6 research outputs found

    Finite-time and fixed-time sliding mode control for second-order nonlinear multiagent systems with external disturbances

    Get PDF
    In this paper, the leader-following consensus of second-order nonlinear multiagent systems (SONMASs) with external disturbances is studied. Firstly, based on terminal sliding model control method, a distributed control protocol is proposed over undirected networks, which can not only suppress the external disturbances, but also make the SONMASs achieve consensus in finite time. Secondly, to make the settling time independent of the initial values of systems, we improve the protocol and ensure that the SONMASs can reach the sliding surface and achieve consensus in fixed time if the control parameters satisfy some conditions. Moreover, for general directed networks, we design a new fixed-time control protocol and prove that both the sliding mode surface and consensus for SONMASs can be reached in fixed time. Finally, several numerical simulations are given to show the effectiveness of the proposed protocols

    Optical flow templates for mobile robot environment understanding

    Get PDF
    In this work we develop optical flow templates. In doing so, we introduce a practical tool for inferring robot egomotion and semantic superpixel labeling using optical flow in imaging systems with arbitrary optics. In order to do this we develop valuable understanding of geometric relationships and mathematical methods that are useful in interpreting optical flow to the robotics and computer vision communities. This work is motivated by what we perceive as directions for advancing the current state of the art in obstacle detection and scene understanding for mobile robots. Specifically, many existing methods build 3D point clouds, which are not directly useful for autonomous navigation and require further processing. Both the step of building the point clouds and the later processing steps are challenging and computationally intensive. Additionally, many current methods require a calibrated camera, which introduces calibration challenges and places limitations on the types of camera optics that may be used. Wide-angle lenses, systems with mirrors, and multiple cameras all require different calibration models and can be difficult or impossible to calibrate at all. Finally, current pixel and superpixel obstacle labeling algorithms typically rely on image appearance. While image appearance is informative, image motion is a direct effect of the scene structure that determines whether a region of the environment is an obstacle. The egomotion estimation and obstacle labeling methods we develop here based on optical flow templates require very little computation per frame and do not require building point clouds. Additionally, they do not require any specific type of camera optics, nor a calibrated camera. Finally, they label obstacles using optical flow alone without image appearance. In this thesis we start with optical flow subspaces for egomotion estimation and detection of “motion anomalies”. We then extend this to multiple subspaces and develop mathematical reasoning to select between them, comprising optical flow templates. Using these we classify environment shapes and label superpixels. Finally, we show how performing all learning and inference directly from image spatio-temporal gradients greatly improves computation time and accuracy.Ph.D

    Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    Get PDF
    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018
    corecore