12 research outputs found

    Ship steering control using feedforward neural networks

    Get PDF
    One significant problem in the design of ship steering control systems is that the dynamics of the vessel change with operating conditions such as the forward speed of the vessel, the depth of the water and loading conditions etc. Approaches considered in the past to overcome these difficulties include the use of self adaptive control systems which adjust the control characteristics on a continuous basis to suit the current operating conditions. Artificial neural networks have been receiving considerable attention in recent years and have been considered for a variety of applications where the characteristics of the controlled system change significantly with operating conditions or with time. Such networks have a configuration which remains fixed once the training phase is complete. The resulting controlled systems thus have more predictable characteristics than those which are found in many forms of traditional self-adaptive control systems. In particular, stability bounds can be investigated through simulation studies as with any other form of controller having fixed characteristics. Feedforward neural networks have enjoyed many successful applications in the field of systems and control. These networks include two major categories: multilayer perceptrons and radial basis function networks. In this thesis, we explore the applicability of both of these artificial neural network architectures for automatic steering of ships in a course changing mode of operation. The approach that has been adopted involves the training of a single artificial neural network to represent a series of conventional controllers for different operating conditions. The resulting network thus captures, in a nonlinear fashion, the essential characteristics of all of the conventional controllers. Most of the artificial neural network controllers developed in this thesis are trained with the data generated through simulation studies. However, experience is also gained of developing a neuro controller on the basis of real data gathered from an actual scale model of a supply ship. Another important aspect of this work is the applicability of local model networks for modelling the dynamics of a ship. Local model networks can be regarded as a generalized form of radial basis function networks and have already proved their worth in a number of applications involving the modelling of systems in which the dynamic characteristics can vary significantly with the system operating conditions. The work presented in this thesis indicates that these networks are highly suitable for modelling the dynamics of a ship

    Heterogeneous neural networks: theory and applications

    Get PDF
    Aquest treball presenta una classe de funcions que serveixen de models neuronals generalitzats per ser usats en xarxes neuronals artificials. Es defineixen com una mesura de similitud que actúa com una definició flexible de neurona vista com un reconeixedor de patrons. La similitud proporciona una marc conceptual i serveix de cobertura unificadora de molts models neuronals de la literatura i d'exploració de noves instàncies de models de neurona. La visió basada en similitud porta amb naturalitat a integrar informació heterogènia, com ara quantitats contínues i discretes (nominals i ordinals), i difuses ó imprecises. Els valors perduts es tracten de manera explícita. Una neurona d'aquesta classe s'anomena neurona heterogènia i qualsevol arquitectura neuronal que en faci ús serà una Xarxa Neuronal Heterogènia.En aquest treball ens concentrem en xarxes neuronals endavant, com focus inicial d'estudi. Els algorismes d'aprenentatge són basats en algorisms evolutius, especialment extesos per treballar amb informació heterogènia. En aquesta tesi es descriu com una certa classe de neurones heterogènies porten a xarxes neuronals que mostren un rendiment molt satisfactori, comparable o superior al de xarxes neuronals tradicionals (com el perceptró multicapa ó la xarxa de base radial), molt especialment en presència d'informació heterogènia, usual en les bases de dades actuals.This work presents a class of functions serving as generalized neuron models to be used in artificial neural networks. They are cast into the common framework of computing a similarity function, a flexible definition of a neuron as a pattern recognizer. The similarity endows the model with a clear conceptual view and serves as a unification cover for many of the existing neural models, including those classically used for the MultiLayer Perceptron (MLP) and most of those used in Radial Basis Function Networks (RBF). These families of models are conceptually unified and their relation is clarified. The possibilities of deriving new instances are explored and several neuron models --representative of their families-- are proposed. The similarity view naturally leads to further extensions of the models to handle heterogeneous information, that is to say, information coming from sources radically different in character, including continuous and discrete (ordinal) numerical quantities, nominal (categorical) quantities, and fuzzy quantities. Missing data are also explicitly considered. A neuron of this class is called an heterogeneous neuron and any neural structure making use of them is an Heterogeneous Neural Network (HNN), regardless of the specific architecture or learning algorithm. Among them, in this work we concentrate on feed-forward networks, as the initial focus of study. The learning procedures may include a great variety of techniques, basically divided in derivative-based methods (such as the conjugate gradient)and evolutionary ones (such as variants of genetic algorithms).In this Thesis we also explore a number of directions towards the construction of better neuron models --within an integrant envelope-- more adapted to the problems they are meant to solve.It is described how a certain generic class of heterogeneous models leads to a satisfactory performance, comparable, and often better, to that of classical neural models, especially in the presence of heterogeneous information, imprecise or incomplete data, in a wide range of domains, most of them corresponding to real-world problems.Postprint (published version

