0.01 mM/sec, n=12; p 

< 0.0001, two-way ANOVA with Tukey’s post hoc test, Figure 3.3, Appendix Table 2), indicating 

a slower rate of [K+]o removal from the extracellular space when net K+ uptake is impaired.  

To selectively block K+ distribution through the astrocytic network, I incubated the slices with a 

mixture of Cx43 mimetic peptides (GAP-26, 200μM and GAP-27, 300μM) that selectively 

decrease astrocytic connectivity via electrical GJ, as previously reported409. GJ blockade 

significantly reduced the K+ clearance rate, depicted as a significant decrease (F(1, 82) = 58.54, p < 

0.0001, two-way ANOVA, Figure 3.3, Appendix Table 2). However, disruption of the astrocytic 

connectivity had a differential impact on the K+ clearance rate compared to Kir4.1 channel 

blockade, as it affected K+ transients only at high (15 mM, 0.81±0.08 mM/sec, n=15) and excessive 

(30 mM, 0.71±0.08 mM/sec, n=17) [K+]o levels (p < 0.0001, two-way ANOVA with Tukey’s post 

hoc test, Figure 3.3). 

Low [K+]o did not lead to significant alterations in the K+ clearance rate compared to control 

conditions (5 mM, 0.49±0.05 mM/sec, n=11; p > 0.05, two-way ANOVA, Figure 3.3, Appendix 

Table 2), confirming the hypothesis that net K+ uptake is the dominant process used to clear low 

levels of [K+]o and astrocytic K+ spatial buffering via GJ takes place at higher levels of network 

activity450. 
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Figure 3.3 Impaired astrocytic K+ clearance reduces the K+ clearance rate. a) Average traces of [K+]o 

recordings depicting the mean (line) and standard error (shade) values of the average K+ clearance time 

course following local application of 30 mM (top), 15 mM (middle) or 5 mM (bottom) KCl puffs, under 

normal aCSF (black) and altered K+ clearance conditions (100 μM BaCl2 in red, Gap-26/27 in blue).  
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b) Quantitative analysis of the impact of local application of KCl at various concentrations (from top to 

bottom: 30 mM, 15 mM and 5 mM) on the K+ clearance rate under normal aCSF (black; 30 mM n=14 

recordings, 15 mM n=16 recordings, 5 mM n=15 recordings), 100 µM BaCl2 (red; 30 mM n=18 recordings, 

15 mM n=14 recordings, 5 mM n=12 recordings) or Gap-26/27 (blue; 30 mM n=17 recordings, 15 mM 

n=15 recordings, 5 mM n=11 recordings) conditions. Data is reported as mean ± SEM. *p < 0.05; **p < 

0.01; ***p < 0.0001; two-way ANOVA  

 

3.3.2 High [K+]o activates bigger astrocytic networks 

To determine the spatiotemporal distribution of K+ ions through the astrocytic network, I have 

measured the intracellular APG-2 fluorescence levels (ΔF/F0) within astrocytes located at layers 

II/III of the somatosensory cortex following application of various KCl concentrations (30 mM, 

15 mM and 5 mM), as shown in Figure 3.4 A-B. Astrocytes were considered as “responding” when 

their [K+]i increased within 2 seconds of the KCl puff.  

While local application of 30 mM KCl led to [K+]i elevations in ~74.0±5.1 % of the astrocytes 

within the field of view (n=8), 15 mM puffs resulted in a lower percentage of responding astrocytes 

(~63.3±4.2 %, n=8; Figure 3.4 C). However, local application of 5 mM KCl did not result in [K+]i 

elevations in neighbouring astrocytes (n=10; Figure 3.4 C), suggesting that APG-2 AM is not an 

optimal dye for detecting small changes in K+ levels.  

Indeed, previous studies showed that APG-2 is insensitive to K+ changes at amounts that can be 

physiologically exchanged with Na+451, whereas higher [K+]o levels completely saturate the NKA 

pump (Appendix Table 3), thus allowing for a more discriminative detection of ionic alterations 

between intracellular and extracellular compartments. An alternative explanation could be the fact 

that the low KCl concentration (~5 mM) was within the physiological range after dilution in the 

aCSF bath, and therefore did not activate the astrocytic network. 
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Figure 3.4 Spatial distribution of [K+]o within astrocytic networks. a) DIC image showing the 

experimental setup.  
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K+-selective microelectrodes are placed in layer II/III of the somatosensory cortex nearby an astrocyte 

(“astrocyte Alpha”, blue circle). b) Sholl analysis describing the distance at which astrocytes are located in 

reference to “astrocyte Alpha”, defined as distance 0 µm. c) Sample [K+]i traces of APG-2 AM loaded 

astrocytes (colour-coded in b) located at 0 µm (“astrocyte Alpha”, blue), 50 µm (green) and 100 µm 

(orange), showing changes from baseline ΔF/F0 fluorescence levels following local application (arrow) of 

30 mM (top), 15 mM (middle) or 5 mM (bottom) KCl puffs under normal aCSF. d) Quantitative analysis 

of the impact of [K+]o on the APG-2AM fluorescence signal rise time (top), decay time (middle) and peak 

amplitude (bottom) under normal aCSF (30 mM, n=8 recordings; 15 mM KCl, n=8 recordings; 5 mM, n=10 

recordings). Data is reported as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.0001; two-way ANOVA  

 

Sholl analysis further indicates that there is a correlation between the increase in [K+]o
 and the 

maximal distance of active astrocytes, as local application of excessive [K+]o
 (30 mM) recruited 

larger astrocytic networks, with responding astrocytes located more distally from “astrocyte 

Alpha” (~200 µm) compared to 15 mM KCl, at which the responding astrocytes were located up 

to 150 µm from “astrocyte Alpha” (p < 0.0001, two-way ANOVA with Tukey’s post hoc test, 

Figure 3.4 D). These results are consistent with the view that [K+]o above physiological levels 

likely activates the K+ spatial buffering process to restore brain homeostasis by redistributing K+ 

ions through GJs to distal areas, indicating an activity-dependent role for K+ clearance 

mechanisms. 

In addition, to correlate the observed [K+]o dynamics with the spreading of K+ ions throughout the 

astrocytic network under altered K+ clearance conditions, I used the intracellular fluorescent probe 

APG-2 AM, together with BaCl2 or Gap-26/27. In the presence of BaCl2, local application of 30 

mM KCl puffs nearby “astrocyte Alpha” did not elicit [K+]i elevations in any of the astrocytes 

within the field of view (n=10; Figure 3.5 A), as Kir4.1 channels are pharmacologically blocked 

and the NKA pump is saturated above physiological [K+]o levels452 (Appendix Table 3). However, 

local application of excessive [K+]o (30 mM) while astrocytic GJ-connectivity was impaired led to 

[K+]i transients in proximal astrocytes (n=10, Figure 3.5 A). 
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Figure 3.5 Alterations in astrocytic K+ clearance impact on [K+]i dynamics. a) Sample [K+]i traces of 

APG-2 AM loaded astrocytes located at 0 µm (“astrocyte Alpha”, blue), 50 µm (green) and 100 µm 

(orange),  showing changes from baseline ΔF/F0 fluorescence levels following local application (arrow) of 

30 mM KCl puffs under 100 µM BaCl2 (top) or Gap-26/27 (bottom). b) Plots depicting the impact of 30 

mM KCl puffs on the K+ transients’ peak amplitude (top) and decay time (bottom) under normal aCSF and 

following disruption of the astrocytic connectivity with Gap-26/27 (aCSF, n=8 recordings; Gap-26/27, 

n=10 recordings). Data is reported as mean ± SEM. **p < 0.01; **p < 0.0001; two-way ANOVA  

 

These [K+]i transients were typically characterized by significantly reduced amplitudes compared 

to normal aCSF (n=8; F(2, 115) = 106.6, p < 0.0001, for the factor “treatment”, F(4, 115) = 30.11, p < 

0.0001, for the factor “distance” and F(8, 115) = 26.38, p < 0.0001, for the factor “interaction”) at 

proximal distances up to 100 µm, as well as by decreased decay times, especially within 50-150 

µm (F(2, 115) = 95.14, p < 0.0001, for the factor “treatment”, F(4, 115) = 16.43, p < 0.0001, for the 

factor “distance” and F(8, 115) = 6.65, p < 0.0001, for the factor “interaction”, two-way ANOVA 

with Tukey’s post hoc test, Figure 3.5 B).  
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Intriguingly, in the presence of astrocytic GJ blockers, the peak amplitudes remained similar at all 

distances (p > 0.05, one-way ANOVA, Figure 3.5 B), suggesting that the net K+ uptake process 

within these astrocytes is functioning, albeit the [K+]i transients are due to the passive diffusion of  

[K+]o via the extracellular milieu and net K+ uptake mechanisms rather than K+ spatial buffering 

via the astrocytic syncytium.  

 

3.4 Discussion 

The rate of K+ clearance from the extracellular milieu is determined by a combination of passive 

diffusion through the extracellular space and active clearance by astrocytic processes424,453. 

According to Fick's first law of diffusion, when the temperature, distance and concentration 

gradients are constant, the diffusion coefficient Di, and thus the ion flux remains the same454,455. 

In these experiments, I have (1) a constant flow of aCSF in the experimental recording chamber, 

(2) a constant temperature, and (3) a constant distance between the K+-selective microelectrode 

and the puffing pipette. Therefore, I assume that the [K+]o diffusion rate within the same brain slice 

is constant. Consequently, the specific measurement of the decaying slope of [K+]o transients after 

local application of KCl allows the direct assessment of the active K+ clearance rate.  

Here, I assessed the impact of alterations in astrocytic K+ clearance mechanisms on the clearance 

rate and spatiotemporal distribution of K+ ions in in vitro brain slice preparations, which allow the 

fine control of the extracellular environment while providing mechanical stability456.  Results show 

that local application of different KCl concentrations corresponding to low (~5 mM), high (~15 

mM) and excessive (~30 mM), led to different K+ clearance rates under normal aCSF conditions 

(Figure 3.2, Appendix Table 2). These results are consistent with previous reports indicating that 

the K+ clearance process is multifaceted and concentration-dependent365,425,452,457,458.  
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Moreover, application of BaCl2 or GJ blockers, affecting astrocytic activity, led to alterations in 

the K+ clearance rate, which also was [K+]o concentration-dependent. (Figure 3.3, Appendix Table 

2). While blockade of Kir4.1 channels led to a decrease of the K+ clearance rate at all concentrations 

tested (Figure 3.3), blocking GJ-mediated astrocytic connectivity decreased the K+ clearance rate 

only at excessive (30 Mm) and high (15 mM) [K+]o. Unlike BaCl2, selective astrocytic GJ blockers 

did not affect the K+ clearance rate at low [K+]o (~5 mM KCl, Figure 3.3), consistent with previous 

reports showing that the net K+ uptake mechanism via Kir channels is the dominant clearance 

process at physiological [K+]o, whereas K+ spatial buffering via GJ takes place once [K+]o increases 

beyond the ceiling level (~12 mM; Appendix Table 3)421,450,452. Intriguingly, under Kir4.1 channel 

blockade conditions I observed no significant differences between the effect of 15 mM or 30 mM 

KCl on the K+ clearance rate (Figure 3.3), suggesting that once this threshold or ceiling level is 

surpassed (>12 mM), the impact on the K+ clearance time course might be concentration-

independent. 

Recent advances in K+ imaging have the potential to provide a detailed description of the 

spatiotemporal distribution of K+ ions437,438, and thus a better understanding of [K+]o dynamics that 

compliments and validates the information gathered with K+-selective microelectrodes. The 

spatiotemporal dynamics of the K+ clearance process at various [K+]o were assessed via 

fluorescence measurements of both [K+]i and [K+]o levels in nearby astrocytes using APG-2 AM 

and APG-2 salt, respectively. Brain slices incubated with the cell permeant indicator APG-2 AM 

displayed astrocytic [K+]i elevations following high (15 mM) or excessive (30 mM) KCl 

concentrations, characterized by longer rise times and smaller peak amplitudes with increasing 

distance from “astrocyte Alpha” (Figure 3.4). However, under normal conditions, APG-2 AM 

fluorescence revealed minimal changes in [K+]i following application of low [K+]o (~5 mM; Figure 
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3.4 C). This was an unexpected result, as under physiological conditions net K+ uptake actively 

takes up small [K+]o elevations mainly through the NKA pump and Kir4.1 channels, leading to 

increased [K+]i, reviewed by305. I suspect that these results are due to poor sensitivity of APG-2 

AM in detecting low K+ changes, as previously reported by451. Whereas impairments of the net K+ 

uptake mechanism with BaCl2 abolished all astrocytic [K+]i elevations following 30 mM KCl 

puffs, blocking K+ spatial buffering via GJ with Gap-26-27 led to increased [K+]i at these excessive 

KCl concentrations (30 mM; Figure 3.5 A), likely mediated via functional uptake through Kir4.1 

channels. Furthermore, following 30 mM KCl puffs alterations in astrocytic connectivity affecting 

the K+ spatial buffering process resulted in [K+]i increases with similar peak amplitudes between 

proximal and distal astrocytes (Figure 3.5 B). These results suggest that when astrocytic 

connectivity is impaired, [K+]o diffuses to more distal areas, where indirectly connected astrocytes 

capture [K+]o via net K+ uptake mechanisms.  

To assess the spatiotemporal dynamics of [K+]o distribution, I combined K+ imaging with the 

extracellular fluorescent probe APG-2 salt and K+-selective microelectrode recordings. Although 

[K+]o imaging with APG-2 salt revealed similar properties of K+ transients compared to [K+]o 

measurements using K+-selective microelectrodes (e.g. decay time), I found some incongruences 

regarding other K+ transient parameters analysed (e.g. slower rise times; see Appendix Figure 2), 

likely due to similar affinities for other monovalent ions, such as Na+, especially in in vitro 

preparations (1.2:1, K+ over Na+)437,451, which  needs to be taken into account due to the high 

concentration of Na+ in the extracellular space. Indeed, due to the differential ionic concentrations 

across the plasma membrane some dyes that are effective intracellularly may not be useful for 

extracellular ionic measurements (i.e. PBFI). Furthermore, [K+]o imaging in acute brain slices is 

hampered by the constant superfusion of aCSF causing a rapid dye washout compared to in vivo 
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experiments435. Other limiting factors regarding K+ imaging include the emitted fluorescence 

(~540 nm), which can be partly masked by the tissue autofluorescence as a result of the oxidation 

of flavoproteins, making it possible that the recorded signal does not completely relate to [K+]o 

changes437. Hence, despite being successfully used for wide-field imaging of [K+]o dynamics in 

the cortex ex vivo459 and in vivo439, the APG-2 probe still needs improvements regarding noise, 

Na+/K+ selectivity, affinity constants and kinetics, to allow fast and accurate K+ imaging over a 

wide range of concentrations. Accordingly, the obtained results suggest that APG-2 salt is not a 

reliable tool for accurately imaging [K+]o dynamics at least in brain slice preparations.  

In order to improve APG-2 sensitivity and selectivity for K+, Chatton’s group (2017)435 developed 

the APG-4 probe using dendrimer nanotechnology, thanks to which the dye is more hydrophobic 

than previous versions (i.e. APG-2) and therefore can be retained for longer periods of time in the 

extracellular space of acute brain slices. Other K+ sensors have been tested both in situ and in vivo, 

including the Calix-COU-Alkyne and the Calix-COU-Am437, as well as the long-wavelength K+ 

sensor TAC-Red460, which shows high selectivity for small variations in [K+]o, within the mM 

range, even in the presence of abundant Na+. More recently, promising K+-sensitive genetically 

encoded probes, based on Förster resonance energy transfer-(FRET), have enabled real-time 

imaging of K+ influx and efflux from living cells using two-photon microscopy both in vivo461 and 

in vitro462.   

In conclusion, the above-mentioned experiments shed light on the average K+ clearance time 

course within acute brain slices, as well as on the relative impact of the astrocytic net K+ uptake 

mechanism, via Kir4.1 channels, and the K+ spatial buffering process, through GJ-mediated 

astrocytic networks, on the spatiotemporal distribution of [K+]o. 
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CHAPTER 4: 

NEUROMODULATION OF ASTROCYTIC K+ 

CLEARANCE  
 

 

 

“We are shaped by our thoughts; we become what we think.  

When the mind is pure, joy follows like a shadow that never leaves.” 

—Buddha 

 

4.1 Introduction 

Animal survival is highly dependent on the ability to adapt to the everchanging environment. To 

do so, animals are constantly switching between behavioural states, which are correlated with 

different network oscillations. Historically, network oscillations have been considered to be highly 

affected by neuromodulators463 (discussed in Chapter 1). In fact, previous studies reported on a 

crucial role for neuromodulators in mediating the shift between certain behavioural states (e.g. 

sleep, arousal)463,464,465. Consistently, selective blockade of the receptors activated by 

neuromodulators has been associated with impairments of various behaviours and their activation 

leads to increased neuronal excitability466, yet the exact molecular mechanisms activated by each 

neuromodulator during different behaviours are still debatable. 

