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SUMMARY

In this work we develop optical flow templates. In doing so, we introduce a practical

tool for inferring robot egomotion and semantic superpixel labeling using optical flow in

imaging systems with arbitrary optics. In order to do this we develop valuable understand-

ing of geometric relationships and mathematical methods that are useful in interpreting

optical flow to the robotics and computer vision communities.

This work is motivated by what we perceive as directions for advancing the current

state of the art in obstacle detection and scene understanding for mobile robots. Specif-

ically, many existing methods build 3D point clouds, which are not directly useful for

autonomous navigation and require further processing. Both the step of building the point

clouds and the later processing steps are challenging and computationally intensive. Ad-

ditionally, many current methods require a calibrated camera, which introduces calibration

challenges and places limitations on the types of camera optics that may be used. Wide-

angle lenses, systems with mirrors, and multiple cameras all require different calibration

models and can be difficult or impossible to calibrate at all. Finally, current pixel and su-

perpixel obstacle labeling algorithms typically rely on image appearance. While image

appearance is informative, image motion is a direct effect of the scene structure that deter-

mines whether a region of the environment is an obstacle.

The egomotion estimation and obstacle labeling methods we develop here based on

optical flow templates require very little computation per frame and do not require building

point clouds. Additionally, they do not require any specific type of camera optics, nor a

calibrated camera. Finally, they label obstacles using optical flow alone without image

appearance.

In this thesis we start with optical flow subspaces for egomotion estimation and de-

tection of “motion anomalies”. We then extend this to multiple subspaces and develop

mathematical reasoning to select between them, comprising optical flow templates. Using

these we classify environment shapes and label superpixels. Finally, we show how per-

forming all learning and inference directly from image spatio-temporal gradients greatly

improves computation time and accuracy.

xi



CHAPTER I

INTRODUCTION

1.1 Objective
In this thesis we develop and evaluate optical flow templates. Our contributions in doing
so are: First, we introduce a practical tool for tasks such as inferring robot egomotion and
semantic superpixel labeling using optical flow, in imaging systems with arbitrary optics.
Second, we contribute understanding of geometric relationships and mathematical methods
that are useful in interpreting optical flow to the robotics and computer vision communities.

1.2 Thesis Statement
Optical flow templates are an effective tool for capturing information on large-scale envi-
ronment structure and robot egomotion, which is useful for autonomous navigation of a
robot, from arbitrary uncalibrated imaging systems on mobile robots.

1.3 Claims
To support the thesis statement we make several claims, each supported by one chapter.

Learned optical flow subspaces are an effective tool for inferring robot egomotion and
motion anomalies from cameras with arbitrary optics, in scenarios exhibiting depth
regularity. (Chapter 3) Optical flow subspaces are the basic object that we expand on in
later chapters.

Selecting among multiple optical flow subspaces allows classification of coarse envi-
ronment shapes from cameras with arbitrary optics, though this information is of
limited usefulness to robot navigation. (Chapter 4) Our first attempt to infer semantic
structure from optical flow was to classify coarse environment shapes such as “path curv-
ing left” or “wall on right”. While effective in restricted scenarios, we do not believe this
method is easily applicable to more general environments, nor is the information inferred
very useful for autonomous navigation.

Optical flow templates are an effective tool for semantically labeling superpixels as
“ground plane”, “distant”, or “obstacle” from optical flow measured in a camera
with arbitrary optics, and this information is useful for autonomous robot navigation.
(Chapter 5) Much modern work in autonomous navigation labels image regions according
to how traversable they are, then uses that information to plan trajectories or control the
robot. Optical flow templates provide similar information directly from optical flow, a
signal complementary to image appearance, and with no need for a stereo rig.
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Accuracy, versatility, and computational efficiency of optical flow templates is im-
proved by several adaptations informed by our experiences working with optical flow
in this thesis. (Chapter 6) We extend our previous work to learn templates from data
instead of calculating them, improve the modeling of the “obstacle” class, and perform
learning and inference directly from image spatiotemporal gradients instead of from opti-
cal flow.