    Generalized Bayesian inference under prior-data conflict

    Get PDF
    This thesis is concerned with the generalisation of Bayesian inference towards the use of imprecise or interval probability, with a focus on model behaviour in case of prior-data conflict. Bayesian inference is one of the main approaches to statistical inference. It requires to express (subjective) knowledge on the parameter(s) of interest not incorporated in the data by a so-called prior distribution. All inferences are then based on the so-called posterior distribution, the subsumption of prior knowledge and the information in the data calculated via Bayes' Rule. The adequate choice of priors has always been an intensive matter of debate in the Bayesian literature. While a considerable part of the literature is concerned with so-called non-informative priors aiming to eliminate (or, at least, to standardise) the influence of priors on posterior inferences, inclusion of specific prior information into the model may be necessary if data are scarce, or do not contain much information about the parameter(s) of interest; also, shrinkage estimators, common in frequentist approaches, can be considered as Bayesian estimators based on informative priors. When substantial information is used to elicit the prior distribution through, e.g, an expert's assessment, and the sample size is not large enough to eliminate the influence of the prior, prior-data conflict can occur, i.e., information from outlier-free data suggests parameter values which are surprising from the viewpoint of prior information, and it may not be clear whether the prior specifications or the integrity of the data collecting method (the measurement procedure could, e.g., be systematically biased) should be questioned. In any case, such a conflict should be reflected in the posterior, leading to very cautious inferences, and most statisticians would thus expect to observe, e.g., wider credibility intervals for parameters in case of prior-data conflict. However, at least when modelling is based on conjugate priors, prior-data conflict is in most cases completely averaged out, giving a false certainty in posterior inferences. Here, imprecise or interval probability methods offer sound strategies to counter this issue, by mapping parameter uncertainty over sets of priors resp. posteriors instead of over single distributions. This approach is supported by recent research in economics, risk analysis and artificial intelligence, corroborating the multi-dimensional nature of uncertainty and concluding that standard probability theory as founded on Kolmogorov's or de Finetti's framework may be too restrictive, being appropriate only for describing one dimension, namely ideal stochastic phenomena. The thesis studies how to efficiently describe sets of priors in the setting of samples from an exponential family. Models are developed that offer enough flexibility to express a wide range of (partial) prior information, give reasonably cautious inferences in case of prior-data conflict while resulting in more precise inferences when prior and data agree well, and still remain easily tractable in order to be useful for statistical practice. Applications in various areas, e.g. common-cause failure modeling and Bayesian linear regression, are explored, and the developed approach is compared to other imprecise probability models.Das Thema dieser Dissertation ist die Generalisierung der Bayes-Inferenz durch die Verwendung von unscharfen oder intervallwertigen Wahrscheinlichkeiten. Ein besonderer Fokus liegt dabei auf dem Modellverhalten in dem Fall, dass Vorwissen und beobachtete Daten in Konflikt stehen. Die Bayes-Inferenz ist einer der Hauptansätze zur Herleitung von statistischen Inferenzmethoden. In diesem Ansatz muss (eventuell subjektives) Vorwissen über die Modellparameter in einer sogenannten Priori-Verteilung (kurz: Priori) erfasst werden. Alle Inferenzaussagen basieren dann auf der sogenannten Posteriori-Verteilung (kurz: Posteriori), welche mittels des Satzes von Bayes berechnet wird und das Vorwissen und die Informationen in den Daten zusammenfasst. Wie eine Priori-Verteilung in der Praxis zu wählen sei, ist dabei stark umstritten. Ein großer Teil der Literatur befasst sich mit der