In previous chapters, I have shown that alterations in [K+]o can also affect the neuronal network 

oscillatory activity and that specific changes in astrocytic K+ clearance mechanisms impact on the 

resonance and oscillatory behaviour of neurons both at single-cell and network levels, implying 

that astrocytes have the potential to modulate network activity (Chapter 2).  
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However, the cellular and molecular mechanisms that may influence the K+ clearance process by 

astrocytes are still unknown. 

Cortical astrocytes express a wide variety of receptors for several neuromodulators, such as 

Acetylcholine (ACh, nicotinic α/β and metabotropic M1-4)
338,339, Histamine (H1-3)

467, Serotonin (5-

HT1,2,5,6,7)
340, Noradrenaline (NE, 1,2-adrenoreceptors and 1,2-adrenoreceptors)468,469 and 

Dopamine (DA, D1-5)
470,471. Importantly, activation of these receptors by different 

neuromodulators has been previously reported to evoke [Ca2+]i increases in neighbouring 

astrocytes that affect astrocytic function, mainly via Ca2+-dependent signalling pathways472,473. For 

instance, previous studies have shown that Histamine leads to astrocytic [Ca2+]i increases in 

vitro376 and mediates the upregulation of the glutamate transporter 1 (GLT-1) through astrocytic 

H1 receptors, leading to reduced extracellular glutamate levels474 and thus playing a 

neuroprotective role against excitotoxicity. Similar to Histamine, NE375,475,476, DA377,477,478, 5-

HT378,479,480 and ACh338,481,482 also exert a modulatory role on astrocytes by eliciting [Ca2+]i 

elevations independent of neuronal activity (Figure 1.2).  

Astrocytic Ca2+ signalling and glutamate clearance play crucial roles in the regulation of the 

network activity and K+ homeostasis, which ultimately affects neuronal excitability underlying 

network oscillations142,304. Indeed, Ma et al. (2016)483 showed that neuromodulators can signal 

through astrocytes, by affecting their Ca2+ oscillations to alter neuronal network activity and 

consequently behavioural output. In line with these observations, Nedergaard’s group (2016)142 

further demonstrated that bath application of cortical brain slices with a cocktail of 

neuromodulators, containing ACh, Histamine, NE, DA and Orexin, resulted in increased [K+]o 

regardless of synaptic activity, suggesting that this could serve as a mechanism to maximize the 

impact of neuromodulators on synchronous activity and recruitment of neurons into networks.  
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In the present chapter, I aimed at answering three fundamental questions: (1) which 

neuromodulators from that cocktail142 are responsible for the observed increase in [K+]o?; (2) 

which neuromodulators can affect astrocytic K+ clearance mechanisms (including net K+ uptake 

through Kir4.1 channels and K+ spatial buffering via GJs) to adjust [K+]o levels to the network 

oscillatory state?; and (3) is there a correlation between astrocytic K+ clearance mechanisms and 

Ca2+ activity?  

To this end, I will correlate the observed alterations in the K+ clearance time course induced by 

neuromodulators with Ca2+ oscillations within the soma of nearby astrocytes by performing [K+]o 

measurements with K+-selective microelectrodes and Ca2+ imaging experiments using the 

fluorescent dye Fluo-4 AM, thereby providing valuable details on the bidirectional communication 

between neurons and astrocytes within cortical networks. 

 

4.2 Materials and methods 

4.2.1 Animals and slice preparation 

For [K+]o measurements with K+-selective microelectrodes and Ca2+ imaging experiments with 

Fluo-4 AM, I used 4-8-week-old B6SJL/J mice. Animal handling and slice preparation were 

performed as previously described in Chapter 2. 

 

4.2.2 Electrophysiological recording and stimulation 

The recording chamber was mounted on an Olympus BX-51 microscope equipped with IR/DIC 

optics and Polygon 400 patterned illuminator (Mightex). Following the recovery period in the 

BraincubatorTM after staining (Fluo-4 AM, SR101), slices of somatosensory cortex were mounted 

in the recording chamber, for a minimum of 15 minutes, to allow them to warm up to room 
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temperature (~22°C) and were constantly perfused at a rate of 2-3 ml/min with carbogenated aCSF. 

[K+]o measurements were performed from layer II/III of the somatosensory cortex, by placing the 

K+-selective microelectrode nearby a selected “astrocyte Alpha” stained with SR101. Various KCl 

concentrations, corresponding to low (~5 mM), high (~15 mM) and excessive (~30 mM), were 

locally applied at a constant distance (~10 µm) from the K+-selective microelectrode through a 

puffing pipette (tip diameter of 1 μm), as previously described. Preparation and calibration of the 

K+-selective microelectrodes were performed as detailed in Chapter 3.  

To assess the impact of neuromodulators on the K+ clearance rate, [K+]o measurements were 

performed within the same brain slices before and after 5-minute bath application of  different 

neuromodulators, including the cholinergic agonist Carbachol (100 μM), Histamine 

dihydrochloride (50 μM), Noradrenaline bitartrate (40 μM), NPEC-caged-Serotonin (30 μM) and 

NPEC-caged-Dopamine (10 μM). To exclude the involvement of neuronal activity, similar 

experiments were conducted after perfusing slices for 5 additional minutes with neuromodulators 

and tetrodoxin (TTX, 1 μM). Polygon400 illuminator (Mightex) was used to uncage NPEC-caged-

Serotonin and NPEC-caged-Dopamine compounds by applying focal photolysis with UV light 

(~360 nm) in a selected area (~50 µm), including the surroundings of the K+-selective 

microelectrode, the KCl puffing pipette and the selected astrocytic domain with its processes, for 

1 second prior to local application of KCl (Figure 4.1 A). 

 

4.2.3 Ca2+ imaging 

To ensure specific staining of astrocytes, dye loading with Ca2+ dyes was performed in 

combination with the selective astrocytic marker SR101. 
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4.2.3.1 Fluo-4 AM 

Stock solution of Fluo-4 AM (50 µg, Life Technologies) was prepared by dissolving the dye in 8 

µl DMSO and 10 µl Pluronic acid-127 10 % (Molecular Probes), followed by sonication for 5 

minutes. The solution was then diluted in 82 µl of aCSF (containing in mM: 125 NaCl, 2.5 KCl, 1 

MgCl2, 1.25 NaH2PO4, 2 CaCl2, 25 NaHCO3, 25 glucose; saturated with carbogen, 95 % O2 – 5 % 

CO2 mixture, pH 7.4) to reach a concentration of 500 µM. Two mice brain slices were placed in a 

loading chamber containing 2 ml of aCSF. 20 µl of stock solution (500 µM) were added to the 

chamber to reach a final concentration of 5 µM. Slices were loaded for 30 minutes at 37°C together 

with SR101 (1 µM). To ensure adequate oxygenation of the submerged slice during dye 

incubation, the loading chamber was kept in a closed container that was oxygenated continuously 

with 95 % O2 – 5 % CO2.  

4.2.3.2 Image acquisition 

Following incubation with Fluo-4 AM and SR101, slices were washed with aCSF and transferred 

back to the BraincubatorTM for 20-30 minutes prior to any experimental recordings. Fluorescence 

images were acquired using a high NA (1.0) 20x oil-immersion objective lens (XLUMPlanFLN, 

Olympus). For Fluo-4 AM imaging, the excitation light was filtered through a 470–495 nm band 

pass filter and the emission light passed through a BA520 nm band pass filter. SR101 was excited 

at 510-550 nm and emitted at 640 nm. Consecutive images were captured using a 12-bit cooled 

CCD camera, controlled by the software Micromanager (ImageJ). To assess spontaneous and 

evoked astrocytic Ca2+ responses, images were acquired at 2 Hz for 300 seconds. Following 2 

minutes of imaging spontaneous Ca2+ activity, KCl puffs at different concentrations (5 mM, 15 

mM and 30 mM) were applied through a puffing pipette (tip diameter of 1 μm) using a Picospitzer 

located close to a selected astrocyte double-stained for Fluo-4 AM and SR101.  
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The impact of neuromodulators on astrocytic Ca2+ signalling was assessed via bath application of 

different neuromodulators, as described above. 

4.2.3.3 Image analysis 

Image J/Fiji (http://fiji.sc/Fiji)448 and GraphPad Prism software were used to analyse the Fluo-4 

AM fluorescence images under different conditions. Fluorescence signals were quantified by 

measuring the mean pixel value of a manually selected somatic area of an astrocyte (ROI) for each 

frame of the image stack. ΔF/F0 values were measured by calculating the ratio between the change 

in fluorescence signal intensity (ΔF) and baseline fluorescence (F0), corresponding to the averaged 

minimum intensity value of the first 5 frames. To reduce the bleaching effect and highlight changes 

in fluorescence intensity between frames, raw image sequences were processed using the TopoJ 

tool. To measure the spatiotemporal dynamics of Ca2+ signals within astrocytes, sholl analysis was 

applied using a scale of 50 µm between concentric circles. Data from ROIs corresponding to 

identified astrocytes (double-stained for SR101 and Fluo-4 AM) within the field of view were 

exported to GraphPad Prism and the fluorescence ΔF/F0 change was analysed. Astrocytic Ca2+ 

elevations were defined as transient increases above baseline values (ΔF/F0 = 0) and were 

classified as “spontaneous” or “evoked” when occurring before (within the first 2 minutes) or after 

(within 10 seconds) local application of KCl, respectively. 

 

4.2.4 Drugs 

All drugs were stored as frozen stock solutions and were added to aCSF just before recordings. 

Neuromodulators, including NE, Histamine, 5-HT and DA were purchased from Tocris Bioscience 

(In Vitro Technologies Pty Ltd). Noradrenaline bitartrate and Histamine dihydrochloride were 

dissolved in water to a stock solution at final concentration of 100 mM.  
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Carbachol (Sigma Aldrich) and caged neuromodulators, including NPEC-caged-Serotonin and 

NPEC-caged-Dopamine, were dissolved in DMSO to a stock solution at final concentrations of 1 

M or 100 mM, respectively. All stock solutions were stored at -20°C and protected from light when 

required.  

 

4.2.5 Statistical analysis 

Unless stated, data is reported as mean ± S.E.M. Statistical comparisons were done with Prism 7 

(GraphPad Software; San Diego, CA) using two-tailed paired student t-test and one-way or two-

way ANOVA followed by Tukey’s post hoc test, according to the experimental design. Analysis 

of K+ transient properties was performed using a custom-made MATLAB code (MathWorks). The 

K+ clearance rate was calculated by converting the voltage to concentration using equation 1 from 

section 3.2 and dividing it by the decay time, as previously described in Chapter 3. Probability 

values < 0.05 were considered statistically significant. 

 

4.3 Results 

4.3.1 The impact of 5-HT on astrocytic K+ clearance and Ca2+ signalling 

Previous studies have demonstrated that astrocytes express different subtypes of serotonergic 

receptors across brain areas, including the cortex, corpus callosum, brain stem, spinal cord and 

hippocampus340,480,484,485,486,487,488. Cortical astrocytes have been found to express 5HT2b receptors 

coupled to phospholipase A2 (PLA2) and PLC/Gq signalling cascades, whose activation leads to 

Ca2+ release from internal stores (i.e. ER)489 and stimulation of glycogenolysis490 (Figure 1.2).  
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To test the impact of 5-HT on the K+ clearance rate, I applied focal photolysis (50 µm diameter; 

UV light491) of NPEC-caged-Serotonin (30 µM) to layer II/III of the somatosensory cortex, 

including the astrocytic domain, the K+-selective microelectrode and the puffing pipette (Figure 

4.1 A).  

 
 

Figure 4.1 Measuring the impact of neuromodulators on astrocytic function. a) DIC image depicting 

the experimental setup (top) and uncaging protocol (bottom) used for application of the neuromodulators 

Serotonin and Dopamine (red circle, the area that was photo-activated with UV light, ~360 nm, Mightex) 

for 1 second prior to local application of KCl by the puffing pipette (*, arrow) in layer II/III of the 

somatosensory cortex. b) Fluorescence images (20x objective) of neocortical slices showing the SR101 

staining (left, red: ~510-550/640 nm) and the “merge” staining in astrocytes depicting the colocalization 

(yellow) of SR101 and Fluo-4 AM (right, green: ~470-495/520 nm) fluorescent dyes. Sholl analysis was 

used to describe the distance at which double-stained astrocytes were located from “astrocyte Alpha” (blue 

circle), defined as distance 0 µm. c) Sample [Ca2+]i traces imaged from astrocytes (colour-coded in b) 

showing changes from baseline ΔF/F0 fluorescence levels before (spontaneous, within 2 minutes) and after 

(evoked, within 10 seconds) local application of KCl puffs (arrow) under normal aCSF. 

 

α 
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Results show that 5-HT uncaging decreased the K+ clearance rate following transient application 

of excessive [K+]o (~30 Mm, n=11), from 2.04±0.20 mM/sec to 1.33±0.14 mM/sec (p < 0.01, 

paired student t-test). However, application of lower KCl concentrations (15 mM and 5 mM) did 

not affect the K+ clearance rate significantly (0.82±0.05 mM/sec, n=11 and 0.34±0.04 mM/sec, 

n=10 respectively; p > 0.05, paired student t-test, Figure 4.2 A-B, Table 4.1). 

 

[K+]o Condition Clearance rate 

(mM/sec) 

Amplitude  

(mM) 

#Rise time 

(sec) 

#Peak area 

(mMxsec) 
30 mM 
15 mM 
5 mM 

aCSF 

aCSF 

aCSF 

2.04±0.20 

0.84±0.06 

0.37±0.03 

6.40±0.53 

2.76±0.16 

1.07±0.21 

0.32±0.02 

0.34±0.01 

0.28±0.03 

1.25±0.08 

0.66±0.04 

0.25±0.02 

30 mM 
15 mM 
5 mM 

5-HT 

5-HT 

5-HT 

    1.33±0.14** 

0.82±0.05 

0.34±0.04 

6.64 ±0.74 

2.73±0.22 

0.98±0.03 

0.34±0.02 

0.34±0.02 

0.27±0.03 

  1.43±0.08* 

0.63±0.05 

0.26±0.04 

30 mM 
15 mM 
5 mM 

5-HT/TTX 

5-HT/TTX 

5-HT/TTX 

   1.29±0.11** 

0.79±0.05 

0.39±0.04 

6.63±0.61 

2.69±0.19 

0.99±0.05 

0.33±0.02 

0.33±0.02 

0.27±0.04 

        1.40±0.06* 

        0.67±0.04 

        0.25±0.03 

Table 4.1 The impact of 5-HT on the K+ clearance rate. Data is reported as mean ± S.E.M. #10-90 % 

rise time, top 10 % peak area. *p < 0.05; **p < 0.01; paired student t-test compared to the relevant aCSF 

group. 5-HT-serotonin; TTX-tetrodoxin 
 

Importantly, blockade of neuronal spiking activity with TTX (1 µM) did not result in any 

significant differences compared to the effect of 5-HT alone (p > 0.05, paired student t-test, Figure 

4.2 A-B, Table 4.1), suggesting that the observed alterations in the K+ clearance rate at excessive 

[K+]o (~30 mM) are independent of neuronal activity and likely due to the direct effect of 5-HT on 

astrocytic mechanisms (i.e. K+ spatial buffering).  