1.4 Motivation
The motivation for this work stems from characteristics of the current state of the art in
obstacle detection and scene understanding that we consider limitations for the purpose of
autonomous robot navigation.

First, many typical obstacle detection and perception algorithms in use on mobile robots
require building 3D point clouds. The limitation here is twofold. Building and storing the
point clouds requires significant computation, but also the point clouds themselves are not
immediately useful for navigation. Post-processing must be performed to determine the
location and extend of obstacles given the point clouds. This processing task becomes
increasingly difficult as the density of the point clouds decreases, yet the difficulty of ob-
taining the point clouds increases with the density of the point cloud. The latter is due
to increased computational and storage requirements as well as fundamental limitations of
structure-from-motion algorithms to deal with image regions containing little visual tex-
ture.

Second, many perception algorithms also require a calibrated camera, particularly those
that build point clouds or perform structure from motion as an intermediate step. Camera
calibration models impose limits on camera optics. In some calibration models, field of
view is limited, and to widen it often requires either multiple cameras or wide-angle lenses
that present a calibration challenge due to extreme lens distortion. Further, many useful
imaging systems cannot be easily modeled via perspective and parametric distortion model.
Examples of these include systems with a rear-view mirror or other non-parabolic mirror,
some wide field-of-view lenses, inexpensive lenses with uneven distortion, and multiple
cameras with tiled images treated as a single imaging system. Although calibration models
vary in generality, no single model covers all optics. Furthermore, difficulty of calibration
process, in terms of number of images required, sensitivity to image placement, and need
for special equipment, increases considerably with more general models.

Third, many obstacle detection and scene understanding methods that do not build point
clouds rely exclusively on image appearance information, without taking optical flow into
account. Unlike image appearance, optical flow is directly related to scene structure, and
scene structure is often the primary decider of whether a region is an obstacle to a robot.
There are a few families of existing obstacle detection methods using optical flow, but they
rely either on hand-designed heuristics or again on camera calibration.

1.5 Overview
Chapter 1 is this introduction and Chapter 2 is the literature review. We start in Chapter 3
with optical flow subspaces for egomotion estimation and detection of “motion anomalies”.

2



We then extend this to multiple subspaces and develop mathematical reasoning to select
between them, comprising optical flow templates. Using these we classify environment
shapes in Chapter 4 and label superpixels in Chapter 5. Finally, in Chapter 6 we show
how performing all learning and inference directly from image spatio-temporal gradients
greatly improves computation time and accuracy.

3



CHAPTER II

LITERATURE REVIEW

In Section 2.1 we review methods for estimating motion and/or structure from 2D corre-
spondences or image pairs. In Section 2.2 we review work on generalized imaging systems.
In Section 2.3 we review optical flow estimation. In Section 2.4 we survey 2D semantic
image labeling, and in Section 2.5 3D scene understanding from images. Finally, in Sec-
tion 2.7 we review methods for computing traversibility maps from images for mobile robot
navigation.

2.1 Estimating Camera Motion and Scene Structure Between Video Frames
In this section we review methods for geometrically estimating camera motion and 3D
feature point locations between two video frames, using 2D feature correspondences in
those frames. Specifically, we survey epipolar constraints, nonlinear optimization methods,
and approximations using subspaces and transformations of the residual function.

Motion and structure estimation has been the focus of much research over the past
several decades. The problem is well-posed up to a uniform scale. Because it is also
nonlinear, numerous simplifications and approximations have been proposed to allow linear
initialization and more efficient but approximate estimation.

2.1.1 The Optical Flow Equation

To show the connection between camera motion and image point motion, we first introduce
a general optical flow equation:

u(x) =−Nx (dτ +Ω× x̃) ,

where x ∈ R3 is a point on the imaging surface, x̃ = ‖x‖−1 x is this vector normalized,
u(x) ∈ R3 is the optical flow vector at that point (always tangent to the imaging surface),
d is the inverse distance from the camera principal point to the scene point imaged at x,
τ is the camera translation vector, and Ω is the camera angular velocity. Nx is the linear
transformation, a 3×3 matrix, that projects flow on the unit sphere at x to flow on the true
imaging surface.

