445 research outputs found

    Entanglement in continuous variable systems: Recent advances and current perspectives

    Get PDF
    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization, and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states, and its consequences for the characterization of multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non Gaussian states, a field of research that is to a large extent yet to be explored.Comment: 61 pages, 7 figures, 3 tables; Published as Topical Review in J. Phys. A, Special Issue on Quantum Information, Communication, Computation and Cryptography (v3: few typos corrected

    Tutorial: Nonlinear magnonics

    Full text link
    Nonlinear magnonics studies the nonlinear interaction between magnons and other physical platforms (phonon, photon, qubit, spin texture) to generate novel magnon states for information processing. In this tutorial, we first introduce the nonlinear interactions of magnons in pure magnetic systems and hybrid magnon-phonon and magnon-photon systems. Then we show how these nonlinear interactions can generate exotic magnonic phenomena. In the classical regime, we will cover the parametric excitation of magnons, bistability and multistability, and the magnonic frequency comb. In the quantum regime, we will discuss the single magnon state, Schr\"{o}dinger cat state and the entanglement and quantum steering among magnons, photons and phonons. The applications of the hybrid magnonics systems in quantum transducer and sensing will also be presented. Finally, we outlook the future development direction of nonlinear magnonics.Comment: 50 pages, 26 figure

    Beyond the person: the construction and transformation of blood as a resource

    Get PDF
    Many studies of blood donation have looked at the motives of donors, their relationship with the wider society and corresponding values such as gift-giving, altruism and responsibility. These underpin a rhetorical representation of person-to-person donation that neglects the many technical processes that take place between donation and eventual use and the material nature of blood itself. This ethnographic study, conducted in four UK blood donation sites, describes the various practices involved in routine sessions, rather than the motives or values or donors or staff. It focuses on the procedures and equipment that not only ensures blood is collected safely and efficiently, but the extent to which they determine the nature of the collected blood itself. Taking our cue from posthuman approaches, we argue donated blood as something that is ‘made’ only when it leaves the body; in other words, it is not simply extracted, but is constructed through specific practices. We illustrate how, as blood is separated from the body, it is increasingly depersonalised and reconstituted in order to have biomedical value. In this way, rather than reproducing the essentialist claim that blood is what social scientists often described as a ‘special kind of substance’, we point to the ways in which donated blood alters as it moves in time and space. We argue that such transformations occur in both symbolic and material realms, such that the capacity of blood to have both cultural meaning and clinical value is dependent on the fact that it is never stable or singular

    Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography

    Get PDF
    The growth of data-driven technologies, 5G, and the Internet place enormous pressure on underlying information infrastructure. There exist numerous proposals on how to deal with the possible capacity crunch. However, the security of both optical and wireless networks lags behind reliable and spectrally efficient transmission. Significant achievements have been made recently in the quantum computing arena. Because most conventional cryptography systems rely on computational security, which guarantees the security against an efficient eavesdropper for a limited time, with the advancement in quantum computing this security can be compromised. To solve these problems, various schemes providing perfect/unconditional security have been proposed including physical-layer security (PLS), quantum key distribution (QKD), and post-quantum cryptography. Unfortunately, it is still not clear how to integrate those different proposals with higher level cryptography schemes. So the purpose of the Special Issue entitled “Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography” was to integrate these various approaches and enable the next generation of cryptography systems whose security cannot be broken by quantum computers. This book represents the reprint of the papers accepted for publication in the Special Issue

    Quantum entanglement

    Get PDF
    All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.Comment: 110 pages, 3 figures, ReVTex4, Improved (slightly extended) presentation, updated references, minor changes, submitted to Rev. Mod. Phys

    Quantum Hacking in the Age of Measurement-Device-Independent Quantum Cryptography

    Get PDF
    Cryptography is essential for secure communication in the digital era. Today, public-key cryptography is widely employed, and has provided an efficient method for encrypting content and ensuring both confidentiality and authenticity of electronic communications. However, the security of these systems is based on assumptions of computational hardness within the constraints of current computing capability. Thus, as quantum computing becomes a reality, public-key algorithms will be genuinely vulnerable to attack. By contrast, quantum cryptography, which is based on quantum physics instead of mathematical assumptions, is able to achieve information-theoretic security. Advances in practical quantum cryptographic systems have not kept pace with theory, where an eavesdropper can relatively easily exploit loopholes in practical implementations to compromise theory-proved security. Bridging the gap between perfect theory and imperfect practice has become a priority for the growing field of quantum key distribution (QKD), which has strived to strengthen the practical security of QKD systems. Among all the countermeasures against quantum hacking, the measurement-device-independent (MDI) QKD protocol is promising because it is immune to all side-channel attacks on measurement devices. However, the MDI QKD protocol has some limitations that critically restrict its practical usefulness. Technically, the MDI scheme is not compatible with existing QKD systems, and produces a low key rate. In addition, the theory underlying MDI QKD security is based on the use of trusted source stations. Thus, this protocol is not a universal solution. This thesis further investigates the practical security of quantum cryptography in and beyond MDI quantum cryptography. To overcome the technical limitations of MDI QKD, we first evaluate two other countermeasures against imperfect detections. The first is an industrial patch based on random detection efficiency, recently implemented by ID Quantique in the commercial Clavis2 QKD system. While powerful, experimental testing shows that this countermeasure is not sufficient to defeat the detector blinding attack. The second countermeasure aims to achieve a higher key rate than MDI QKD while maintaining the same security properties. However, our research shows that detector-device-independent (DDI) QKD security is not equivalent to that of MDI QKD and, further, that DDI QKD is insecure against detector side-channel attacks. While this initial work points to the superior performance of MDI QKD systems, core challenges remain. The fundamental security assumption adopted for MDI QKD systems, regarding the exclusive use of trustable source stations, cannot always be satisfied in practice. Our study revealed several side channels of source devices. The first is disclosed from the implementation of a decoy-state protocol, which is widely used in QKD systems with weak coherent sources. The pump-current-modulated intensities result in a timing mismatch between the signal and decoy states, violating the key assumption in the decoy-state QKD protocol. Moreover, an active Eve can break the basic assumption about photon numbers in the QKD system. In this work, we experimentally demonstrate a laser seeding attack on the laser source, which shows that Eve can increase the emission power of the laser diode. Furthermore, by shining a high-power laser into an optical attenuator, Eve can decrease the attenuation values. The increase in laser emission power and the decrease in attenuation leads to an increase in mean photon numbers. In summary, MDI QKD is a milestone in quantum cryptography. However, this thesis indicates the importance of continued investigations into the practical security of MDI QKD. The analysis of practical security should be extended to other countermeasures against side-channel attacks and the source stations in MDI QKD systems. Practical quantum hacking and security analysis promote the development of quantum cryptographic systems, which will eventually achieve the unconditional security claimed in theory

    Tales of Research Misconduct: A Lacanian Diagnostics of Integrity Challenges in Science Novels

    Get PDF
    research integrity; scientific misconduct; science novels; Lacanian psychoanalysis; continental philosophy; falsification; plagiarism; ethic
    • 

    corecore