To validate the impact of the different neuromodulators on the K+ clearance rate, I additionally 

measured their effect on astrocytic Ca2+ oscillations. Ca2+ signals within the soma of individual 

astrocytes (double-stained for SR101 and Fluo-4 AM) were classified as spontaneous 

(spontaneous astrocytes), when recorded during the first 2 minutes prior to local application of 

KCl, or evoked (evoked astrocytes), if recorded within 10 seconds following the application of 

KCl (Figure 4.1 B-C). 
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Figure 4.2 The impact of 5-HT on the K+ clearance rate and astrocytic Ca2+ signalling. a) Average 

traces of [K+]o recordings depicting the mean (line) and standard error (shade) values of the average K+ 

clearance time course following local application of 30 mM KCl puffs (arrow), before (aCSF, black) and 

after focal photolysis of 30 μM caged Serotonin (5-HT, red) or 30 μM caged 5-HT with 1 μM TTX (green). 

b) Paired plots depicting the K+ clearance rate following local application of KCl at different concentrations 

(from left to right: 30 mM, 15 mM and 5 mM), before (aCSF, black) and after 5-HT uncaging without (red) 

or with TTX (green; 30 mM n=11 recordings, 15 mM n=11 recordings, 5 mM n=10 recordings). c) Bar 

graph depicting the average percentage of active astrocytes within the field of view responding to KCl puffs 

(5-30 mM) with [Ca2+]i elevations, before (aCSF, black) and after 5-HT uncaging without or with TTX 

(blue). d) Bar graph depicting the average frequency (per second) of evoked Ca2+ signals in cortical 

astrocytes following KCl puffs (5-30 mM), before (aCSF, black) and after 5-HT uncaging without or with 

TTX (blue; 30 mM, n=8 recordings; 15 mM, n=8 recordings; 5 mM, n=9 recordings). Data is reported as 

mean ± S.E.M. **p < 0.01; ***p < 0.0001 
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Under baseline conditions (aCSF), the average percentage of evoked astrocytes following local 

application of KCl was 20.7±2.1 % (30 mM, n=25), 17.8±1.3 % (15 mM, n=25) and 11.7±0.8 % 

(5 mM, n=24; p < 0.01 one-way ANOVA with Tukey’s post hoc test) and their average Ca2+ 

signals frequency was 0.13±0.01, 0.11±0.01 and 0.10±0.01 events per second respectively (p < 

0.05 one-way ANOVA with Tukey’s post hoc test; Figure 4.2 C-D), suggesting a link between the 

levels of [K+]o and astrocytic Ca2+ activity. 

At excessive [K+]o, local photolysis of NPEC-caged-Serotonin compounds significantly (F(2, 115) = 

13.31, p < 0.0001, two-way ANOVA) increased the average percentage of evoked astrocytes, from 

20.7±2.1 % up to 51.2±5.1 % (30 mM, n=8, p < 0.0001, two-way ANOVA with Tukey’s post hoc 

test, Figure 4.2 C), as well as the average frequency of evoked Ca2+ responses (30 mM, 0.19±0.02 

events per second, n=8; p < 0.01, two-way ANOVA with Tukey’s post hoc test, Figure 4.2 D). 

However, these alterations in evoked Ca2+ signals decreased following TTX application (30 mM, 

32.5±4.6 % evoked astrocytes and 0.13±0.02 events per second, n=8; p > 0.05, two-way ANOVA, 

Figure 4.2 C-D), suggesting that these serotonergic-mediated Ca2+ signals are, at least partially, 

due to the impact of 5-HT on neuronal activity and cannot be specifically attributed to its impact 

on astrocytes.  

Application of 5-HT did not affect the average percentage of evoked astrocytes or the frequency 

of evoked Ca2+ oscillations following local application of lower [K+]o, including 15 mM (n=8) and 

5 mM KCl puffs (n=9; p > 0.05, two-way ANOVA, Figure 4.2 C-D), which is consistent with the 

observed serotonergic impact on the K+ clearance rate at these concentrations (Figure 4.2 A-B), 

and further suggests that 5-HT likely acts in parallel on both neurons and astrocytes to specifically 

modulate the K+ spatial buffering process at excessive [K+]o. 
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4.3.2 The impact of DA on astrocytic K+ clearance and Ca2+ signalling 

DA receptors are classically grouped into D1-like (D1 and D5) and D2-like (D2, D3 and D4) receptors 

that activate opposite signalling cascades471. On the one hand, DA binding to D1-like receptors 

promotes an increase in 3',5'-cyclic adenosine monophosphate (cAMP) levels and the activation 

of protein kinase A (PKA) via adenylyl cyclase (AC)492. On the other hand, D2-like receptors are 

coupled to PLC/IP3 pathway, whose activation triggers Ca2+ release from internal stores and 

decreases cAMP levels470 (Figure 1.2).  

In order to assess the overall impact of DA on the K+ clearance rate I performed local uncaging of 

NPEC-caged-Dopamine compounds (10 µM)493, as described above for 5-HT (Figure 4.1 A). 

Focal photolysis of caged DA significantly reduced the K+ clearance rate independent of neuronal 

activity at all [K+]o tested, including 30 mM (1.68±0.25 mM/sec, n=13), 15 mM (1.21±0.15 

mM/sec, n=12) and 5 mM (0.56±0.08 mM/sec, n=14; p < 0.05, paired student t-test, Figure 4.3 A-

B, Table 4.2). 

 

[K+]o Condition Clearance rate 

(mM/sec) 

Amplitude 

(mM) 

#Rise time 

(sec) 

#Peak area 

(mMxsec) 
30 mM 
15 mM 
5 mM 

aCSF 

aCSF 

aCSF 

          2.46±0.28 

          1.60±0.25 

          0.80±0.11 

7.51±1.05 

4.24±0.43 

1.46±0.16 

0.27±0.03 

0.27±0.02 

0.26±0.02 

1.96±0.15 

0.99±0.08 

0.35±0.02 

30 mM 
15 mM 
5 mM 

DA 

DA 

DA 

          1.61±0.26** 

          1.35±0.17* 

          0.60±0.09** 

7.32±0.83 

4.13±0.40 

1.49±0.19 

0.28±0.03 

0.29±0.02 

0.27±0.02 

        2.41±0.17** 

        1.21±0.11* 

        0.46±0.04** 

30 mM 
15 mM 
5 mM 

DA/TTX 

DA/TTX 

DA/TTX 

    1.68±0.25** 

          1.21±0.15* 

     0.56±0.08** 

7.25±0.82 

4.26±0.41 

1.49±0.16 

0.28±0.02 

0.28±0.01 

0.27±0.01 

    2.36±0.22** 

        1.10±0.09* 

        0.42±0.04* 

Table 4.2 The impact of DA on the K+ clearance rate. Data is reported as mean ± S.E.M. #10-90 % rise 

time, top 10 % peak area. *p < 0.05; **p < 0.01; paired student t-test compared to the relevant aCSF 

group. DA-dopamine; TTX-tetrodoxin 

 

Together, these results suggest that DA affects astrocytic K+ clearance mechanisms at all [K+]o, 

regardless of its impact on neuronal activity.  
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Figure 4.3 The impact of DA on the K+ clearance rate and astrocytic Ca2+ signalling. a) Average traces 

of [K+]o recordings depicting the mean (line) and standard error (shade) values of the average K+ clearance 

time course following local application of 30 mM KCl puffs (arrow), before (aCSF, black) and after focal 

photolysis of 10 μM caged Dopamine (DA, red) or 10 μM caged DA with 1 μM TTX (green). b) Paired 

plots depicting the K+ clearance rate following local application of KCl at different concentrations (from 

left to right: 30 mM, 15 mM and 5 mM), before (aCSF, black) and after DA uncaging without (red) or with 

TTX (green; 30 mM n=13 recordings, 15 mM n=12 recordings, 5 mM n=14 recordings). c) Bar graph 

depicting the average percentage of active astrocytes within the field of view responding to KCl puffs (5-

30 mM) with [Ca2+]i elevations, before (aCSF, black) and after DA uncaging without or with TTX (purple). 

d) Bar graph depicting the average frequency (per second) of evoked Ca2+ signals in cortical astrocytes 

following KCl puffs (5-30 mM), before (aCSF, black) and after DA uncaging without or with TTX (purple; 

30 mM, n=10 recordings; 15 mM, n=10 recordings; 5 mM, n=8 recordings). Data is reported as mean ± 

S.E.M. *p <0.05; **p < 0.01; ***p < 0.0001 
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Moreover, DA led to altered astrocytic Ca2+ signalling, by significantly (F(2, 121) = 56.60, p < 

0.0001, two-way ANOVA) increasing the average percentage of evoked astrocytes (30 mM, 

55.3±7.0 %; 15 mM, 33.5±2.8 %; 5 mM, 32.2±4.2 %; p < 0.05, two-way ANOVA with Tukey’s 

post hoc test, Figure 4.3 C), as well as the frequencies of evoked Ca2+ oscillations for all [K+]o 

tested (30 mM, 0.20±0.03 events per second, n=10; 15 mM, 0.20±0.03 events per second, n=10; 5 

mM, 0.19±0.03 events per second, n=8; p ≤ 0.05, two-way ANOVA with Tukey’s post hoc test, 

Figure 4.3 D).  

Intriguingly, the observed impact on the frequency of evoked Ca2+ oscillations was independent 

of neuronal activity only following low concentrations of KCl (5 mM), as it persisted following 

application of TTX (0.20±0.04 events per second, n=8; p < 0.01, two-way ANOVA with Tukey’s 

post hoc test, Figure 4.3 D). In comparison, the increased frequency of astrocytic Ca2+ elevations 

following application of excessive or high KCl returned to baseline levels when TTX was added 

to the aCSF solution (30 mM, 0.15±0.02 events per second, n=10; 15 mM, 0.14±0.02 events per 

second, n=10; p > 0.05, two-way ANOVA, Figure 4.3 D), suggesting a differential involvement 

of neurons in mediating the dopaminergic effects on astrocytic Ca2+ signals evoked by transient 

increases of [K+]o. 

 

4.3.3 The impact of NE on astrocytic K+ clearance and Ca2+ signalling 

Astrocytes express receptors for NE, including 1 and β1-adrenergic receptors. Activation of 1-

adrenergic receptors elicits the PLC/IP3 signalling cascade, which results in Ca2+ release from 

internal stores375,494, triggering of both protein kinase C (PKC) and cAMP response element-

binding (CREB)-dependent transcription495, and exacerbation of glutamate re-uptake into 

astrocytes through GLT-1/GLAST glutamate transporters496.  



115 

 

However, stimulation of astrocytic β1-adrenergic receptors results in [Ca2+]i increases476, cAMP 

accumulation, PKA activation and glycogenolysis497 (Figure 1.2). 

Bath application of Noradrenaline bitartrate (40 µM) led to a decrease of the K+ clearance rate 

following local application of high (15 mM, 0.70±0.06 mM/sec, n=16) and excessive [K+]o (30 

mM, 0.80±0.06 mM/sec, n=15) regardless of neuronal activity (p < 0.01, paired student t-test, 

Figure 4.4 A-B). However, NE did not affect the K+ clearance rate at low [K+]o (5 mM, 0.42±0.04 

mM/sec, n=15; p > 0.05, paired student t-test, Figure 4.4 A-B, Table 4.3), suggesting it mainly 

affects the K+ spatial buffering process.  

Table 4.3 The impact of NE on the K+ clearance rate. Data is reported as mean ± S.E.M. #10-90 % rise 

time, top 10 % peak area. *p < 0.05; **p < 0.01; paired student t-test compared to the relevant aCSF 

group. NE-noradrenaline; TTX-tetrodoxin 

 

NE also affected Ca2+ activity in cortical astrocytes. Under normal aCSF (n=25), the average 

percentage of spontaneous astrocytes (during the first 2 minutes prior to the KCl puff) within the 

field of view was 14.8±1.5 % and their average Ca2+ oscillations frequency was 0.84±0.06 events 

per minute (Figure 4.4 C-D, left). Although the percentage of spontaneous astrocytes in the 

presence of NE was comparable to control conditions (13.3±1.7 %; p > 0.05, one-way ANOVA, 

Figure 4.4 C, left), NE led to a significant decrease in the average frequency of spontaneous Ca2+ 

oscillations (0.56±0.06 events per minute, n=9; p < 0.05, one-way ANOVA with Tukey’s post hoc 

test). 

[K+]o Condition Clearance rate 

(mM/sec) 

Amplitude 

(mM) 

#Rise time  

(sec) 

#Peak area 

(mMxsec) 
30 mM 
15 mM 
5 mM 

aCSF 

aCSF 

aCSF 

 1.42±0.14 

0.87±0.05 

0.44±0.04 

5.99±0.26 

2.56±0.15 

0.92±0.06 

0.40±0.02 

0.35±0.02 

0.30±0.02 

  1.20±0.08 

  0.54±0.06 

  0.25±0.04 

30 mM 
15 mM 
5 mM 

NE 

NE 

NE 

    0.80±0.06** 

    0.70±0.06** 

0.42±0.04 

5.94±0.45 

2.52±0.11 

0.92±0.05 

0.39±0.03 

0.36±0.02 

0.29±0.02 

         1.45±0.07* 

         0.78±0.08* 

         0.30±0.04 

30 mM 
15 mM 
5 mM 

NE/TTX 

NE/TTX 

NE/TTX 

    0.90±0.07** 

    0.65±0.05** 

0.42±0.04 

5.76±0.41 

2.49±0.09 

0.91±0.04 

0.38±0.03 

0.35±0.02 

0.30±0.03 

         1.54±0.10* 

         0.77±0.08* 

         0.28±0.05 
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Figure 4.4 The impact of NE on the K+ clearance rate and astrocytic Ca2+ signalling. a) Average traces 

of [K+]o recordings depicting the mean (line) and standard error (shade) values of the average K+ clearance 

time course following local application of 30 mM KCl puffs (arrow) before (aCSF, black) and after bath 

application of 40 μM Noradrenaline (NE, red) or 40 μM NE with 1 μM TTX (green). b) Paired plots 

depicting the K+ clearance rate following local application of KCl at different concentrations (from left to 

right: 30 mM, 15 mM and 5 mM), before (aCSF, black) and after bath application of NE without (red) or 

with TTX (green; 30 mM n=15 recordings, 15 mM n=16 recordings, 5 mM n=15 recordings). c) Plots 

depicting the average percentage of active astrocytes within the field of view, responding before 

(spontaneous, left) and after (evoked, right) local application of KCl puffs (5-30 mM) with [Ca2+]i elevations 

in normal aCSF (black), and following bath application of NE without or with TTX (green).  
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d) Plots depicting the average frequency of Ca2+ signals in cortical astrocytes, before (spontaneous, per 

minute, left) and after (evoked, per second, right) local application of KCl puffs (5-30 mM) in normal aCSF 

(black), and following bath application of NE without or with TTX (green). e) Plots depicting the 

relationship between the spatial distribution of astrocytes and the average frequency of evoked Ca2+ 

oscillations (per second) following different KCl concentrations (from left to right: 30 mM, 15 mM and 5 

mM), before (aCSF, black, continuous line) and after bath application of NE (green, continuous line) and 

NE+TTX (green, dashed line; 30 mM, n=9 recordings; 15 mM, n=8 recordings; 5 mM, n=9 recordings). 

Data is reported as mean ± S.E.M. Asterisks below the dashed line in (e) represent the significance levels 

between groups following Tukey’s post hoc test (black). Asterisks above the dashed line in (e) represent 

the level of interaction (red). *p <0.05; **p < 0.01; ***p < 0.0001 

 

These results suggest that NE can affect the intrinsic Ca2+ activity in cortical astrocytes regardless 

of [K+]o.  

In addition, NE significantly (F(2, 117) = 9.17, p < 0.01, two-way ANOVA) increased both the 

percentage of evoked astrocytes (35.5±4.0 %; p < 0.01, two-way ANOVA with Tukey’s post hoc 

test, Figure 4.4 C, right) and the frequency of evoked Ca2+ signals following application of 30 mM 

KCl (0.19±0.03 events per second, n=9; p < 0.05, two-way ANOVA with Tukey’s post hoc test, 

Figure 4.4 D, right). Notably, the noradrenergic effect on the frequency of evoked Ca2+ oscillations 

following application of excessive [K+]o was enhanced when neuronal spiking activity was 

blocked (30 mM, 0.26±0.03 events per second, n=9; p < 0.0001, two-way ANOVA with Tukey’s 

post hoc test, Figure 4.4 D, right), suggesting that NE directly modulates Ca2+ signalling in 

astrocytes by facilitating evoked Ca2+ activity and recruitment of more astrocytes into the active 

network in the presence of excessive [K+]o (30 mM; Figure 4.4 C, right). However, NE had no 

impact on the average percentage of evoked astrocytes or the average frequency of evoked Ca2+ 

oscillations following application of lower [K+]o (15 mM, n=8; 5 mM, n=9; p > 0.05 two-way 

ANOVA, Figure 4.4 C-D).  

Overall, these results suggest a complex activation of noradrenergic receptors and their 

corresponding signalling cascades to maintain K+ homeostasis. 
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In order to evaluate the spatiotemporal impact of the different neuromodulators on the average 

frequency of evoked Ca2+ oscillations in cortical astrocytes, I used sholl analysis as described in 

methods section 4.2 and Figure 4.1 B-C. The spatiotemporal pattern of evoked Ca2+ activity was 

calculated within the first 100 seconds after local application of 30 mM (n=25) or 15 mM (n=25) 

KCl and was characterized by high frequencies of Ca2+ oscillations in proximal astrocytes, which 

decreased with distance from astrocyte α (aCSF; p < 0.0001, one-way ANOVA with Tukey’s post 

hoc test, Figure 4.4 E).  