For general motion, a minimum of five points is needed to constrain all of the egomotion
and depth variables . The problem is made nonlinear and computationally expensive by the
bilinear dependence of flow upon the inverse depth d and the transation τ .

Some early methods of egomotion estimation were based on elimination and nonlinear
optimization but considered only a small number of image points [66, e.g.], and some
assumed constrained structure or motion [87, 83, e.g.]. These methods were not applicable
to the general case of a perspective camera observing many noisy scene points. Generally-
applicable methods were developed by simplifying and transforming the problem. As we’ll

4



see these led to biased estimates, so much work went into reducing this bias. To see how
these methods evolved, we’ll take a brief tour of the history of egomotion estimation.

2.1.2 Algebraic Error Methods

The earliest general-purpose linear egomotion estimation methods used the epipolar con-
straint. This constraint is satisfied when a proposed camera motion is such that the two
camera principal points and the projections of the same scene point in each camera are all
coplanar. Advantageously, it is linear and yields often unique estimates of camera motion.
The main drawback is that this estimate becomes inaccurate and biased under measurement
noise. Thus, it may be used as an initialization point for nonlinear egomotion estimation
methods, for example by Toscani and Faugeras [89], Weng et al. [95], and many others.

2.1.2.1 The Discrete-time Epipolar Constraint

Longuet-Higgins [55] and Tsai and Huang [91] simultaneously derived a linear constraint
now known as the essential matrix constraint,

x′ᵀx = 0,

meaning that x′ in the second image lies on the line Ex, with x in the first image. In fact,
Longuet-Higgins originally derived the essential matrix (with different notation) as

E = R(Ω) τ̂ ,

where the “hat” operator ·̂ generates a skew symmetric matrix defined such that âb = a×b,
and R(Ω) = expΩ̂ is the rotation matrix associated with the axis-angle rotation coordinates
Ω. Given this definition, we see that the constraint is that

0 =
〈
x′,R(Ω)(τ× x)

〉
=
〈
R(−Ω)x′,τ× x

〉
,

meaning that the point projection in the second camera R(−Ω)x′ lies on the plane spanned
by the translation vector τ and the point projection in the first camera x (whose normal is
τ× x). This specifies that both camera principal points as well as both image points all lie
on the same plane.

Tsai and Huang [91], as well as many others, used the epipolar constraint to estimate
egomotion. The basic constraint, however, minimizes an algebraic error, not accounting
for noise in image measurements, and as a result becomes inaccurate and biased with noisy
measurements. Thus, a number of papers attempt to improve upon the basic constraint.
[96] derive a method that is less sensitive to noise but still biased.

2.1.2.2 The Instantaneous-time Epipolar Constraint

A differential epipolar constraint on image and camera velocities, and methods for recov-
ering the camera velocity, was introduced by Zhuang et al. [101] and Waxman et al. [94].
This constraint arises from the relationship

〈u,v× x〉+ 〈x×ω,v× x〉= 0,
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where u is an optical flow vector parallel to the imaging plane and v and ω are the transla-
tional and angular velocities, respectively, of the camera. Maybank [62] showed that up to
three motion solutions may be consistent with this constraint for some flow fields, and illus-
trates the conditions under which this ambiguity occurs. Later, Ma et al. [59] presented an
improved algorithm for noisy flow fields, a unified discussion of epipolar constraint meth-
ods with numerous practical and theoretical comparisons between methods, and illustrated
connections with the subspace methods of Heeger and Jepson [31, 46] (we discuss these
more later). Kanatani [47, 48] later proposed renormalization to reduce bias and noise
sensitivity of differential epipolar methods.

2.1.2.3 The Fundamental Matrix Constraint

For uncalibrated cameras, the fundamental matrix encapsulates the discrete epipolar con-
straint [58, e.g.]. Viéville and Faugeras [92] and Brooks et al. [8] derived and experimen-
tally verified the differential uncalibrated epipolar constraint.

