1,285 research outputs found

    Gradient coil design and acoustic noise control in magnetic resonance imaging systems

    Get PDF

    Single shot three-dimensional pulse sequence for hyperpolarized 13 C MRI.

    Get PDF
    PURPOSE: Metabolic imaging with hyperpolarized 13 C-labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single-shot three-dimensional (3D) imaging sequence and demonstrate its capability to generate 13 C MR images in tumor-bearing mice injected with hyperpolarized [1-13 C]pyruvate. METHODS: The pulse sequence acquires a stack-of-spirals at two spin echoes after a single excitation pulse and encodes the kz-dimension in an interleaved manner to enhance robustness to B0 inhomogeneity. Spectral-spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized 13 C-labeled metabolites. RESULTS: A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm3  × 2 s was achieved in tumor images of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate acquired in vivo. Higher resolution in the z-direction, with a different k-space trajectory, was demonstrated in measurements on a thermally polarized [1-13 C]lactate phantom. CONCLUSION: The pulse sequence is capable of imaging hyperpolarized 13 C-labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740-752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.The work was supported by a Cancer Research UK Programme grant (17242) to KMB and by the CRUK-EPSRC Imaging Centre in Cambridge and Manchester (16465). JW was also supported, in part, by a grant from the Danish Strategic Research Council (LIFE-DNP: Hyperpolarized magnetic resonance for in vivo quantification of lipid, sugar and amino acid metabolism in lifestyle related diseases).This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/mrm.2616

    Wearable Coaxially-shielded Metamaterial for Magnetic Resonance Imaging

    Full text link
    Recent advancements in metamaterials have yielded the possibility of a wireless solution to improve signal-to-noise ratio (SNR) in magnetic resonance imaging (MRI). Unlike traditional closely packed local coil arrays with rigid designs and numerous components, these lightweight, cost-effective metamaterials eliminate the need for radio frequency (RF) cabling, baluns, adapters, and interfaces. However, their clinical adoption has been limited by their low sensitivity, bulky physical footprint, and limited, specific use cases. Herein, we introduce a wearable metamaterial developed using commercially available coaxial cable, designed for a 3.0 T MRI system. This metamaterial inherits the coaxially-shielded structure of its constituent coaxial cable, effectively containing the electric field within the cable, thereby mitigating the electric coupling to its loading while ensuring safer clinical adoption, lower signal loss, and resistance to frequency shifts. Weighing only 50g, the metamaterial maximizes its sensitivity by conforming to the anatomical region of interest. MRI images acquired using this metamaterial with various pulse sequences demonstrate an up to 2-fold SNR enhancement when compared to a state-of-the-art 16-channel knee coil. This work introduces a novel paradigm for constructing metamaterials in the MRI environment, paving the way for the development of next-generation wireless MRI technology

    History and physical principles of MRI

    Get PDF
    International audienceThe first chapter of the three-volume Magnetic Resonance Imaging Handbook describes the historical and physical background of modern nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) methods and techniques
    • …
    corecore