However, this spatiotemporal pattern was absent following application of low KCl (5 mM, n=24; 

p > 0.05, one-way ANOVA; Figure 4.4 E), as under these conditions [K+]o is rapidly buffered by 

net K+ uptake mechanisms452,498. These observations support a link between [K+]o levels and 

astrocytic Ca2+ activity, and further suggest that astrocytes increase their Ca2+ activity locally when 

there is [K+]o accumulation (above ceiling level, >12 mM)421, which likely contributes to the 

opening of GJs and redistribution of K+ ions to distal areas450. Intriguingly, distal astrocytes 

displayed increased average frequencies of evoked Ca2+ oscillations at low [K+]o  (5 mM) 

compared to higher [K+]o levels (30 mM and 15 mM; p < 0.01, one-way ANOVA with Tukey’s 

post hoc test, Figure 4.4 E). Moreover, a comparison of the spatiotemporal activity between the 

different [K+]o suggests that it was both the distance from astrocyte α (F(4, 355) = 48.6, p < 0.0001, 

two-way ANOVA) and the [K+]o levels (F(2, 355) = 8.10, p < 0.01, two-way ANOVA, Figure 4.4 E), 

which affected the astrocytic spatiotemporal Ca2+ activity. 

Application of NE itself had no effect on the spatiotemporal pattern of astrocytic Ca2+ signalling 

compared to normal aCSF conditions at any of the [K+]o tested (p > 0.05, two-way ANOVA, Figure 

4.4 E).  
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In this regard, NE also elicited increased frequencies of evoked Ca2+ oscillations in proximal 

astrocytes that were comparable to normal aCSF, as they declined at distal areas following 

application of excessive (30 mM, n=9) and high (15 mM, n=8) [K+]o (p < 0.0001, one-way 

ANOVA with Tukey’s post hoc test). In comparison, the average frequencies of Ca2+ oscillations 

remained similar at all distances following application of low [K+]o (5 mM, n=9; p > 0.05, one-

way ANOVA). Intriguingly, co-application of NE + TTX revealed a significant change following 

application of 30 mM KCl (F(1, 160) = 22.45, p < 0.0001, two-way ANOVA) in the spatiotemporal 

dynamics of astrocytic Ca2+ activity, mainly in distal astrocytes which displayed increased 

frequencies of evoked Ca2+ oscillations at ≥150 µm (n=9; p < 0.01, two-way ANOVA with 

Tukey’s post hoc test), suggesting that NE acts indirectly on distal astrocytes to affect their Ca2+ 

activity when there is excessive [K+]o accumulation.  

Together, these results suggest that NE has complex interactions with astrocytes, in which it 

directly leads to a decrease of the spontaneous Ca2+ activity, however following an increase of low 

[K+]o it does not affect either the evoked Ca2+ activity nor the K+ clearance process. Under high 

and excessive [K+]o, NE directly reduces the K+ clearance rate and increases the evoked Ca2+ 

activity, without affecting the astrocytic Ca2+ spatiotemporal dynamics. 

 

4.3.4 The impact of Histamine on astrocytic K+ clearance and Ca2+ 

signalling 

Astrocytes express different types of histaminergic receptors, including H1, H2 and H3, which 

mediate multiple processes, such as glutamate clearance474 and glucose homeostasis499. H1 

receptors are Gq/11-coupled and therefore associated with PKC and PLC signalling pathways, 

which lead to Ca2+
 release from the ER500.  
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H2 receptors are Gs-coupled and have been found to participate in glycogen breakdown and energy 

supply via activation of PKA and stimulation of AC501. H3 receptors are Gαi/o-coupled and less 

abundant in cortical astrocytes compared to astrocytes from other brain regions (e.g. striatum, 

hippocampus)502. These receptors have been involved in mediating the inhibition of AC, while 

triggering PLA2, MAP kinase and PI3K/AKT signalling pathways503,504 (Figure 1.2). 

Bath application of Histamine dihydrochloride (50 µM) significantly decreased the K+ clearance 

rate following local application of excessive, high and low KCl (30 mM, 1.15±0.14 mM/sec, n=10; 

15 mM, 0.84±0.08 mM/sec, n=10; 5 mM, 0.30±0.02 mM/sec, n=11; p < 0.01, paired student t-test, 

Figure 4.5 A-B, Table 4.4).  

Table 4.4 The impact of Histamine on the K+ clearance rate.  Data is reported as mean ± S.E.M. #10-

90 % rise time, top 10 % peak area. *p < 0.05; **p < 0.01; paired student t-test compared to the relevant 

aCSF group. TTX-tetrodoxin 

 

However, while the histaminergic impact on the K+ clearance rate at excessive [K+]o was not 

affected by neuronal activity (30 mM, 1.19±0.16 mM/sec; p > 0.05, paired student t-test, Figure 

4.5 A-B, Table 4.4), blockade of neuronal firing with TTX increased the K+ clearance rate at high 

(15 mM) and low (5 mM) [K+]o (p < 0.05, paired student t-test), indicating the involvement of 

neuronal activity in mediating the histaminergic effects at these concentrations.  

[K+]o Condition Clearance rate 

(mM/sec) 

Amplitude 

(mM) 

#Rise time  

(sec) 

#Peak area 

(mMxsec) 
30 mM 
15 mM 
5 mM 

aCSF 

aCSF 

aCSF 

       2.02±0.38 

       1.12±0.09 

       0.51±0.05 

6.52±0.77 

3.50±0.32 

0.93±0.09 

0.31±0.01 

0.28±0.01 

0.26±0.01 

         0.74±0.03 

         0.51±0.04 

         0.15±0.01 

30 mM 
15 mM 
5 mM 

Histamine 

Histamine 

Histamine 

       1.15±0.14** 

   0.84±0.08** 

   0.30±0.02** 

6.63±0.57 

3.49±0.56 

0.93±0.14 

0.32±0.01 

0.27±0.01 

0.25±0.02 

         1.04±0.06* 

       0.72±0.04** 

         0.19±0.01* 

30 mM 
15 mM 
5 mM 

Histamine/TTX 

Histamine/TTX 

Histamine/TTX 

       1.19±0.16** 

       1.09±0.12 

       0.46±0.03 

6.49±0.61 

3.41±0.54 

0.91±0.07 

0.32±0.01 

0.27±0.02 

0.26±0.01 

         1.09±0.04** 

         0.63±0.05 

         0.17±0.01 
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Intriguingly, Histamine did not affect the average percentage of spontaneously active astrocytes 

within the field of view (15.6±1.7 %, n=10) or the frequency of spontaneous Ca2+ oscillations 

(0.70±0.08 events per minute) compared to normal aCSF conditions (14.8±1.5 % and 0.84±0.06 

events per minute respectively, n=25; p > 0.05, one-way ANOVA, Figure 4.5 C-D, left). In 

contrast, Histamine increased the number of evoked astrocytes, as well as the frequency of evoked 

Ca2+ signals for all [K+]o tested (30 mM, 33.4±1.6 % and 0.24±0.05 events per second, n=10; 15 

mM, 31.8±2.2 % and 0.25±0.05 events per second, n=10; 5 mM, 26.3±1.5 % and 0.20±0.03 events 

per second, n=12; p < 0.0001, two-way ANOVA with Tukey’s post hoc test, Figure 4.5 C-D, right). 

However, the rise in both the percentage of evoked astrocytes and the frequency of evoked Ca2+ 

oscillations following excessive increase in [K+]o was highly dependent on neuronal activity, as 

application of TTX abolished the histaminergic effect (30 Mm, 18.9±1.4 % and 0.15±0.02 events 

per second respectively, n=10; p > 0.05, two-way ANOVA, Figure 4.5 C-D, right). These results 

suggest that the histaminergic regulation of astrocytic K+ clearance mechanisms and Ca2+ 

signalling is [K+]o-dependent and involves direct and indirect activation via the neural network. 

Furthermore, the impact of Histamine on the spatiotemporal activation of astrocytic Ca2+ signalling 

(within the first 100 seconds) was also [K+]o-dependent. Sholl analysis revealed that Histamine 

affected the spatiotemporal pattern of astrocytic Ca2+ oscillations following application of KCl at 

all concentrations tested (30 mM, F(2, 210) = 17.16, p < 0.0001, for the factor “treatment”, F(4, 210) = 

32.06, p < 0.0001, for the factor “distance” and F(8, 210) = 3.20, p < 0.01, for the factor “interaction”; 

15 mM,  F(2, 210) = 22.92, p < 0.0001, for the factor “treatment”, F(4, 210) = 60.41, p < 0.0001, for the 

factor “distance” and F(8, 210) = 3.54, p < 0.01, for the factor “interaction”; 5 mM, F(2, 225) = 0.17, p 

> 0.05, for the factor “treatment”, F(4, 225) = 51.48, p < 0.0001, for the factor “distance” and F(8, 225) 

= 8.76, p < 0.0001, for the factor “interaction”; two-way ANOVA, Figure 4.5 E). 
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Figure 4.5 The impact of Histamine on the K+ clearance rate and astrocytic Ca2+ signalling. a) Average 

traces of [K+]o recordings depicting the mean (line) and standard error (shade) values of the average K+ 

clearance time course following local application of 30 mM KCl puffs (arrow), before (aCSF, black) and 

after bath application of 50 μM Histamine (red) or 50 μM Histamine with 1 μM TTX (green). b) Paired 

plots depicting the K+ clearance rate following local application of KCl at different concentrations (from 

left to right: 30 mM, 15 mM and 5 mM), before (aCSF, black) and after bath application of Histamine 

without (red) or with TTX (green; 30 mM n=10 recordings, 15 mM n=10 recordings, 5 mM n=11 

recordings). c) Plots depicting the average percentage of active astrocytes within the field of view, 

responding before (spontaneous, left) and after (evoked, right) local application of KCl puffs (5-30 mM) 

with [Ca2+]i elevations in normal aCSF (black), and following bath application of Histamine without or with 

TTX (orange).  
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d) Plots depicting the average frequency of Ca2+ signals in cortical astrocytes, before (spontaneous, per 

minute, left) and after (evoked, per second, right) local application of KCl puffs (5-30 mM) in normal aCSF 

(black), and following bath application of Histamine without or with TTX (orange). e)  Plots depicting the 

relationship between the spatial distribution of astrocytes and the average frequency of evoked Ca2+ 

oscillations (per second) following different KCl concentrations (from left to right: 30 mM, 15 mM and 5 

mM), before (aCSF, black, continuous line) and after bath application of Histamine (orange, continuous 

line) and Histamine+TTX (orange, dashed line; 30 mM, n=10 recordings; 15 mM, n=10 recordings; 5 mM, 

n=12 recordings). Data is reported as mean ± S.E.M. Asterisks below the dashed line in (e) represent the 

significance levels between groups following Tukey’s post hoc test (black). Asterisks above the dashed line 

in (e) represent the level of interaction (red). *p <0.05; **p < 0.01; ***p < 0.0001 

 

Post-hoc analysis showed that, in the presence of Histamine, application of excessive (30 mM, 

n=10) and high (15 mM, n=10) [K+]o led to increased frequencies of evoked Ca2+ oscillations, 

particularly in astrocytes located within 50-150 µm from astrocyte  (p < 0.01, two-way ANOVA 

with Tukey’s post hoc test, Figure 4.5 E). Intriguingly, these changes in the spatiotemporal pattern 

were mediated by neural activity only at excessive [K+]o, as application of TTX returned the 

trajectory of Ca2+ signals back to baseline conditions (p > 0.05, two-way ANOVA, Figure 4.5 E).  

In contrast, following application of Histamine and low [K+]o  (5 mM) the average frequency of 

evoked Ca2+ responses in proximal astrocytes significantly increased to 0.24±0.02 events per 

second at 0 µm (n=12, p < 0.01, two-way ANOVA with Tukey’s post hoc test). Importantly, this 

effect was independent of neuronal activity (0.28±0.02 events per second at 0 µm, n=12, p < 

0.0001, two-way ANOVA with Tukey’s post hoc test) and significantly decreased with distance 

from astrocyte α compared to normal conditions (200 µm, p < 0.01, two-way ANOVA with 

Tukey’s post hoc test, Figure 4.5 E).  

Overall, these data suggest that Histamine affects both neurons and astrocytes to modulate the K+ 

clearance rate and this modulation is [K+]o-dependent. At excessive [K+]o, Histamine impacts on 

K+ homeostasis directly through the modulation of the astrocytic network, however, at lower [K+]o, 

it exerts its modulation indirectly, via neuronal activity.  
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Moreover, there was no clear correlation between the astrocytic Ca2+ signalling and the K+ 

clearance mechanisms that were affected by Histamine, as i) the increase in Ca2+ signalling 

following application of excessive [K+]o was dependent on neural activity, unlike the changes in 

the K+ clearance rate, and ii) the increase in astrocytic Ca2+ signalling at high and low [K+]o was 

independent of neural activity, while at these [K+]o the impact of Histamine on the K+ clearance 

rate highly depended on neural activity.  

 

4.3.5 The impact of ACh on astrocytic K+ clearance and Ca2+ signalling 

Astrocytes express both ionotropic receptors (α, β)338 and muscarinic G protein-coupled receptors 

(GPCRs) for ACh (M1-3)
339,505. While activation of the Ca2+-permeable α7nACh receptor leads to 

[Ca2+]i elevations due to Ca2+ entry from the extracellular mileu506, activation of M1-3 receptors in 

astrocytes increases [Ca2+]i via activation of PLC, which elevates IP3 levels and promotes Ca2+ 

release from internal stores481,507. Subsequently, astrocytic [Ca2+]i elevations induce gliotransmitter 

release of glutamate, ATP or D-serine, thereby leading to modulation of synaptic strength and 

transmission in both the hippocampus508 and the cortex509 (Figure 1.2).  

To test the impact of ACh on the K+ clearance rate, I bath applied slices with Carbachol (100 µM), 

a non-specific ACh agonist that binds and activates both nicotinic and muscarinic ACh 

receptors510. However, the K+
 clearance rate was comparable between normal aCSF and Carbachol 

conditions for all [K+]o tested, as shown in Figure 4.6 A-B (30 mM KCl, 1.36±0.13 mM/sec; 15 

mM KCl, 0.97±0.09 mM/sec; 5 mM KCl, 0.51±0.07 mM/sec; p > 0.05, paired student t-test, Table 

4.5).  
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[K+]o Condition Clearance rate 

(mM/sec) 

Amplitude 

(mM) 

#Rise time  

(sec) 

#Peak area 

(mMxsec) 
30 mM 
15 mM 
5 mM 

aCSF 

aCSF 

aCSF 

1.30±0.12 

1.02±0.10 

0.52±0.06 

6.63±0.39 

3.26±0.40 

1.34±0.24 

0.31±0.02 

0.27±0.02 

0.22±0.01 

1.29±0.07 

0.83±0.09 

0.26±0.03 

30 mM 
15 mM 
5 mM 

Carbachol 

Carbachol 

Carbachol 

1.36±0.13 

0.97±0.09 

0.51±0.07 

6.58±0.46 

3.28±0.42 

1.36±0.15 

0.31±0.02 

0.27±0.01 

0.23±0.01 

1.28±0.07 

0.77±0.07 

0.26±0.02 

30 mM 
15 mM 
5 mM 

Carbachol/TTX 

Carbachol/TTX 

Carbachol/TTX 

1.37±0.11 

1.06±0.10 

0.54±0.07 

6.79±0.56 

3.27±0.34 

1.39±0.18 

0.30±0.02 

0.26±0.01 

0.23±0.01 

1.22±0.08 

0.81±0.04 

0.25±0.01 

Table 4.5 The impact of Carbachol on the K+ clearance rate. Data is reported as mean ± S.E.M. #10-90 

% rise time, top 10 % peak area. TTX-tetrodoxin 

 

Since blockade of neuronal firing with TTX resulted in no significant alterations compared to 

control or Carbachol conditions (30 mM KCl, 1.37±0.11 mM/sec, n=15; 15 mM KCl, 1.06±0.10 

mM/sec, n=10; 5 mM KCl, 0.54±0.07 mM/sec, n=10; p > 0.05, paired student t-test, Figure 4.6 A-

B, Table 4.5), these results suggest that ACh has no direct impact on K+ clearance mechanisms.  

Consistent with these results, application of Carbachol had no significant effect on the astrocytic 

spontaneous nor evoked Ca2+ activity at any of the [K+]o tested (p > 0.05, one-way ANOVA, Figure 

4.6 C-D). However, co-application of Carbachol and TTX significantly increased the average 

percentage of spontaneously active astrocytes and the average frequency of spontaneous Ca2+ 

oscillations (22.4±2.0 % and 1.13±0.10 events per minute respectively, n=15; p < 0.05, one-way 

ANOVA with Tukey’s post hoc test, Figure 4.6 C-D, left). Moreover, it decreased the number of 

evoked astrocytes at excessive [K+]o (30 mM, 10.3±1.7 % n=14, p < 0.01, two-way ANOVA with 

Tukey’s post hoc test), suggesting this effect is mediated by neuronal activity.  