2.1.3 Least-Squares Methods

2.1.3.1 The Spherical Imaging Surface Approximation

Bruss and Horn [10] developed an egomotion estimation method that is more accurate,
but also more computationally expensive, than the epipolar constraint. While the epipolar
constraint permits non-rigid scene point motions (as long as the scene points remain in
their respective epipolar places), Bruss and Horn’s residual enforces rigidity through a
least-squares estimate of the depth of each point, via algebraically eliminating the depth.
This residual function is linear in the rotational velocity (given an estimate of translation)
and nonlinear in the translational velocity. Their residual function is equivalent to

〈u(x) ,v× x〉+ 〈x×ω,v× x〉= 0,

with variables as above except that here, the image locations x lie on the unit sphere, the op-
tical flow u(x) is tangent to the unit sphere at x, and the translation direction is constrained
to ‖v‖= 1.

Bruss and Horn’s method is less computationally expensive than full nonlinear opti-
mization because it employs a particular norm that allows for a linear solution for the cam-
era rotation given translation estimated at each iteration. This norm is in fact equivalent
to minimizing error on a spherical imaging surface. Adiv [3] estimates egomotion using
the same residual as Bruss and Horn and also segments motion into self-consistent objects.
Maybank [63] also uses the same residual and makes explicit the spherical imaging surface.
Later comparative surveys by Tian et al. [84] and Zhang and Tomasi [100] show that this
norm yields significantly biased motion estimates under the presence of noise.

Tomasi and Shi [88] eliminate rotation by measuring the change of angle between scene
points from the camera principal point, as these measurements are invariant to rotation.
They derive a constraint incorporating these measurements that is bilinear in camera trans-
lation and inverse depth. They then eliminate the inverse depth by reformulating the bi-
linear constraint as a subspace constraint given fixed translation, and nonlinearly optimize
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w.r.t. the translation direction. As with previous work, a problem that introduces bias is
the transformation of the true measurements without a corresponding transformation of the
noise model.

2.1.3.2 Subspace Methods

Heeger and Jepson [31, 46] again minimize the same residual as Bruss and Horn, also
making explicit the spherical imaging surface. Their methods are very efficient, however,
because they pre-compute the basis of the subspace involved in linearly eliminating inverse
scene depth and camera rotation. These “subspace methods” explicitly take advantage
of the bilinear dependence on translation and inverse depth. In these they algebraically
eliminate the inverse depth z and rotation Ω to derive a non-linear energy function of the
translation τ .

Starting again with an equation for optical flow on the sphere,

u =
dx
dt

=−zP⊥ (x)τ +Ω× x, (1)

Heeger and Jepson eliminate the inverse depths z and the camera rotation Ω using the linear
relationship between these and the optical flow given fixed camera translation,

 u1
...

un

 =

 P⊥ (x1)τ 0 −x̂1
. . . ...

0 P⊥ (xn)τ −x̂n




z1
...

zn
Ω


= C (τ)

3n (3n)× (n+3) n+3

.

Here, the columns of C (τ) span the subspace in which the optical flow is predicted to lie.
The vector of inverse depths and camera rotation [z1 · · ·zn Ω]ᵀ specify the coordinates in
this subspace, and the coordinates of the projection of the flow onto the subspace yields
the least-squares optical flow prediction error. Given the optimal estimate of rotation and
inverse depth, the distance to the subspace is again the measurement residual. Thus, the
optimal estimate for the translation occurs at

min
τ

∥∥∥C⊥ (τ)u
∥∥∥2

,

where C⊥ (τ), the orthogonal complement of the range (columns) of C (τ), which is the left
nullspace, can be computed with the singular value decomposition. Assuming C =UΣV ᵀ,
the left nullspace of C is spanned by the columns of U with null singular values, those
with index greater than the width of C. Formally this is C⊥ =

[
Un+3+1 · · ·U3n ], where the

superscript notation indicates a column of the matrix U .
A problem with this method is that it minimizes error under the assumption of a spher-

ical imaging surface. Although with noiseless measurements this is the same as for a pla-
nar imaging surface, the transformation distorts the noise and introduces bias. In other
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words, the perpendicular distances in the subspaces involved here do not minimize the
least-squares measurement error for a planar imaging surface.