Bestimmung von sogenannten nichtinformativen Prioris. Diese zielen darauf ab, den Einfluss der Priori auf die Posteriori zu eliminieren oder zumindest zu standardisieren. Falls jedoch nur wenige Daten zur Verfügung stehen, oder diese nur wenige Informationen in Bezug auf die Modellparameter bereitstellen, kann es hingegen nötig sein, spezifische Priori-Informationen in ein Modell einzubeziehen. Außerdem können sogenannte Shrinkage-Schätzer, die in frequentistischen Ansätzen häufig zum Einsatz kommen, als Bayes-Schätzer mit informativen Prioris angesehen werden. Wenn spezifisches Vorwissen zur Bestimmung einer Priori genutzt wird (beispielsweise durch eine Befragung eines Experten), aber die Stichprobengröße nicht ausreicht, um eine solche informative Priori zu überstimmen, kann sich ein Konflikt zwischen Priori und Daten ergeben. Dieser kann sich darin äußern, dass die beobachtete (und von eventuellen Ausreißern bereinigte) Stichprobe Parameterwerte impliziert, die aus Sicht der Priori äußerst überraschend und unerwartet sind. In solch einem Fall kann es unklar sein, ob eher das Vorwissen oder eher die Validität der Datenerhebung in Zweifel gezogen werden sollen. (Es könnten beispielsweise Messfehler, Kodierfehler oder eine Stichprobenverzerrung durch selection bias vorliegen.) Zweifellos sollte sich ein solcher Konflikt in der Posteriori widerspiegeln und eher vorsichtige Inferenzaussagen nach sich ziehen; die meisten Statistiker würden daher davon ausgehen, dass sich in solchen Fällen breitere Posteriori-Kredibilitätsintervalle für die Modellparameter ergeben. Bei Modellen, die auf der Wahl einer bestimmten parametrischen Form der Priori basieren, welche die Berechnung der Posteriori wesentlich vereinfachen (sogenannte konjugierte Priori-Verteilungen), wird ein solcher Konflikt jedoch einfach ausgemittelt. Dann werden Inferenzaussagen, die auf einer solchen Posteriori basieren, den Anwender in falscher Sicherheit wiegen. In dieser problematischen Situation können Intervallwahrscheinlichkeits-Methoden einen fundierten Ausweg bieten, indem Unsicherheit über die Modellparameter mittels Mengen von Prioris beziehungsweise Posterioris ausgedrückt wird. Neuere Erkenntnisse aus Risikoforschung, Ökonometrie und der Forschung zu künstlicher Intelligenz, die die Existenz von verschiedenen Arten von Unsicherheit nahelegen, unterstützen einen solchen Modellansatz, der auf der Feststellung aufbaut, dass die auf den Ansätzen von Kolmogorov oder de Finetti basierende übliche Wahrscheinlichkeitsrechung zu restriktiv ist, um diesen mehrdimensionalen Charakter von Unsicherheit adäquat einzubeziehen. Tatsächlich kann in diesen Ansätzen nur eine der Dimensionen von Unsicherheit modelliert werden, nämlich die der idealen Stochastizität. In der vorgelegten Dissertation wird untersucht, wie sich Mengen von Prioris für Stichproben aus Exponentialfamilien effizient beschreiben lassen. Wir entwickeln Modelle, die eine ausreichende Flexibilität gewährleisten, sodass eine Vielfalt von Ausprägungen von partiellem Vorwissen beschrieben werden kann. Diese Modelle führen zu vorsichtigen Inferenzaussagen, wenn ein Konflikt zwischen Priori und Daten besteht, und ermöglichen dennoch präzisere Aussagen für den Fall, dass Priori und Daten im Wesentlichen übereinstimmen, ohne dabei die Einsatzmöglichkeiten in der statistischen Praxis durch eine zu hohe Komplexität in der Anwendung zu erschweren. Wir ermitteln die allgemeinen Inferenzeigenschaften dieser Modelle, die sich durch einen klaren und nachvollziehbaren Zusammenhang zwischen Modellunsicherheit und der Präzision von Inferenzaussagen auszeichnen, und untersuchen Anwendungen in verschiedenen Bereichen, unter anderem in sogenannten common-cause-failure-Modellen und in der linearen Bayes-Regression. Zudem werden die in dieser Dissertation entwickelten Modelle mit anderen Intervallwahrscheinlichkeits-Modellen verglichen und deren jeweiligen Stärken und Schwächen diskutiert, insbesondere in Bezug auf die Präzision von Inferenzaussagen bei einem Konflikt von Vorwissen und beobachteten Daten

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty

    Dual-Use Space Technology Transfer Conference and Exhibition

    Get PDF
    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry
    corecore