However, Carbachol had no effect on the evoked Ca2+ activity at lower [K+]o (15 mM, n=15 and 5 

mM, n=13; p > 0.05, two-way ANOVA, Figure 4.6 C-D, right), suggesting that the impact on 

astrocytic Ca2+ signalling is likely attributed to the effect of TTX itself on the neuronal network 

and not specifically to Carbachol.  
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Figure 4.6 The impact of Carbachol on the K+ clearance rate and astrocytic Ca2+ signalling. a) Average 

traces of [K+]o recordings depicting the mean (line) and standard error (shade) values of the average K+ 

clearance time course following local application of 30 mM KCl puffs (arrow), before (aCSF, black) and 

after bath application of 100 μM Carbachol (red) or 100 μM Carbachol with 1 μM TTX (green). b) Paired 

plots depicting the K+ clearance rate following local application of KCl at different concentrations (from 

left to right: 30 mM, 15 mM and 5 mM), before (aCSF, black) and after bath application of Carbachol 

without (red) or with TTX (green; 30 mM n=15 recordings, 15 mM n=10 recordings, 5 mM n=10 

recordings). c) Plots depicting the average percentage of active astrocytes within the field of view, 

responding before (spontaneous, left) and after (evoked, right) local application of KCl puffs (5-30 mM) 

with [Ca2+]i elevations in normal aCSF (black), and following bath application of Carbachol without or with 

TTX (red).  
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d) Plots depicting the average frequency of Ca2+ signals in cortical astrocytes, before (spontaneous, per 

minute, left) and after (evoked, per second, right) local application of KCl puffs (5-30 mM) in normal aCSF 

(black), and following bath application of Carbachol without or with TTX (red). e) Plots depicting the 

relationship between the spatial distribution of astrocytes and the average frequency of evoked Ca2+ 

oscillations (per second) following different KCl concentrations (from left to right: 30 mM, 15 mM and 5 

mM), before (aCSF, black, continuous line) and after bath application of Carbachol (red, continuous line) 

and Carbachol+TTX (red, dashed line; 30 mM, n=14 recordings; 15 mM, n=15 recordings; 5 mM, n=13 

recordings). Data is reported as mean ± S.E.M. Asterisks below the dashed line in (e) represent the 

significance levels between groups following Tukey’s post hoc test (black). Asterisks above the dashed line 

in (e) represent the level of interaction (red). *p <0.05; **p < 0.01; ***p < 0.0001 

 

Furthermore, whereas bath application of Carbachol did not affect the spatiotemporal pattern of 

evoked astrocytic Ca2+ oscillations (within the first 100 seconds) at any of the [K+]o tested (p > 

0.05, two-way ANOVA, Figure 4.6 E), the addition of TTX to the bath solution significantly 

altered the trajectories of Ca2+ signals following application of excessive and high [K+]o (30 mM, 

F(2, 250) = 17.59, p < 0.0001, for the factor “treatment”, F(4, 250) = 28.86, p < 0.0001, for the factor 

“distance” and F(8, 250) = 2.14, p < 0.05, for the factor “interaction”; 15 mM, F(2, 260) = 3.80 p < 0.05, 

for the factor “treatment”, F(4, 260) = 43.72, p < 0.0001, for the factor “distance” and F(8, 260) = 4.71, 

p < 0.0001, for the factor “interaction”; two-way ANOVA, Figure 4.6 E). Post-hoc analysis further 

revealed that the main difference was in proximal astrocytes located close to “astrocyte Alpha”, 

which displayed significantly reduced frequencies of Ca2+ oscillations at [K+]o above ceiling levels 

compared to control conditions (30 mM, 0.12±0.01 events per second at 0 µm, n=14; 15 mM, 

0.12±0.01 events per second at 0 µm, n=15; p < 0.0001, two-way ANOVA with Tukey’s post hoc 

test), suggesting a non-specific effect of TTX on nearby activated neurons. 

Taken together, these results suggest that ACh has no effect on astrocytic K+ homeostasis, and that 

the observed changes in Ca2+ signalling were likely due to some effect of TTX on astrocytic 

activity. 
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4.4 Discussion 

To survive animals constantly shift their behavioural states, as occurs during the sleep-wake cycle, 

which involves global changes in neuronal oscillatory activity and synchronization across different 

brain areas (e.g. cortex, hippocampus, striatum, thalamus)511. Previous studies have demonstrated 

that neuromodulators, such as DA512, ACh513 or NE514, affect neuronal membrane properties and 

excitability leading to altered network oscillations at multiple frequencies515. For instance, 

modulation of the cholinergic516,517,518 or monoaminergic465,519,520 signalling pathways has been 

reported to affect neural network oscillatory dynamics underlying behavioural shifts, as happens 

during different phases of sleep (i.e. REM vs NREM) or between sleep and arousal states. 

However, the neurophysiological processes leading to the transitions between global brain states 

remain poorly understood.  

Neuromodulators effect on network oscillations has been suggested to be mediated via synaptic 

modulation of different neuronal subtypes equipped with long-range projections463,515,521. 

However, glial cells (i.e. astrocytes, oligodendrocytes, microglia), once assumed to be merely 

supporting cells, also express receptors for most neuromodulators522,523,524, and therefore can 

mediate neuromodulatory processes affecting network oscillations. In line with this view, previous 

reports showed that impairments of the neuromodulatory pathways in astrocytes, induced by 

selective overexpression of transgenes in vivo, either affected the IP3-mediated [Ca2+]i increase 

from internal stores58 or the subsequent Ca2+-dependent vesicular release of gliotransmitters71, 

modulate network oscillations at different frequencies depending on the behavioural state. 

Particularly, Foley et al. (2017)58 observed that mice with attenuated IP3-mediated Ca2+ signalling 

in astrocytes spent more time in REM sleep displaying enhanced theta oscillations compared to 

wild-type mice, which the authors attributed to cholinergic signalling in the hippocampus.  
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In awake mice, Lee et al. (2014)71 found that inhibition of glutamate release in astrocytes resulted 

in decreased EEG gamma power (25-40 Hz) and cognitive deficits (i.e. recognition memory), 

suggesting that recruitment of astrocytes and the consequent release of glutamate from these cells 

is required for the maintenance of cortical gamma oscillations. 

Nonetheless, we are still lacking evidence regarding the role each neuromodulator plays during 

each behavioural state, specifically in terms of the signalling pathways, receptors and target cells 

(i.e. neurons and glial cells) that become activated across different brain areas. 

In the CNS, K+ homeostasis is controlled by astrocytic K+ clearance mechanisms, including net 

K+ uptake and K+ spatial buffering to distal areas through GJs408. During physiological neuronal 

activity, the rate of K+ clearance can be affected by different factors, such as changes in 

temperature525, waste products (i.e. ammonia)526, extracellular levels of glutamate450 or pH527, 

which influence neuronal excitability527, as well as the functionality of the astrocytic 

machinery450,525,526,528. Recently, Ding et al. (2016)142 showed that application of a cocktail of 

neuromodulators to cortical brain slices, containing ACh, Histamine, NE, DA and Orexin, results 

in altered [K+]o dynamics without involving the activity of neurons. Consequently, it is becoming 

increasingly evident that some neuromodulators can act in parallel on both neurons and astrocytes 

to fine-tune behavioural output, as previously suggested142. Accordingly, we hypothesized that 

different neuromodulators can modulate [K+]o clearance by selectively activating different 

signalling pathways either directly (via astrocytes) or indirectly (via neurons) to adjust [K+]o levels, 

as a tool to ultimately mediate the transitions between network oscillations associated with 

different brain states.  
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To validate this hypothesis, I have measured the K+ clearance rate following local application of 

KCl at different concentrations in the presence of the neuromodulators 5-HT, DA, NE, Histamine 

and ACh (Carbachol). Results suggest that not all neuromodulators affect [K+]o clearance to the 

same extent.  

Among astrocytic K+ clearance mechanisms, net K+ uptake becomes activated following low local 

increases in [K+]o (~3-12 mM), mostly affecting small astrocytic networks located within close 

proximity to the synaptic release site, and becomes saturated at [K+]o above ceiling levels (>12 

mM)421,529. In contrast, the K+ spatial buffering process via GJ-mediated astrocytic networks is 

active when there is high accumulation of [K+]o
408 (above ceiling levels), reviewed by305. In that 

regard, neuromodulators that affect the clearance rate of low [K+]o (~5 mM) independent of 

neuronal activity are likely to play a role in the modulation of astrocytic net K+ uptake mechanisms, 

mediated via the NKA pump and Kir4.1 channels452,498,530, whereas neuromodulators that affect the 

clearance rate of high and excessive [K+]o (15 mM and 30 mM respectively) are more prone to 

regulate the K+ spatial buffering process through GJs531,532.  

Interestingly, previous studies suggested a correlation between astrocytic Ca2+ oscillations and 

[K+]o clearance51. However, the exact molecular mechanisms instigating this association still need 

to be established. For this purpose, I have assessed the astrocytic Ca2+ signalling in the presence 

of the above-mentioned neuromodulators by selectively co-labelling astrocytes with the 

fluorescent dyes Fluo-4 AM and SR101. Astrocytic Ca2+ oscillations were classified as 

spontaneous, when occurring prior to stimulation with KCl puff (during the first 2 minutes), or 

evoked, if recorded within 10 seconds following local application of different KCl concentrations 

(5 mM, 15 mM and 30 mM).  
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While spontaneous Ca2+ oscillations provide information about intrinsic astrocytic function 

regardless of K+ clearance mechanisms and neuronal input371, changes in evoked Ca2+ activity, 

which is correlated with an increase in [K+]o levels, provide a link between the K+ clearance 

process and astrocytic Ca2+ signalling, as previously suggested51. 

 

4.4.1 The impact of 5-HT on astrocytic K+ clearance and Ca2+ signalling 

In the above-mentioned experiments, bath application of 5-HT decreased the K+ clearance rate at 

excessive [K+]o regardless of synaptic activity (Figure 4.2 A-B), suggesting that 5-HT directly 

modulates astrocytic K+ spatial buffering via GJs. Consistently, 5-HT affected evoked Ca2+ 

oscillations in cortical astrocytes by increasing the average percentage of evoked astrocytes, as 

well as the average frequency of evoked Ca2+ responses only following local application of 30 mM 

KCl. In contrast, lower [K+]o, namely 15 mM and 5 mM, had no significant impact on the evoked 

Ca2+ activity (Figure 4.2 C-D). However, while the observed serotonergic effect on evoked Ca2+ 

signals at excessive [K+]o was abolished after TTX application, the impact of 5-HT on the K+ 

clearance rate was independent of neuronal activity. Consequently, I propose that under excessive 

[K+]o regimes, 5-HT differentially activates both neuronal and astrocytic receptors to impact 

indirectly on astrocytic Ca2+ signalling and directly on K+ spatial buffering, respectively. 

Moreover, the lack of impact on both the K+ clearance rate and Ca2+ signalling at lower [K+]o 

(Figure 4.2 B-D) suggests that 5-HT is not affecting the net K+ uptake mechanism.  

Accordingly, previous studies showed that 5-HT hyperpolarizes astrocytic membranes378, which 

influences the K+ spatial buffering process348. In particular, application of the Selective Serotonin 

Reuptake Inhibitor (SSRI) fluoxetine found to increase [Ca2+]i and trigger the phosphorylation of 

the ERK1/2 pathway533, leading to inhibition of both Kir4.1 in astrocytes534 and Cx43-mediated GJ 
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coupling535, which reduces Ca2+ waves propagation378, thus providing a plausible explanation to 

the observed decrease in the K+ clearance rate (Figure 4.2 A-B). 

 

4.4.2 The impact of DA on astrocytic K+ clearance and Ca2+ signalling 

Among all the neuromodulators tested (i.e. 5-HT, DA, NE, Histamine, ACh), only DA 

significantly decreased the K+ clearance rate at all [K+]o tested (5 mM, 15 mM and 30 mM), 

independent of neuronal activity (Figure 4.3 A-B). Moreover, DA enhanced the evoked Ca2+ 

activity in astrocytes, by increasing the average percentage of evoked astrocytes, as well as the 

average frequency of evoked Ca2+ events following local application of 30 mM, 15 mM and 5 mM 

KCl. However, these results suggest that while the dopaminergic impact on the frequency of 

astrocytic Ca2+ signals involved indirect neuronal input at [K+]o above ceiling levels (>12 mM), it 

directly affected astrocytic Ca2+ activity at low (5 mM) [K+]o, as it persisted after TTX application 

(Figure 4.3 C-D).  

These data support previous reports indicating that DA blocks Kir4.1 and Kir4.1/Kir5.1 heteromeric 

channels, and reduces aquaporin 4 (AQP-4) channel permeability via stimulation of D2-like 

receptors, leading to Ca2+ release from internal stores and subsequent PKC activation536,537. 

Whereas Kir channels take part during both net K+ uptake (at low [K+]o) and K+ spatial buffering 

processes (at high and excessive [K+]o levels), AQP-4 channels only participate in the net K+ 

uptake process (Appendix Table 3). Together, these data suggest that: i) DA directly affects 

multiple stages in astrocytic K+ clearance mechanisms, including net K+ uptake and K+ spatial 

buffering; ii) DA directly activates astrocytic Ca2+ signalling at different [K+]o, resulting in the 

activation of larger astrocytic networks (Figure 4.3 C), but leads to a decrease of K+ spatial 

buffering and overall decrease of the K+ clearance rate, likely mediated via inhibition of the first 
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step required for this process (i.e. entrance of K+ ions through Kir4.1 channels)536 (Figure 4.3 A-

B); and iii) DA affects the temporal pattern of astrocytic Ca2+ signalling both directly (at 

physiological [K+]o) and indirectly (at high [K+]o) via the activity of neurons (Figure 4.3 C-D). 

 

4.4.3 The impact of NE on astrocytic K+ clearance and Ca2+ signalling 

NE has been previously associated with modulation of astrocytic housekeeping roles, specifically 

enhancement of glutamate uptake via α1-adrenergic receptors and increased glycogenesis mediated 

by β1-adrenergic receptors514 (Figure 1.2). Indeed, bath application of NE reduced the K+ clearance 

rate following local application of high (15 mM) and excessive (30 mM) [K+]o independent of 

synaptic activity (Figure 4.4 A-B), suggesting that NE directly modulates the K+ spatial buffering 

process. Moreover, NE directly affected astrocytic Ca2+ activity depending on [K+]o, as evident 

from the increase in the average percentage of evoked astrocytes and their increased frequency of 

Ca2+ elevations following application of 30 mM KCl (Figure 4.4 C-E). In addition, NE decreased 

the average frequency of spontaneous Ca2+ signals (Figure 4.4 D) without affecting the average 

percentage of spontaneously active astrocytes (Figure 4.4 C), suggesting that NE can affect 

intrinsic Ca2+ activity regardless of [K+]o.  

One plausible interpretation of these results is that NE has a direct yet complex effect on astrocytic 

[Ca2+]i oscillations, in which at one level it decreases spontaneous Ca2+ activity regardless of [K+]o, 

thereby affecting glutamate uptake, and on another level it affects GJ-mediated communication 

required for the K+ spatial buffering process via increase of [Ca2+]i oscillations evoked by 

excessive [K+]o accumulation. At lower (5 mM) [K+]o, NE had no significant impact on the evoked 

Ca2+ activity (Figure 4.4 C-E) nor on the K+ clearance rate (Figure 4.4 B), which is in contrast to 

previous reports indicating that stimulation of β1-adrenergic receptors enhance NKA pump514 and 
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NKCC1 cotransporter538 activities, thereby promoting astrocytic net K+ uptake following small 

increases in [K+]o. However, NE may downregulate NKA pump activity at high or excessive [K+]o, 

as previously oberserved498, which might explain why bath application of NE at ≥15 mM led to 

decreased K+ clearance rates (Figure 4.4 B).  

 

4.4.4 The impact of Histamine on astrocytic K+ clearance and Ca2+ signalling 

Bath application of Histamine resulted in reduced K+ clearance rates at all [K+]o tested (5-30 mM; 

Figure 4.5 A-B). However, while this effect was highly dependent on neuronal activity following 

application of low and high [K+]o, it was independent at excessive [K+]o, suggesting that Histamine 

directly modulates the astrocytic K+ spatial buffering process. Regarding astrocytic Ca2+ activity, 

Histamine had no effect on spontaneous Ca2+ signalling (Figure 4.5 C-D), indicating that 

Histamine does not affect intrinsic Ca2+ activity in astrocytes. Despite increasing the average 

percentage of evoked astrocytes, as well as the average frequency of evoked Ca2+ oscillations for 

all [K+]o, this effect was driven by neurons only at excessive (30 mM) [K+]o, as it returned to 

normal levels after TTX application (Figure 4.5 C-D). Moreover, Histamine affected the 

spatiotemporal pattern of astrocytic Ca2+ signalling, which was [K+]o-dependent (Figure 4.5 E). 