In related subsequent work, Jepson and Heeger [44] derive linear subspace equations
using only the translation, although only using some of the measurement information. This
allows direct recovery of the translation direction from linear equations, although this in-
troduces a significant bias in the estimation of translation (which then also biases rotation
and depth). The same authors then discuss the source of this bias in [45] and propose a
method to remove it.

2.1.3.3 Accuracy and Bias

As we mentioned earlier, transformation of the measurements without a corresponding
transformation of the noise model introduces bias into any estimation process. Tian, Tomasi,
and Heeger [84] experimentally evaluated the accuracy and bias of the above methods. The
Bruss and Horn algorithm, which solves a nonlinear problem (albeit after a transformation
of the measurements by the “MLαβ ” norm), consistantly performs with the least noise sen-
sitivity and bias. The linear epipolar constraint methods typically perform more poorly in
this regard. Renormalization helps significantly, but still does not beat nonlinear optimiza-
tion.

Zhang and Tomasi [100] investigate the convergence properties of the estimators in
several of these algorithms. Algorithms derived using exact algebraic manipulations are
unbiased under an infinite number of measurements. Nonetheless, these algorithms are
biased under a finite number of measurements and nonzero noise. Experimentally, the
authors also compare each algorithm to the method of nonlinear optimization of the basic
optical flow equation under the `2 and `1.2 (robust) norms.

2.1.4 Modern Visual Odometry

Geometric stereo visual odometry, as described by Matthies [60], relies on finding the cam-
era motion that best explains the motion of image features between cameras and frames in
a stereo head. Most current systems employ fast hypothesis testing in a RANSAC harness,
followed by pose optimization using inlying feature matches, for example in [69, 68, 4].
Nistér et al. report errors of about 12 m over a 360 m course [69]. Others have used
a ground plane assumption to compute monocular visual odometry, for example [93, 11].
Geometric methods, while extremely accurate, often assume perspective cameras for which
lens distortion can be modeled. Additionally, they are computationally demanding, making
them challenging to implement on low-power systems.

2.1.5 Planar-Parallax

Planar-parallax methods estimate scene structure and camera motion relative to a plane in
the scene. A key benefit of planar-parallax over general structure from motion is that esti-
mated structure model, because it is more constrained, is less sensitive to noise and semi-
textureless image regions. Sawney [78] describes planar-parallax structure from motion
for perspective projection as a unification of several past similar methods for orthographic
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and weak perspective projection, as well as several application-specific methods. Irani and
Anandan [41] extend projective planar-parallax methods to estimate structure and motion
directly from the image brightness measurements instead of from point correspondences.

One very relevant domain for planar-parallax methods is in obstacle detection because
they allow estimation of structure relative to the dominant ground plane. Carlsson and Ek-
lundh [12] and Enkelmann [18] perform obstacle detection from optical flow by comparing
the measured motion parallax to that predicted by a ground plane free of obstacles. To
do this they use a calibrated camera and known camera height and attitude relative to the
ground plane. Giachetti et al. [24] also labels cars using the consistency of observed optical
flow with that predicted under a ground plane assumption.

2.2 Generalized Imaging Systems
We are interested in generalized imaging systems with near-arbitrary optics, including
multiple viewpoint systems, catadioptric systems, and projective cameras with distortion.
Grossberg and Nayar [26] formalize generalized imaging systems in terms of “ray pixels”,
or raxels, and show that a caustic ray surface yields a smooth mapping from pixel locations
(u,v) on a 2-dimensional imaging surface to imaged rays.

Pless [71] and Neumann et al. [67] derive generalized optical flow and motion con-
straints for generalized imaging systems. A piece-wise smooth mapping from pixel loca-
tions to imaged rays allows optical flow to be well-defined, except at discontinuities in this
mapping.

