77 research outputs found

    Portable optically tracked ultrasound system for scoliosis measurement

    Get PDF
    Monitoring spinal curvature in adolescent kyphoscoliosis requires reg-ular radiographic examinations, however, the applied ionizing radiation increases the risk of cancer. Ultrasound imaging is favorable over X-ray because it does not emit ionizing radiation. It has been shown in the past that tracked ultrasound can be used to localize vertebral transverse processes as landmarks along the spine to measure curvature angles. Tests have been performed with spine phan-toms, but scanning protocol, tracking system, data acquisition and processing time has not been considered in human subjects yet. In this paper, a portable op-tically tracked ultrasound system for scoliosis measurement is presented. It pro-vides a simple way to acquire data in the clinical environment with the aim of comparing results to current X-ray-based measurement. The workflow of the pro-cedure was tested on volunteers. The customized open-source software is shared with the community as part of our effort to make a clinically practical system

    SMART IMAGE-GUIDED NEEDLE INSERTION FOR TISSUE BIOPSY

    Get PDF
    M.S

    Exploiting Temporal Image Information in Minimally Invasive Surgery

    Get PDF
    Minimally invasive procedures rely on medical imaging instead of the surgeons direct vision. While preoperative images can be used for surgical planning and navigation, once the surgeon arrives at the target site real-time intraoperative imaging is needed. However, acquiring and interpreting these images can be challenging and much of the rich temporal information present in these images is not visible. The goal of this thesis is to improve image guidance for minimally invasive surgery in two main areas. First, by showing how high-quality ultrasound video can be obtained by integrating an ultrasound transducer directly into delivery devices for beating heart valve surgery. Secondly, by extracting hidden temporal information through video processing methods to help the surgeon localize important anatomical structures. Prototypes of delivery tools, with integrated ultrasound imaging, were developed for both transcatheter aortic valve implantation and mitral valve repair. These tools provided an on-site view that shows the tool-tissue interactions during valve repair. Additionally, augmented reality environments were used to add more anatomical context that aids in navigation and in interpreting the on-site video. Other procedures can be improved by extracting hidden temporal information from the intraoperative video. In ultrasound guided epidural injections, dural pulsation provides a cue in finding a clear trajectory to the epidural space. By processing the video using extended Kalman filtering, subtle pulsations were automatically detected and visualized in real-time. A statistical framework for analyzing periodicity was developed based on dynamic linear modelling. In addition to detecting dural pulsation in lumbar spine ultrasound, this approach was used to image tissue perfusion in natural video and generate ventilation maps from free-breathing magnetic resonance imaging. A second statistical method, based on spectral analysis of pixel intensity values, allowed blood flow to be detected directly from high-frequency B-mode ultrasound video. Finally, pulsatile cues in endoscopic video were enhanced through Eulerian video magnification to help localize critical vasculature. This approach shows particular promise in identifying the basilar artery in endoscopic third ventriculostomy and the prostatic artery in nerve-sparing prostatectomy. A real-time implementation was developed which processed full-resolution stereoscopic video on the da Vinci Surgical System

    Ultrasound Guidance in Perioperative Care

    Get PDF

    Ultrasound Guidance in Perioperative Care

    Get PDF

    DYNAMIC MEASUREMENT OF THREE-DIMENSIONAL MOTION FROM SINGLE-PERSPECTIVE TWO-DIMENSIONAL RADIOGRAPHIC PROJECTIONS

    Get PDF
    The digital evolution of the x-ray imaging modality has spurred the development of numerous clinical and research tools. This work focuses on the design, development, and validation of dynamic radiographic imaging and registration techniques to address two distinct medical applications: tracking during image-guided interventions, and the measurement of musculoskeletal joint kinematics. Fluoroscopy is widely employed to provide intra-procedural image-guidance. However, its planar images provide limited information about the location of surgical tools and targets in three-dimensional space. To address this limitation, registration techniques, which extract three-dimensional tracking and image-guidance information from planar images, were developed and validated in vitro. The ability to accurately measure joint kinematics in vivo is an important tool in studying both normal joint function and pathologies associated with injury and disease, however it still remains a clinical challenge. A technique to measure joint kinematics from single-perspective x-ray projections was developed and validated in vitro, using clinically available radiography equipmen

    Augmented reality for computer assisted orthopaedic surgery

    Get PDF
    In recent years, computer-assistance and robotics have established their presence in operating theatres and found success in orthopaedic procedures. Benefits of computer assisted orthopaedic surgery (CAOS) have been thoroughly explored in research, finding improvements in clinical outcomes, through increased control and precision over surgical actions. However, human-computer interaction in CAOS remains an evolving field, through emerging display technologies including augmented reality (AR) – a fused view of the real environment with virtual, computer-generated holograms. Interactions between clinicians and patient-specific data generated during CAOS are limited to basic 2D interactions on touchscreen monitors, potentially creating clutter and cognitive challenges in surgery. Work described in this thesis sought to explore the benefits of AR in CAOS through: an integration between commercially available AR and CAOS systems, creating a novel AR-centric surgical workflow to support various tasks of computer-assisted knee arthroplasty, and three pre–clinical studies exploring the impact of the new AR workflow on both existing and newly proposed quantitative and qualitative performance metrics. Early research focused on cloning the (2D) user-interface of an existing CAOS system onto a virtual AR screen and investigating any resulting impacts on usability and performance. An infrared-based registration system is also presented, describing a protocol for calibrating commercial AR headsets with optical trackers, calculating a spatial transformation between surgical and holographic coordinate frames. The main contribution of this thesis is a novel AR workflow designed to support computer-assisted patellofemoral arthroplasty. The reported workflow provided 3D in-situ holographic guidance for CAOS tasks including patient registration, pre-operative planning, and assisted-cutting. Pre-clinical experimental validation on a commercial system (NAVIO®, Smith & Nephew) for these contributions demonstrates encouraging early-stage results showing successful deployment of AR to CAOS systems, and promising indications that AR can enhance the clinician’s interactions in the future. The thesis concludes with a summary of achievements, corresponding limitations and future research opportunities.Open Acces

    Engineering precision surgery: Design and implementation of surgical guidance technologies

    Get PDF
    In the quest for precision surgery, this thesis introduces several novel detection and navigation modalities for the localization of cancer-related tissues in the operating room. The engineering efforts have focused on image-guided surgery modalities that use the complementary tracer signatures of nuclear and fluorescence radiation. The first part of the thesis covers the use of “GPS-like” navigation concepts to navigate fluorescence cameras during surgery, based on SPECT images of the patient. The second part of the thesis introduces several new imaging modalities such as a hybrid 3D freehand Fluorescence and freehand SPECT imaging and navigation device. Furthermore, to improve the detection of radioactive tracer-emissions during robot-assisted laparoscopic surgery, a tethered DROP-IN gamma probe is introduced. The clinical indications that are used to evaluate the new technologies were all focused on sentinel lymph node procedures in urology (i.e. prostate and penile cancer). Nevertheless, all presented techniques are of such a nature, that they can be applied to different surgical indications, including sentinel lymph node and tumor-receptor-targeted procedures, localization the primary tumor and metastatic spread. This will hopefully contribute towards more precise, less invasive and more effective surgical procedures in the field of oncology. Crystal Photonics GmbH Eurorad S.A. Intuitive Surgical Inc. KARL STORZ Endoscopie Nederland B.V. MILabs B.V. PI Medical Diagnostic Equipment B.V. SurgicEye GmbH Verb Surgical Inc.LUMC / Geneeskund
    corecore