According to these results, Histamine likely modulates the redistribution of K+ ions to distal 

astrocytes (K+ spatial buffering) up to ~100 µm and ~150 µm at high (15 mM) and excessive (30 

mM) [K+]o respectively, through activation of both neuronal and astrocytic receptors, whereas it 

might influence smaller networks composed of proximal astrocytes required during the net K+ 

uptake process when there is low (5 mM) [K+]o levels, specifically via astrocytic intermediaries. 

Together, these results suggest that Histamine impacts on astrocytic K+ clearance mechanisms via 

differential activation of both neuronal and astrocytic receptors.  
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Indeed, previous studies showed that activation of H1 receptors in astrocytes triggers PKC, which 

in turn phosphorylates and blocks Kir channels539 involved in K+ clearance mechanisms (Appendix 

Table 3). Furthermore, Histamine has been reported to reduce the expression levels of AQP-4 

channels, thus playing a role in the net K+ uptake process540. However, our results indicate that the 

impact of Histamine on the net K+ uptake mechanism (<12 mM) was mediated indirectly by 

neurons (Figure 4.5 B), yet the evoked Ca2+ activity was not driven by neurons (Figure 4.5 C-D) 

and could be mediated via modulation of astrocytic voltage-gated Ca2+ channels (VGCCs)541. 

 

4.4.5 The impact of ACh on astrocytic K+ clearance and Ca2+ signalling 

Unlike other neuromodulators (i.e. 5-HT, DA, NE, Histamine), bath application of high 

concentrations of the cholinergic agonist Carbachol (100 µM) resulted in no significant alterations 

in the K+ clearance rate for any of the [K+]o tested (Figure 4.6 A-B). In line with these results, 

application of Carbachol had no significant effect on either the percentage nor the frequency of 

spontaneous or evoked Ca2+ elevations in cortical astrocytes (Figure 4.6 C-E), which suggests that 

ACh does not affect astrocytic K+ clearance mechanisms. However, co-application of Carbachol 

and TTX led to an increase in the number of spontaneously active astrocytes and in the average 

frequency of spontaneous Ca2+ elevations, suggesting that neuronal activity under cholinergic 

influence suppresses spontaneous or intrinsic astrocytic Ca2+ signalling.  Moreover, TTX led to a 

reduction of the average percentage of evoked astrocytes and affected the frequency of evoked 

Ca2+ signals in proximal astrocytes at excessive [K+]o (30 mM; Figure 4.6 C-E), implying that the 

modulation of the neuronal activity by ACh is involved in astrocytic function at these [K+]o.  

Accordingly, previous studies showed an indirect modulation of ACh on astrocytes by inducing 

depolarization of the astrocytic membrane via neuronal release of glutamate, which likely 
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enhances the spontaneous [Ca2+]i  activity both in vitro338 and in situ542,481. Together, these results 

suggest that ACh is not involved in the modulation of astrocytic K+ clearance mechanisms at any 

of the [K+]o tested. 

Overall, this chapter sheds light on the nature of the association between astrocytic Ca2+ signalling 

and K+ homeostasis at different [K+]o levels. Moreover, I provide evidence regarding the direct 

and indirect pathways in which neuromodulators affect astrocytic function within cortical 

networks, including the K+ clearance rate and Ca2+ signalling. A key finding was that only some 

neuromodulators from the cocktail used by Ding et al. (2016)142, namely 5-HT, NE, DA and 

Histamine, can affect astrocytic K+ clearance mechanisms independent of neuronal activity, as 

application of TTX had no significant impact on the K+ clearance time course.  On the other hand, 

ACh may modulate network oscillations, as we and others previously reported409 (Chapter 2), via 

direct activation of neuronal networks and not through modulation of astrocytic K+ clearance 

mechanisms. 

Since neuromodulators play a crucial role during different behaviours463,464,514, the obtained results 

suggest that they exert their function by affecting both neurons and astrocytes via parallel 

pathways. Although the link between Ca2+ signalling and K+ homeostasis is not well understood, 

the data presented in this thesis support the intriguing concept that astrocytes, by selectively 

modulating their K+ clearance capacity in response to activation by different neuromodulators, 

have the potential to affect the excitability and oscillatory properties of individual neurons as a 

mechanism to recruit them into synchronized networks305. 
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CHAPTER 5: 

GENERAL DISCUSSION 
 

 

 

 

“There exists a microscopic breed of brain beetle, commonly known as an ‘idea’.  

An idea desires only one thing: To catch the perfect brain wave.” 

—Leah Broadby 

 

The need to understand how neuronal oscillations are formed and manipulated has increased 

substantially in importance in recent decades, as it has become more apparent that they are 

correlated with different behavioural states and altered in various brain diseases (e.g. epilepsy, PD; 

Chapter 1)305,463. However, the cellular and synaptic mechanisms involved in each network 

oscillation are not well understood. 

In this thesis, I have investigated the potential role of cortical astrocytes in modulating neuronal 

network oscillations using K+ clearance mechanisms. The overarching hypothesis was that 

astrocytes can act as “network managers” that modulate their K+ clearance capabilities to regulate 

the excitability and synchronization of individual neurons into neuronal ensembles, thus mediating 

the transitions between network oscillations at different frequencies. To confirm this hypothesis, 

I have used several techniques, including electrophysiological recordings from both individual and 

networks of neurons, as well as [K+]o measurements with K+-selective microelectrodes along with 

Ca2+ and K+ imaging, under different pharmacological manipulation. 

http://www.goodreads.com/author/show/14222500.Leah_Broadby
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The results in Chapter 2 show that impairments in astrocytic K+ clearance mechanisms lead to an 

increased excitability and a shift of the resonance frequency of individual neurons towards higher 

frequencies, underpinning the formation of high frequency network oscillations, particularly 

within the beta and gamma range. These results strongly suggest that astrocytes are capable of 

modulating both neuronal excitability and network oscillations by specifically manipulating [K+]o 

levels. To further explore the bidirectional neuronal-astrocytic signalling pathways that govern the 

astrocytic K+ clearance process, I measured the spatiotemporal dynamics of [K+]o and [K+]i in 

astrocytes using a combination of K+-selective microelectrodes with fluorescent imaging of K+ 

and Ca2+ probes. The results in Chapter 3 indeed suggest that a high increase of [K+]o is correlated 

with activation of larger astrocytic networks. Moreover, inhibition of different stages of the  

astrocytic K+ clearance mechanisms results in distinctive spatiotemporal dynamics of both [K+]o 

and [K+]i. Chapter 4 provides conclusive evidence that different neuromodulators can directly 

affect astrocytes to modulate the K+ clearance process, using a differential regulation of both 

neuronal and astrocytic receptors that result in alterations of the K+ clearance rate and astrocytic 

Ca2+ signalling. 

Overall, the findings gathered in this thesis support the view that astrocytes work in parallel with 

neurons and mediate their recruitment into neuronal ensembles that work in synchronization at 

multiple frequencies, thereby becoming the perfect candidates to gear the transition between 

behavioural states associated with those frequencies. 

 

5.1 Astrocytic modulation of neuronal network oscillations 

Behavioural states require temporal coordination of neuronal activity to integrate information in 

multiple brain areas (e.g. hippocampus, cortex, thalamus)543,544,545.  
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This network coherence is efficiently achieved through the synchronous activity of network 

oscillations fluctuating at different frequencies108,546, which is important for many physiological 

functions (e.g. attention, memory consolidation, sleep)547,548,549, as shown in Table 1.1 (Chapter 

1). Several mechanisms are known to be involved in the generation of neuronal oscillations in 

different brain areas (e.g. cellular excitability, dendritic structure, extracellular ions)2,11, however 

the precise process that mediates the transition between the different oscillatory frequencies is 

unknown.  

Despite being described at the same time as neurons in the 19th century209, glial cells received very 

little attention, mainly due to a conceptual fixation about their role as non-excitable cells that only 

provide trophic and structural support to neurons219,220. Hence, during the past century, most 

studies focused on changes in the activity of neurons as the main effectors on brain 

waves47,55,59,66,69,550,551. Later advances in the field (e.g. electron microscopy, intracellular 

recordings)369, facilitated the study of glial cells, including astrocytes, elucidating their crucial 

involvement in a variety of structural, metabolic and homeostatic roles in both health and 

disease305.  

Notably, the advent of Ca2+ imaging techniques allowed the discovery of bidirectional 

communication pathways between neurons and astrocytes at the synaptic level, as astrocytes were 

able to communicate with neurons with increases in [Ca2+]i in response to neuronally-released 

neurotransmitters552, leading to the well-established concept of tripartite synapses244. Since then, 

many research groups studied the versatility of astrocytic Ca2+ signalling during synaptic plasticity 

and transmission associated with different behavioural states (e.g. learning, memory), especially 

in the hippocampus553,554,555, and to a lesser extent in the cortex556,557.  
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In this study, I have investigated the interactions between neurons and astrocytes at the cellular 

level, which underlie the generation of cortical network oscillations and their behavioural 

correlates. The results from Chapter 4 show that there is a correlation between Ca2+ signalling and 

[K+]o that depends on the distance at which astrocytes are located within the network. Accordingly, 

under normal aCSF conditions proximal astrocytes typically display higher frequencies of Ca2+ 

oscillations, compared to distal astrocytes at [K+]o above ceiling levels (>12 mM), which facilitates 

the flow of K+ ions via GJs to distal areas (K+ spatial buffering)450. In contrast, the average 

frequencies of evoked Ca2+ oscillations are comparable between proximal and distal astrocytes 

following application of low (5 mM) [K+]o levels, likely attributed to the fast activity of the NKA 

pump during net K+ uptake mechanisms452,498 (Figure 4.4 E).  

Notably, I found that some neuromodulators can modulate astrocytic K+
 clearance mechanisms by 

altering the spatiotemporal pattern of Ca2+ oscillations either directly (via astrocytes) or indirectly 

(via neurons), and this modulation is [K+]o-dependent. Indeed, 5-HT and NE only affected 

astrocytic Ca2+ signalling at excessive (30 mM) [K+]o, however whereas the serotonergic effect 

was driven by neurons, NE directly affected astrocytic function through activation of astrocytic 

receptors. Moreover, DA, Histamine and ACh (Carbachol) exerted a differential regulation of 

neuronal and astrocytic receptors depending on [K+]o. At excessive (30 mM) [K+]o, the impact of 

DA, Histamine and ACh on evoked Ca2+ activity was highly dependent on neuronal activity, while 

both monoamines acted specifically via astrocytes when the levels of [K+]o decreased.  

Together these results suggest complex interactions between neurons and astrocytes through the 

release of different neuromodulators that allow the tight control of K+ homeostasis within cortical 

networks. 
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5.1.1 The role of astrocytes as network managers of behavioural states 

To maintain synchronization, the oscillatory properties of all neuronal membranes within a 

network should resonate over the same range of frequencies. This suggests that a single neuron's 

resonance frequency could be modulated to adapt to the activity of the neuronal network558. During 

the past years, several studies focused on investigating the role of astrocytic Ca2+ signalling as the 

underlying mechanism affecting neuronal intrinsic properties, synaptic transmission and network 

oscillations472,473,556,559. However, we and others have shown that changes in [K+]o can also affect 

the excitability properties of neurons leading to altered neuronal oscillations at multiple 

frequencies409 (Chapter 2).   

5.1.1.1 The impact of K+ clearance mechanisms on neuronal network oscillations 

Astrocytes are key players in maintaining K+ homeostasis in the CNS, which suggests that they 

have the potential to modulate intrinsic neuronal properties (i.e. resonance frequency) and as a 

result neuronal network oscillations by adjusting the levels of [K+]o. Interestingly, Wang et al. 

(2012)304 suggested that the Ca2+-dependent activation of the NKA pump to enhance [K+]o uptake 

by astrocytes is a powerful tool that allows astrocytes to maintain homeostasis and further 

modulate synaptic transmission at the network level. In this study, I have extended Wang’s 

hypothesis304 postulating that modulation of astrocytic K+ clearance mechanisms, specifically net 

K+ uptake via Kir4.1 channels and K+ redistribution to distal areas through GJ-mediated networks 

(K+ spatial buffering process), engages the transition between network oscillatory frequencies by 

affecting the neuron’s RMP and their resonance frequency, which displays voltage- and K+ current-

dependence560,561. Results in Chapter 2 provide the first evidence that modulation of K+ clearance 

mechanisms in cortical astrocytes impacts on the resonance frequency of individual neurons by 

extending the frequency range at which the soma and dendrites resonate.  
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The amplification of the oscillations magnitude at the frequencies involved in this oscillatory 

behaviour suggests that impairments of the K+ clearance mechanisms have the potential to affect 

the synchronization of both local and distal neuronal populations, via net K+ uptake and K+ spatial 

buffering processes, respectively. In fact, the observed alterations at the cellular level correlated 

with changes in the network activity following blockade of astrocytic Kir4.1 channels or reduced 

connectivity with GJ blockers. A key finding was the differential increase in oscillation power, 

which mainly affects high-frequency oscillations (>12 Hz; Chapter 2)409, suggesting that astrocytes 

can modulate behavioural states occurring at these frequencies (e.g. attention, conscious 

perception; Table 1.1, Chapter 1).  

Dye-coupling experiments showed that high [K+]o enhances astrocytic GJ-mediated connectivity 

(Supplementary Figure S4, Chapter 2)409, suggesting that an increase in [K+]o leads to the 

recruitment of more astrocytes in order to facilitate the distribution of K+ ions via K+ spatial 

buffering450. These results, together with the observed reduced astrocytic connectivity after GJ 

blockade, indicate that astrocytic networks are plastic, and further support the hypothesis that K+ 

facilitates its own buffering to restore brain homeostasis according to network activity450. This 

flexible configuration has been reported to endow GJ-connected astrocytes with the power to 

modulate not only synaptic activity within their spatial domain but potentially to affect the 

underlying synchronization of neuronal networks located at distal brain areas409,559. In that regard, 

a previous study suggested a role for increased [K+]o and GJs in mediating fast network 

oscillations, as transient application of solutions containing K+ evoked hippocampal oscillations 

within 30-80 Hz that were accompanied by increases in [K+]o, whereas application of GJ blockers 

reduced the gamma power72.  
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Other groups showed that electrical coupling also influences membrane resonance leading to 

neuronal synchronization in response to oscillatory inputs to ultimately shape the network 

oscillation frequency involved in different brain states562,563. Moreover, Moca et al. (2014)564 

demonstrated that membrane resonance favours synchronization, while promoting the stability of 

high-frequency gamma oscillations in the visual cortex, and synchronous Ca2+ waves have been 

successfully imaged from extensive GJ-coupled astrocytic networks in vivo in response to changes 

in coordinated neuronal activity565. Together these studies suggest that astrocytes are capable of 

modulating neuronal network oscillations, as well as other physiological processes occurring over 

widespread brain regions (e.g. cerebral blood flow). Notably, these reports further support the 

observation that impairments in astrocytic K+ clearance mechanisms resulting in excessive [K+]o 

levels likely affect membrane resonance properties of individual cortical neurons leading to the 

amplification of fast hypersynchronous oscillatory activities within the beta and gamma range at 

the network level. 

Recently, LaBerge and Kasevich (2017)566 proposed that the dendritic structure also influences 

network oscillations, as computational models of cortical circuits showed that apical dendrites 

from pyramidal neurons in the cortex can produce oscillations within specific frequency ranges. 

This oscillatory behaviour allows them to coordinate the timing of spike signals from other 

connected neurons and engage them to oscillate within the same range of frequencies in order to 

efficiently process information. In addition, distinct subcellular compartments have been reported 

to differ in their resonant frequency properties414, which is consistent with  results from Chapter 2 

showing that local application of high [K+]o on apical dendrites is sufficient to increase both the 

resonance frequency and Ih currents (Figure 2.5).  
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These observations further support the hypothesis that alterations in the astrocytic K+ clearance 

process can provide the underlaying mechanism needed for the transition in neuronal oscillatory 

behaviour (Figure 2.6). Accordingly, the dendritic compartmentalization of the resonance 

frequency may facilitate or favour the integration of signals propagating through it, hence actively 

affecting the neural code and contributing to the overall network output. 