2.3 Optical Flow Estimation
Optical flow estimation in general suffers from the aperture problem. Because each neigh-
borhood of pixels can have a different motion in the image, optical flow is typically com-
puted independently on small windows throughout the image (e.g. [57]), but then cannot
be evaluated in regions with ambiguous texture. Global smoothness constraints (e.g. [35])
propagate flow to these ambiguous regions, but make strong assumptions about the scene
and the imaging system.

More recent work in computing optical flow has applied global constraints that arise
from the optics of the imaging system and the structure of the scene. These usually assume
a perspective camera, and model motion in the image as an affine or perspective transforma-
tion, for example [6, 43]. Some of these methods can estimate differing motion in separate
regions of the image, for example [7, 40]. Irani exploits linear subspace constraints that
hold over several frames [42]. Others use PCA to find the linear subspace automatically,
e.g. [20], but still require optical flow to be computed over entire frames.

2.4 Semantic Image Labeling
Additionally, the coarse environment shape provides prior information for high-level vision
tasks that detect and track obstacles and objects such as trees, cars, and pedestrians. This
permits application and learning of top-down knowledge such as “pedestrians appear on
the ground”. This idea has been investigated heavily under scenarios like urban driving and
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indoor scene understanding, with information from monocular cues, stereo, and laser point
clouds [33, 9, 82].

Brostow et al. [9] segment images into relevant regions such as street, sidewalk, car,
etc. using structure-from-motion cues. Sturgess et al. [82] estimate similar segmentations
using motion appearance and structure-from-motion information.

2.5 Semantic 3D Scene Understanding
Alternative to these “bottom-up” approaches is the notion of obtaining 3D information for
navigation aided by constraints from top-down models. Though not limited to robotics,
Hoiem et al. [33] use monocular cues to estimate 3D structure. Raza et al. [72] extend
semantic labeling to spatiotemporal segments, combining both appearance and motion cues
to infer pixel-level semantic structure labels. Geiger et al. [23] and Zhang et al. [99] infer
3D street and traffic patterns from video from a moving platform, combining information
from vehicle tracking, vanishing points, and image appearance. Recent work in “Manhattan
World” environments produces high-quality estimates of large structures like walls and
floors, see for example [21, 90]. Mozos et al. [65] apply learning to categorize hallways,
doorways, and rooms from 2D laser range scans coupled with visual features. Nourani-
Vatani et al. [70] match optical flow fields by their spatial statistics to a database of locations
for topological mapping.

2.6 Navigation Using Optical Flow
Classic work in navigation from optical flow has used heuristics to control robots directly
from measured optical flow. This work has its base in animal and human studies of the use
of optical flow in navigation [25], [53]. Bio-inspired control laws have been developed for
pursuit, escape, hallway following, and obstacle avoidance, for example Duchon et al. [17]
and as reviewed in Srinivasan et al. [81].

More recent work in optical flow navigation has used more informed optical flow pat-
terns beyond heuristics. Conroy et al. [13] and Hyslop and Humbert [39] infer similarity of
the observed optical flow field to that expected for coarse environment structures such as
walls and corridors from a set of template optical flow fields, using “wide-field optic flow
integration”. They also develop control laws to apply this to autonomous robot navigation.

2.7 Traversability
The main difficulty with applying 3D reconstruction towards the task of autonomous nav-
igation is the further processing required to determine where a robot can and cannot drive.
Current standard methods compute a 2D traversability map followed by path planning, us-
ing 3D laser range sensors, stereo correspondences, and structure from motion [52, 36].
Additionally, recent methods produce traversability maps using image appearance and
learning [64, 49].
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2.8 Optical Flow Matching Methods
There have been a number of works focused on matching optical flow fields or other fea-
tures derived from image motion to classify or infer properties of a video. For example,
Davis and Bobick [14] introduce temporal templates, propose motion history images and
motion energy images as features for view-specific action recognition. These features en-
code the image motion over a short video sequence. A. A. Efros [1] introduce optical flow
templates (a different concept as ours but with the same name), a spatiotemporal descrip-
tion of the optical flow associated with an action in a video, used to recognize actions of
people.
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CHAPTER III