Because astrocytic networks have been previously shown to differ between different areas in the 

hippocampus531, I performed additional experiments in two cortical areas, including the primary 

motor (M1) and somatosensory (S1) cortices. Connectivity experiments showed that astrocytes in 

M1 form smaller networks, composed of either directly or indirectly connected astrocytes loaded 

with biocytin for 12 or 30 minutes, respectively (Appendix Figure 3, Appendix Table 4). In 

addition, astrocytic networks from M1 also displayed different topology and increased Rin values 

compared to astrocytes located in S1 (Appendix Figure 3, Appendix Table 4).  

Consistent with these results, Houades et al. (2008)567 previously showed that astrocytic networks 

within the same cortical layer IV in S1 were shaped differently depending on their location inside 

or outside the barrel field. The different astrocytic topology between cortical areas is likely due to 

the fact that astrocytes can serve different functions, in particular by affecting the propagation of 

Ca2+ waves374. Indeed, cortical astrocytes show different Ca2+ activity (asynchronous vs 

synchronous) between layer I and layers II/III within S1373. Hence, the data presented support the 

view that the morphological and functional segregation of astrocytic networks could lead to 

differential regulation of local neuronal networks within a defined brain structure by coordinated 

subpopulations of astrocytes with distinct coupling properties, based on neuronal network 

orientation and activity demands, as previously suggested567,568.  
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Together, these data suggest that modulation of the different phases of the astrocytic K+ clearance 

process, either at the uptake level or spatial buffering through the astrocytic network, can serve as 

a tool used by astrocytes to modulate multiple behavioural states.    

5.1.1.2 The impact of neuromodulators on K+ clearance mechanisms 

To elucidate the physiological effectors of astrocytic K+ clearance mechanisms during different 

behaviours, I have investigated the influence of neuromodulators known to act on both neurons 

and astrocytes, including ACh338,339,569,570, 5-HT340, Histamine341,467 , NE342,343,468,469 and DA344,470 

(Figure 1.2). Notably, synaptic release of neuromodulators (e.g. NE, Histamine, ACh, DA) and 

subsequent gliotransmission by astrocytes have been found to mediate behavioural states (e.g. 

arousal), by altering membrane and excitability properties, as well as intracellular signalling 

pathways in both neurons and glial cells142,483. In addition, previous reports showed that 

neuromodulators can fine-tune Ih conductances underlying membrane resonance of individual 

neurons in the entorhinal cortex (i.e. ACh571 and 5-HT572 in layer II, DA in layer V573), as well as 

in the hippocampus (i.e. NE574), thus likely affecting the oscillatory behaviour of single neurons 

and network oscillations in different brain areas575. However, whether this was a direct effect of 

the neuromodulators on neuronal activity, or indirect via astrocytic modulation was never tested. 

Results in Chapter 3 show that alterations in astrocytic mechanisms to clear [K+]o at different 

stages lead to a decrease in the K+ clearance rate (Figure 3.3). Similar to the effect of selective 

blockade of Kir4.1 and GJ with BaCl2 or Cx43 mimetic peptides respectively, application of 

different neuromodulators revealed that they can modulate astrocytic K+ clearance mechanisms 

by affecting the K+ clearance rate via differential regulation of neuronal and astrocytic receptors 

(Chapter 4).  
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These results, together with the observed impact of altered K+ clearance on single neurons and 

network oscillations (Chapter 2), suggest that neuromodulators could affect the K+ clearance rate 

by either acting directly on astrocytes, or indirectly via neuronal intermediaries to ultimately 

modulate the synchronization of neuronal network oscillations and their behavioural correlates. 

However, each neuromodulator exerts its effect differently on the astrocytic K+ clearance process. 

The cholinergic system 

ACh is known to affect several brain waves within different frequencies that underlie a wide 

variety of behavioural states (Table 1.1, see also Chapter 1)463,576. These include slow oscillations 

(alpha and theta range) involved in working memory97, which typically couple with faster 

oscillations to facilitate synchronization among neuronal ensembles across brain regions during 

attentional577 and episodic memory578 tasks. Indeed, activation of muscarinic ACh receptors 

modulates rapid synchronization of gamma oscillations, as well as long-term modifications of 

network dynamics in the cortex579. More recently, a modelling study showed that low levels of 

ACh correlated with slow oscillations during NREM sleep, whereas higher concentrations of ACh 

were associated with fast and asynchronous oscillations predominant in awake states580, suggesting 

a dose-dependent influence of ACh on information processing within neuronal circuits that results 

in a wide spectrum of network oscillations. Regarding the role of ACh at the single-cell level, 

astrocytic Ca2+ transients released from internal stores following activation of muscarinic ACh 

receptors have been shown to modulate cortical oscillations in the theta range and REM sleep58. 

In the hippocampus, ACh has been reported to affect both neurons and astrocytes. While ACh led 

to excitation of hilar interneurons and thus slow GABAergic inhibition of dentate granule cells581, 

it also activated astrocytic 7nAChR leading to fast [Ca2+]i elevations and subsequent release of 

glutamate or D-serine, depending on the network state (wakefulness vs sleep, respectively)508.  
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Intriguingly, disruption of glutamate release in astrocytes reduced the power of Carbachol-induced 

gamma oscillations involved in active cognitive functions (i.e. recognition memory)71, suggesting 

that astrocytic-mediated gliotransmission is required for the maintenance of gamma rhythms, once 

thought to be exclusively dependent on neuronal activity582,583,584.  

In our experiments, bath application of Carbachol increased the power of oscillations across a wide 

spectrum of frequencies at the network level following local application of excessive [K+]o (30 

mM; Chapter 2)409. However, Carbachol had no significant impact on the K+ clearance rate or the 

frequency and number of astrocytes eliciting [Ca2+]i elevations following local application of 

various [K+]o (Figure 4.6). These results suggest that, in the somatosensory cortex, ACh is not 

directly involved in modulating astrocytic K+ clearance mechanisms, and therefore may affect 

network oscillations via neuronal pathways, as discussed above.  

The monoaminergic system 

Monoamines, including catecholamines (i.e. NE, DA), 5-HT and Histamine are involved in a broad 

spectrum of physiological functions (e.g. memory, emotion, arousal)97,585,586, as well as in 

psychiatric and neurodegenerative disorders (e.g. PD, AD, schizophrenia, depression)587,588,589,590. 

Among monoamines, DA appears to be one of the oldest neurotransmitters found in early 

metazoans591 and has long been known to influence cognitive function in health and disease592,593. 

Previous studies reported on a modulatory role of DA on both beta594 and gamma595 oscillations, 

as well as on phase-amplitude coupling between delta and gamma rhytms596. Interestingly, a recent 

study proposed the concept of “neuromodulatory band”, comprising high-frequency oscillations 

within 19-38 Hz in the visual cortex that accurately correlated with DA levels during spontaneous 

neuronal activity, thereby establishing a direct link between alterations in this band with changes 

in the network state driven by DA597.  
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However, studies performed under pathological conditions revealed that denervation of DA 

neurons in parkinsonian patients and animal models leads to excessive synchronization of beta 

oscillations that correlates with motor impairments587,598,599. Such controversies regarding the 

dopaminergic modulation of beta oscillations might rely on the distinction between physiology 

and pathology. In this sense, it has been postulated that chronic, but not acute DA depletion 

underlies exacerbated beta oscillations in PD mice models600, suggesting that finding the right 

balance between DA levels is key for normal brain function. Furthermore, the disease state may 

trigger reactive cells and processes over large brain areas, thus affecting the excitation-to-

inhibition activity, while the continuous absence of DA innervation may impinge physiological 

signalling cascades, likely involving other neuromodulators (i.e. NE, 5-HT)601, therefore resulting 

in abnormal network oscillations. Accordingly, DA also acts through -adrenergic receptors in the 

cortex leading to an increase in brain-derived neurotrophic factor (BDNF) levels602 and possibly 

phosphorylation of AQP-4 via activation of PKC537, whereas other studies found that D2-like 

receptors colocalize with α7nACh receptors in both perisynaptic and perivascular astrocytic 

processes603. 

In that regard, our results from Chapter 3 indicate that focal photolysis of caged DA compounds 

decreased the K+ clearance rate (Figure 4.3 A-B) independent of the activity of neurons and 

increased both the number of evoked astrocytes and the average frequency of evoked Ca2+ 

oscillations (Figures 4.3 C-D) following local application of various [K+]o (5-30 mM). It is 

suggested that the observed decrease in the K+ clearance rate is likely mediated via direct activation 

of astrocytic D2-like receptors leading to Ca2+ release from internal stores and fast Ca2+ 

oscillations595, which could potentially affect the K+ clearance machinery by directly decreasing 

the open probability of Kir4.1/5.1 channels and therefore their currents, as shown in vitro536, and 
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thus enhance the network oscillatory activity especially in the beta and gamma range, as previously 

observed in cortical brain slices409 (Chapter 2). 

In the CNS, the serotonergic system consists of axonal projections originating from the raphe 

nuclei to almost every brain structure. 5-HT has been found to participate in cortical 

development604 and in different behavioural states, including mood605, impulse control606, 

attention607, motor functions608 and cognition609. In the cortex, 5-HT has been reported to modulate 

slow oscillations (< 2 Hz) through 5-HT2A receptors by promoting the initiation of Up states, as 

well as gamma rhythms by exerting opposite actions on 5-HT1A and 5-HT2A receptors of fast-

spiking interneurons610. However, unlike other extensively studied neuromodulators, there is 

sparse evidence regarding the role of other types of 5-HT receptors and their expression by neurons 

and other non-neuronal cells.  

Interestingly, cortical astrocytes also express 5-HT2 receptors, whose activation drives IP3-

mediated Ca2+ signalling611 together with inward K+ currents612. Previous studies performed in cell 

cultures showed that high levels of 5-HT likely impact on  astrocytic Ca2+ signals, by increasing 

the velocity and decreasing the propagation distance in the hippocampus378, as well as on the K+ 

clearance process, via inhibition of either Kir4.1 channel currents534, or Cx43-mediated GJs from 

cortical and striatal astrocytes535. This is consistent with the results from Chapter 4 showing that 

5-HT reduces the K+ clearance rate (Figure 4.2 A-B) and increases both the number of evoked 

astrocytes and the average frequency of evoked Ca2+ responses (Figure 4.2 C-D) following 30 mM 

KCl puffs. In addition, the serotonergic effect on evoked Ca2+ activity was neuronal dependent, 

suggesting that 5-HT works in parallel on both neurons (directly) and astrocytes (indirectly) to 

modulate network oscillations. As slow and fast oscillations coexist during natural sleep and 

anaesthesia states10, I suggest that the serotonergic system plays a role in the modulation of these 
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brain sates by regulating excessive [K+]o levels via astrocytic processes, together with direct 

activation of  neuronal receptors, likely involving interactions with other neuromodulators across 

brain areas (i.e. DA)590. 

Another catecholamine that could be responsible for influencing network oscillations via K+ 

clearance is NE, which is produced in the locus coeruleus that sends broad projections to other 

brain regions, including the cortex613. Intriguingly, the network dynamics in the locus coeruleus 

and consequently NE signalling have been reported to alternate between tonic and phasic periods, 

which allow switching between behavioural states, such as arousal, locomotion or focused 

attention, resulting in enhanced performance to important stimuli614,615. Previous reports suggested 

that NE alters the pattern of network activity by increasing the levels of proteins involved in 

synaptic plasticity and acquisition of long-term memories (e.g. BDNF)586 and by mediating 

synaptic exclusion of Homer1a, required for the remodelling of AMPA receptors during the sleep-

wake cycle616. Another study further showed that not only NE, but its collective action with other 

neuromodulators and neurotransmitters, including ACh and GABA, can influence thalamocortical 

slow oscillations resulting in transitions between vigilance and sleep stages617, which contributes 

to both learning and memory consolidation. In addition, NE selectively tunes brain waves 

comprising theta and gamma frequency bands618, as well as high-frequency oscillations (~20-80 

Hz) that also play a role in memory functions, depending on the type of receptor being activated 

(α1 vs β1), in both the hippocampus619 and the cortex620.  

Other studies previously showed that NE can elicit fast Ca2+ transients and waves travelling 

through GJs that ultimately affect local network dynamics375 and behaviour (e.g. memory 

consolidation, locomotion)621,622, thereby suggesting that the widespread action of NE may serve 

as a mechanism to engage astrocytic networks across broad regions according to the network state. 
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In line with this view, previous reports showed that activation of β-adrenergic receptors on cortical 

astrocytes leads to adenylyl cyclase (AC) and PKA activation, thus resulting in a range of cellular 

effects (e.g. increased excitability)623.  

Activation of β-adrenergic receptors also promotes opening of VGCCs, which increases [Ca2+]i in 

astrocytes624 and enhances NKA pump activity, thereby suggesting that NE could optimize K+ 

clearance at low [K+]o. However,  results from Chapter 4 show that NE reduces the K+ clearance 

rate at high and excessive [K+]o (>12 mM, Figure 4.4 A-B), while increases the number of evoked 

astrocytes displaying [Ca2+]i elevations independent of synaptic activity only following excessive 

[K+]o (30 mM; Figure 4.4 C-D), which correlates with its effect on [K+]o removal. As high or 

excessive [K+]o levels have been reported to prevent NKA pump from mediating net K+ uptake498, 

I suggest that, under these conditions, specific activation of β-adrenergic receptors on astrocytes 

promotes the downregulation of the NKA pump activity and forces an increase in evoked [Ca2+]i 

signals seeking astrocytic recruitment into the active network in order to restore [K+]o to 

physiological levels. In turn, this astrocyte-specific modulation of Ca2+ activity likely affects the 

redistribution of [K+]o via GJs, and consequently neuronal synchronization and network activity at 

multiple frequencies leading to switching between different behavioural states. 

Histaminergic neurons originate in the tuberomammillary nucleus of the hypothalamus and 

innervate all brain regions. Histamine activity correlates with wakefulness and arousal, thus taking 

part in innate states625. Moreover, the histaminergic system has been shown to critically modulate 

learned behaviours and memory, by increasing neuronal excitability and facilitating synaptic 

transmission in the medial entorhinal cortex541, which encodes the spatial representations in the 

brain. In a more recent study, the same group further revealed that Histamine enhances both theta 

and gamma oscillations leading to successful spatial recognition626, but not novel object 
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recognition associated with other neuromodulators (i.e. ACh)71. These effects were achieved by 

differential activation of postsynaptic H1 and presynaptic H3 receptors to mediate neuronal 

depolarization via activation of PKC and inhibition of Kir channels, or inhibition of spontaneous 

GABA release, respectively.  

In our experiments, Histamine decreased the K+ clearance rate (Figure 4.5 A-B) and increased the 

evoked Ca2+ activity in astrocytes (Figure 4.5 C-E) following all [K+]o tested. As astrocytes also 

express histaminergic receptors467, I  propose that Histamine modulates astrocytic K+ clearance 

mechanisms by differentially activating histaminergic receptors depending on [K+]o. On the one 

hand, Histamine may modulate net K+ uptake and evoked Ca2+ oscillations following small (5 

mM) [K+]o elevations by specific activation of astrocytic H2-receptors. On the other hand, I suggest 

that Histamine preferentially acts on both neuronal and astrocytic H1 receptors to affect K+ spatial 

buffering at high (15 mM) and excessive (30 mM) [K+]o, thereby leading to Kir channel blockade 

and amplification of gamma oscillations. 

Altogether these results suggest that neuromodulators act on both neurons and astrocytes in parallel 

to maximise their impact on synchronous oscillatory activities at different frequencies, making 

them suitable candidates for modulating network oscillations in the cortex. Moreover, I provide 

evidence that astrocytic modulation of neuronal activity is based not only on Ca2+ signalling, as 

originally proposed, but also on the regulation of [K+]o removal through K+ clearance mechanisms. 

These results reveal another piece of the puzzle, displaying bidirectional communication pathways 

between neurons and astrocytes, and yield new information about potential mechanisms by which 

single neurons and astrocytes communicate to engage neurons into specific neuronal networks that 

are active during different behavioural states. 
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5.2 Conclusions and future directions 

This project sheds light on the cellular effectors of the astrocytic K+ clearance process in the cortex. 

Furthermore, the work carried out in this thesis serves as a proof of concept that neurons can impact 

on astrocytic Ca2+ signalling and K+ clearance mechanisms via release of neuromodulators, 

especially monoamines, to fine-tune local cellular excitability properties, thus engaging 

neighbouring neurons into synchronized network oscillations associated with different behaviours. 

As many of the medications for the treatment of neurological disorders target neuromodulatory 

tone587, bridging the gap between astrocytic function and network oscillatory dynamics is essential 

to better understand the actual mechanisms of action. Accordingly, alterations in K+ clearance 

mechanisms that are associated with deficient neuromodulator signalling pathways may serve as 

potential therapeutic targets for network disorders characterized by excitation-to-inhibition 

imbalance and abnormal synchronization, such as epilepsy, ALS or PD305,627. Therefore, finding 

agents that specifically target astrocytic K+ clearance mechanisms could lead to alleviation of 

disease symptoms or progression. However, more research is needed to better comprehend how 

K+ clearance mechanisms engage during different behaviours.  

The present study provides insight on the modulatory role of specific neuromodulators on K+ 

clearance mechanisms, including ACh, Histamine, NE, DA and 5-HT. However, due to technical 

constraints, some of the neuromodulators tested were bath applied, which hinders the interpretation 

of their spatiotemporal impact on different brain structures. Hence, future work in this area should 

focus on investigating the effects of neuromodulators locally within specifically targeted neuronal-

astrocytic networks. 
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A more local approach to study neuronal release of neuromodulators and their impact on astrocytic 

networks is the use of caged compounds. Although photolysis of caged DA and caged 5-HT with 

UV light provided the spatiotemporal control needed for each neuromodulator to target 

independent astrocytic domains, more research is needed to better characterize the effects of these 

compounds on neuronal-astrocytic networks in vivo.  

To overcome the limitation of current methods, recent advances in optical and bioengineering 

techniques, including the development of novel genetically-encoded fluorescent indicators and 

nanosensors in transgenic mice, circuit tracing tools and dynamic two-photon or three-dimensional 

imaging, offer opportunities to dissect the specific contributions of cellular interactions within 

specific microcircuits and to assess the distribution of extracellular and intracellular ions, thus 

providing better insights on the spatiotemporal dynamics of [K+]o and their correlation with Ca2+ 

signalling385,435,463,628. For instance, “optogenetic tagging” has been successfully used for the 

identification of specific cellular subtypes with high spatiotemporal resolution. This genetic 

approach is based on the Cre-dependent expression of light-sensitive opsins (e.g. 

channelrhodopsin) in a given neuronal population, typically achieved through the use of virus 

delivery systems (e.g. rabies)629,630,631. Furthermore, other tools acting at molecular levels will 

enable the direct manipulation of different signalling pathways through the overexpression of 

genes and proteins that are specific to neuronal populations (e.g. GRK6 isoform for DA, GATA-

2 transcription factor for 5-HT)632,633.  

Together, the combination of both cellular (electrophysiological and optical recordings) and 

molecular (genetic tagging and overexpression of proteins) approaches can help better characterize 

the effectors of the astrocytic K+ clearance process and their targets at molecular, cellular, synaptic 

and network levels, and thus their behavioural correlates.  
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In line with the design of more physiological and localized experiments to examine the role of 

neuromodulators and astrocytes within specific neuronal networks, it would be interesting to assess 

whether endogenous increases in neuromodulator release from different neuronal populations 

located across brain structures are sufficient to affect astrocytic K+ clearance mechanisms, leading 

to differential modulation of gliotransmission379 and resonant frequency properties underlying 

different oscillations in vivo. In this regard, large-scale simultaneous optical recordings of neuronal 

and astrocytic networks across brain structures have the potential to achieve the spatiotemporal 

resolution for accurate analysis of the functional organization and interregional interactions of 

neuronal oscillations during particular behaviours, such as sleep, as originally suggested fifteen 

years ago108. Indeed, combinations of brain stimulation together with simultaneous recordings 

from large tagged cellular populations have the potential to reveal the direct effects of endogenous 

neuromodulator’s release on astrocytic [K+]o clearance function, thus unravelling physiological 

interactions across brain structures presumably implicated in different behaviours.  

Finally, despite the proposed mechanisms of action for each neuromodulator on K+ clearance 

mechanisms and membrane properties, we cannot rule out the existence of interactions between 

the above-mentioned neuromodulators and other molecules that were not tested in the present 

study (e.g. Orexin, D-serine, ATP/adenosine, glutamate)142,634. Likewise, it is possible that the 

observed effects were due to neuromodulators acting on different cell types (i.e. microglia, 

oligodendrocytes)523,635. Therefore, additional studies are required to complement the work 

presented in this thesis and provide answers to unexplored questions, regarding (1) the impact of 

convergent signalling pathways activated by different neuromodulators specifically on astrocytic 

K+ clearance mechanisms and resonance frequency properties in different cortical layers, and (2) 

the contribution of other glial cell types, namely oligodendrocytes, to the observed alterations in 
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network oscillations, as they also express channels and receptors involved in [K+]o clearance636 

(Appendix Table 3).  

For this purpose, computational models based on biological data hold promise in fulfilling our 

experimental and theoretical knowledge about the differential regulation of neuromodulators on 

neuronal network activity by predicting their spatiotemporal actions within the CNS, which in turn 

will help design more specific and effective therapeutic strategies for mental illnesses in which 

these circuits are dysregulated580,637,638. 
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APPENDIX: Tables 
 

K+ electrode Stimulus Amplitude (mM) #Rise time (sec) #Decay time (sec) 

Single-barrelled 
30 mM KCl 4.23±0.92 4.27±0.48 30.7±2.85 

15 mM KCl 3.03±1.03 3.44±0.92  24.8±12.4 

Double-barrelled 

(1 µm) 

30 mM KCl 8.34±0.33 1.37±0.18          26.3±4.01 

15 mM KCl 4.59±0.66 2.00±0.12          22.0±7.54 

Double-barrelled 

(1 µm)* 

30 mM KCl 15.3±1.05 0.28±0.01          3.08±0.13 

15 mM KCl 6.67±0.81 0.22±0.01  2.45±0.13 

Double-barrelled 

(3 µm) 

30 mM KCl 6.12±0.74 3.49±0.28          51.4±4.78 

15 mM KCl 4.42±0.87 4.22±0.53          34.8±7.36 

Table 1. Measurement of different properties of K+ transients with different types of K+-selective 

microelectrodes under normal physiological conditions. Data is reported as mean ± S.E.M. #20-80 % 

rise time, 80-20 % decay time. *Double-barrelled K+-selective microelectrode with 1 µm tips after 

optimization 

 

[K+]o   Condition Clearance rate 

(mM/sec) 

Amplitude 

(mM) 

#Rise time (sec) #Peak area 

(mMxsec) 

 

30 mM 

aCSF  2.02±0.14  9.19±0.65 0.40±0.03  1.91±0.10 

BaCl2  0.66±0.07  9.00±0.69 0.40±0.03         2.51±0.13 

Gap-26/27  0.71±0.08  9.16±0.74 0.41±0.03         2.21±0.14 

 

15 mM 

aCSF 1.09±0.09  4.38±0.34 0.34±0.02         1.01±0.05 

BaCl2 0.71±0.04        4.45±0.34       0.36±0.01         1.42±0.09 

Gap-26/27         0.81±0.08        4.45±0.44       0.36±0.03         1.18±0.08 

 

5 mM 

aCSF 0.56±0.05        1.38±0.11       0.27±0.01         0.30±0.02 

BaCl2         0.28±0.01        1.32±0.13       0.29±0.02         0.37±0.02 

Gap-26/27         0.49±0.05        1.34±0.09       0.28±0.02         0.28±0.02 

Table 2. The impact of altered astrocytic K+ clearance on the K+ clearance rate. Data is reported as 

mean ± S.E.M. #10-90 % rise time, top 10 % peak area.  
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Component Cellular 

expression 

Active [K+]o K+ clearance 

mechanism  

Brain area 

AQP-4 channel Astrocyte639 

Ependymal cell639 

Müller cell640,641 

Low and High 

[K+]o
642 

Net K+ uptake642,643 

K+ spatial 

buffering639,644 

K+ siphoning641 

Cerebellum639 

Supraoptic nucleus639 

Thalamus639 

Retina640,641 

Neocortex639,643  

Hippocampus644 

Kir channels: 

     Kir4.1  
      ATP-dependent 

      

 

 
     Kir2.1 
      Classical    

      inwardly 
      rectifying 

       

       

      
     Kir5.1  
      Other 

      
     Kir6.1 
      ATP-sensitive 
 

 

Astrocyte347,348,645,646 

Müller cell641,647 

Oligodendrocyte530 

Bergmann cell530 

Low, High and 

Excessive 

[K+]o
530,647,648 

Net K+ uptake530 

K+ spatial 

buffering648 

K+ siphoning641,647 

Retina641,647 

Hippocampus347, 646 

Neocortex348 

Spinal cord645 

Olfactory bulb646 

Thalamus646 

Astrocyte649 

Müller cell647 

Oligodendrocyte530 

Bergmann cell530 

Neuron530,650 

Low, High and 

Excessive 

[K+]o
530,647,648 

Net K+ uptake647,530  

K+ siphoning647 

Hippocampus649 

Retina647 

Cerebellum530 

Neocortex650 

Olfactory bulb650 

Thalamus650 

Basal ganglia650 

Astrocyte646 

Müller cell651 

Oligodendrocyte652 

Low, High and 

Excessive 

[K+]o
530,647,648 

Net K+ uptake530 

K+ siphoning651 

Retina651 

Neocortex646 

Olfactory bulb646 

Astrocyte530,653 

Müller cell654 

Oligodendrocyte530 

Bergmann cell653 

Neuron530 

High and 

Excessive 

[K+]o
653 

 

K+ spatial 

buffering653 

Hippocampus653 

Neocortex653 

Cerebellum653 

Retina654 

Gap junctions: 

       Cx43 

        

 

 

 

 
 

       Cx30 

 

       
 

       Cx47 
       OCx47:ACx43 

 
       
 

 

       Cx32 
        OCx32:ACx30 

Astrocyte531,567,655,656  

Müller cell657 

Bergmann cell658 

Ependymal cell659 

 

High and 

Excessive 

[K+]o
531, 532 

K+ spatial 

buffering531 

Hippocampus531,532 

Neocortex567 

Cerebellum658,660 

Spinal cord655 

Brain stem378 

Hypothalamus378,656 

Retina657 

Thalamus656 

 

Astrocyte531,567,655,656 

 

 

High and 

Excessive[K+]o 
531, 532 

K+ spatial 

buffering531 

Hippocampus531,532
 

Neocortex567,656 

Spinal cord655 
 

Oligodendrocyte636, 

656,661 

High and 

Excessive 

[K+]o
636 

K+ spatial 

buffering636 

Spinal cord636,661 

Neocortex661 

Hippocampus661 

Cerebellum661 

Brainstem661 

Oligodendrocyte636, 

656,659 

Neuron659 

High and 

Excessive 

[K+]o
636 

K+ spatial 

buffering636 

Neocortex656 

Hypothalamus656 

Thalamus656 

Spinal cord636 
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Table 3. The differential involvement of distinct astrocytic channels, pumps and cotransporters in K+ 

clearance mechanisms depending on [K+]o. Low [K+]o refers to <5 mM, High [K+] o refers to 5-12 mM, 

Excessive [K+]o refers to >12 mM. 

 

 

 

Time (min) Area Rin (M) RMP (mV) #Coupled  X/Y ratio 

30 S1 32.28.9 -76.61.5 56.06.1 1.80.2 

12 S1 14.93.0 -76.61.7 19.81.8 1.40.1 

30 M1 64.47.3 -78.61.5 32.12.7 1.00.1 

12 M1 36.88.9 -72.81.1 11.41.9 0.90.1 

Table 4. Astrocytic networks differ between cortical areas under normal physiological conditions. 

Data is reported as mean ± S.E.M. #Number of biocytin-coupled astrocytes. Rin, input resistance; RMP, 

resting membrane potential 

 

 

 

 

 

 

 

NKA pump Astrocyte452,498  

Müller cell262 

Oligodendrocyte662 

Bergmann cell663 

Neuron664 

Low and High 

[K+]o
452,529,498 

Net K+ uptake 262, 

452,498,529  

K+ siphoning262 

Neocortex498,662 

Spinal cord498 

Hippocampus452 

Retina262 

Cerebellum663 
 

NKCC1 

cotransporter 

Astrocyte345,452,665 

Oligodendrocyte666 

Bergmann cell667 

Neuron668 

High [K+]o
345,452, 

 
529,665 

Net K+ uptake345,452, 

529,665 

Neocortex345,665,668 

Hippocampus452 

Spinal cord666 

Cerebellum667 
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Appendix: Figures 

 

 
 

Figure 1. Comparison between different types of K+-selective microelectrode measurements in 

cortical slices.  

 

 

 

 

 

 

  

1
 m

M
 

2
 m

M
 

 

2
 m

M
 

 

4
 m

M
 

M
a
x
. 

[K
+
] o

 a
m

p
li

tu
d

e
 (

m
M

)  



199 

 

 

 
 

 
 

Figure 2. Imaging [K+]o dynamics.  
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Figure 3. Astrocytes from the motor cortex form smaller networks compared to astrocytes from the 

somatosensory cortex. 
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Appendix: Figure legends 
 

Figure 1. Comparison between different types of K+-selective microelectrode measurements in 

cortical slices. a) DIC images showing the experimental setup for [K+]o recordings using single-barrelled 

K+-selective microelectrodes (SB, left), double-barrelled K+-selective microelectrodes with 3 µm tips (DB-

3, middle) and optimized double-barrelled K+-selective microelectrodes with 1 µm tips (DB-1*, right) 

following KCl puffs (red asterisk). b-d) Sample traces of [K+]o recordings depicting changes in the K+ 

clearance time course recorded with SB microelectrodes (b), DB-1 microelectrodes (c) before (top) and 

after (bottom) optimization, and DB-3 microelectrodes (d), following local application of 30 mM KCl 

(indicated by arrow) under normal aCSF conditions. e) Quantitative analysis of the impact of local 

application of 30 mM KCl puffs on the K+ transients’ amplitude (in mM, left), 20-80 % rise time (in 

seconds, middle) and 80-20 % decay time (in seconds, right), recorded with SB (black; n=10 recordings), 

DB-3 (blue; n=9 recordings), DB-1 (red; n=8 recordings) and DB-1* (green; n=30 recordings) 

microelectrodes under normal aCSF conditions. Note the faster rise and decay times recorded with DB-1* 

microelectrodes after optimization compared to suboptimal electrodes. Data is reported as mean ± SEM.  

*p < 0.05; **p < 0.01; unpaired student t-test 

 

Figure 2. Imaging [K+]o dynamics. a) Fluorescence image showing SR101 stained astrocytes. Puffs 

containing KCl at various concentrations and APG-2 salt are applied close to “astrocyte Alpha” (blue), 

defined as distance 0 µm. b) Sample traces of K+ transients imaged with APG-2 salt fluorescent dye in the 

extracellular space showing changes from baseline ΔF/F0 fluorescence levels following local application 

of 30 mM KCl puffs (arrow) under normal aCSF conditions at various distances (colour-coded in a). c-d) 

Quantitative analysis of the impact of 30 mM (top, continuous line) and 15 mM (bottom, dashed line) KCl 

puffs on the K+ transients’ rise time (c) and decay time (d) under normal aCSF (30 mM, n=8 recordings; 15 

mM, n=9 recordings), 100 µM BaCl2  (30 mM, n=10 recordings; 15 mM, n=8 recordings) and Gap-26/27 

(30 mM, n=10 recordings; 15 mM, n=9 recordings) conditions. Data is reported as mean ± SEM. *p < 0.05; 

**p < 0.0001; two-way ANOVA 

 

Figure 3. Astrocytes from the motor cortex form smaller networks compared to astrocytes from the 

somatosensory cortex. a-b) Confocal images (20x objective top, bottom; 40x objective middle) showing 

direct (12 minutes, a) or indirect (30 minutes, b) networks of biocytin-stained astrocytes in layer II/III of 

the somatosensory (S1, left) or motor (M1, right) cortices under normal aCSF (top), Gap-26/27 (middle) or 

following local application of 30 mM KCl (bottom) conditions. Top left inset – arrows indicate y and x axis 

to measure X/Y ratios. c-d) Astrocytes loaded for 12 min (c; S1 – aCSF n=11, Gap-26/27 n=7, 30 mM KCl 

n=7; M1 – aCSF n=8, Gap-26/27 n=7, 30 KCl mM n=9) and 30 min (d; S1 – aCSF n=11, Gap-26/27 n=14, 

30 mM KCl n=9; M1 – aCSF n=12, Gap-26/27 n=9, 30 mM KCl n=9) from M1 (blue) are less connected 

compared to astrocytes from S1 (red) in normal aCSF. Astrocytic coupling is significantly reduced after 

incubation with Gap-26/27 (middle) and increased after local application of 30 mM KCl (bottom) in both 

S1 (red) and M1 (blue) cortical areas. Data is reported as mean ± SEM. Asterisks represent significance 

levels between different conditions within the same area (S1 or M1). Pound signs represent significance 

levels between different areas (S1 vs M1) at the same condition.  #p < 0.01; **p < 0.01; unpaired student 

t-test 

 