GENERAL OPTICAL FLOW SUBSPACES FOR EGOMOTION
ESTIMATION AND MOTION ANOMALY DETECTION

This chapter supports the claim that learned optical flow subspaces are effective for in-
ferring robot motion and motion anomalies in cameras with arbitrary optics, in scenarios
exhibiting depth regularity. To show this, we present a method for inferring ego-motion
and motion anomalies from sparse flow measurements in a generalized imaging system,
in the case where the imaging system moves through an environment with some degree of
statistical regularity. This method uses learned optical flow subspaces, and we also present
a method for learning these subspaces from recorded video data. The work in this chapter
was initially presented in [76], and in earlier work where we used a k-nearest-neighbor
learner to estimate motion from optical flow [75].

In contrast to work in visual odometry described in Section 2.1, we recover egomo-
tion and dense optical flow directly from sparse optical flow using learned robust subspace
constraints that hold over extended motion of a generalized imaging system, while simul-
taneously identifying outliers in the sparse flow. The subspace constraints hold when scene
depth in the majority of the image is nearly constant over time, as is typically the case for
planar mobile robots in outdoor and urban environments. In these environments, the ground
plane, and even buildings and walls, are often at constant depth relative to the robot. Sec-
tion 2.1.3 describes related work in leveraging subspace constraints in optical flow.

One motivation for this work is in obtaining approximate visual odometry, in a gener-
alized imaging system, as a replacement for more costly or limited methods of obtaining
incremental platform motion. Laser scanners, or LIDAR, with which one can perform laser
scan matching, tend to be heavy, expensive, and require much power. Wheel odometry,
while very accurate indoors, is unreliable due to wheel slippage in outdoor environments,
especially on small lightweight robots. Inertial Measurement Units (IMU) accumulate ve-
locity errors, and therefore must be fused with absolute position or velocity measurements.

Another motivation and contribution of this work is in detecting motion anomalies.
These indicate independently-moving objects in the camera’s view, or unexpectedly nearby
or faraway scene structure. Motion anomalies are image regions that are not explained
by the optical flow subspace model and thus are salient regions in need of further visual
processing.

To work with generalized imaging systems with nearly-arbitrary optics, we learn ro-
bust subspace constraints from data. The first learning step is in an unsupervised manner
without knowledge of camera motion, in which case motion anomalies may be detected,
but egomotion may not be estimated at runtime. A second optional step is a supervised
learning step with known camera egomotion that additionally permits online egomotion
estimation.

Figure 1a shows the subspace defined by basis flows spanning the 2-dimensional lin-
ear optical flow subspace for the 3-camera outdoor driving sequence. The vehicle had 2

12



(a) 3-camera outdoor driving sequence (b) “Ad-hoc” catadioptric system

Figure 1: Typical frames and basis flows for the 3-camera outdoor driving sequence (the frame consists of
3 tiled images) and the ad-hoc catadioptric system. The basis flows in the ad-hoc catadioptric system show
the irregular optics of the imaging system. Optical flow is coherent both in the mirror and in the view beyond
the mirror, but is usually zero or erroneous in the lower-left part of the image where the camera sees only its
mounting plate.

degrees-of-freedom, arising from its steering rate and speed. The first basis flow corre-
sponds approximately to yawing, while the second corresponds approximately to driving
forwards. In the second basis flow, the flow vectors at the bottom of the image are larger
than those at the top because they correspond to points on the ground plane closer to the
camera, thus moving more in the image when the vehicle translates. On the other hand,
optical flow magnitude is invariant to depth in rotations, yielding the approximately equal-
length vectors in the first basis flow.

Figure 1b shows the basis flows for a catadioptric system in which part of the camera’s
view contains a curved mirror. The lower-left corner of the frame images the plate to which
the camera and mirror are rigidly attached. The basis flows show the stark boundaries
between these three image regions with differing optics.

3.1 Optical Flow Subspaces in Perspective Cameras
In this section, we first introduce the notion of optical flow subspaces in standard perspec-
tive cameras, and then draw a conclusion about the three motion/scene categories for which
constant optical flow subspaces exist over extended trajectories. In the following section
we extend this to generalized imaging systems.

An optical flow subspace is a linear mapping from low-dimensional set of latent vari-
ables y ∈ Rq to predicted optical flow

ui =Wiy (2)
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Figure 2: Schematic illustration of a generalized imaging system as a collection of local cameras. Each local
camera images a narrow cone of rays on the imaging surface, contributing one pixel to the imaging system.
Each local camera is defined by its focal length and its pose with respect to the imaging system.

where Wi ∈R2×q is the linear mapping to flow corresponding to the ith image location. The
columns of W ∈ R2wh×q are basis flows, illustrated in Figure 1.

To demonstrate when and why there exists a subspace of optical flow, we now make
explicit the linear relationship between camera velocity and optical flow when scene depth
at each image location remains constant over time. The optical flow ui at the ith image
location is related to camera velocity v = [ωx ωy ωz vx vy vz]

T, assuming no noise, according
to

ui =Vi (zi)v (3)

where Vi (zi) is an optical flow matrix, which depends on the camera optics and which de-
pends nonlinearly on the scene depth zi at the ith image location. For a standard perspective
camera, the flow matrix is (for example, see [31])

Vi (zi)
∆
=

 xiyi
f

− f−x2
i

f yi
− f
zi

0 xi
zi

f+y2
i

f
−xiyi

f −xi 0 − f
zi

yi
zi

 , (4)

where (xi,yi) is the image location at the ith pixel. When the focal length f and the scene
depth at each pixel zi remain constant over time, the flow matrices Vi for each pixel are also
constant, and thus V also defines a special linear optical flow template where the velocity
components are the latent variables.

Optical flow subspaces due to camera egomotion exist in three primary motion/scene
categories. Given that optical flow is linear in rotational velocity, the first category is pure
camera rotations, in which there is an optical flow subspace regardless of the scene geom-
etry. Given that optical flow is linear in translational velocity when scene depth remains
constant at each pixel, the second category is a scene consisting only of a ground plane
with only planar motion on that ground plane. Using the same principle, the third category
is linear motion along a constant-cross-section tube or canyon.

3.2 Optical Flow Subspaces in Generalized Imaging Systems
To extend the applicability of optical flow subspaces to generalized imaging systems, we
now show that in fact this linearity holds for more general cameras of nearly arbitrary optics
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Figure 3: For illustrative purposes, six basis flows corresponding to rotational and translational camera
motion in the canonical camera axes for a spherical imaging surface. These basis flows form the columns of
the mapping V of velocity to flow.

for which a parametric calibration is not possible, including distortion, catadioptrics, and
multiple viewpoints. Grossberg and Nayar [26] formalize generalized imaging systems
in terms of “ray pixels”, or raxels, and show that a caustic ray surface yields a smooth
mapping from 2D image surface locations to imaged rays.

Generalized imaging systems may also be modeled as collections of local perspective
cameras, each contributing one pixel to the system, as shown in Figure 2. Each local camera
images a single ray, and is defined by its focal length and its pose with respect to the overall
imaging system.

To show that the linearity of optical flow with depth regularity holds for generalized
imaging systems, we first consider the mapping from velocity to optical flow in a single
local camera, which is equivalent to Eq. 4 with the image location (xi,yi) = 0,

Vi (zi) =

[
0 −1 0 − f

zi
0 0

1 0 0 0 − f
zi

0

]
. (5)

Assuming that the optics of the camera do not change, there is a fixed change of frame
from the “base frame” of the imaging system to the coordinate frame of the local camera,
which is aligned with its local center of projection. Let the constant 6×6 linear mapping Fi
change the coordinate frame from the imaging system velocity to the local camera velocity,
then the optical flow for every image location in the generalized imaging system is

ui =Vi (zi)Fiv, (6)

which is again linear in the imaging system or platform velocity under the assumption of
depth at each pixel constant over time.

To illustrate this linearity, Figure 3 shows the first three columns of a velocity-mapping
flow matrix for a spherical imaging surface. In these cases flow matrices W in latent vari-
ables, or flow matrices V in platform velocity, may be learned from recorded video using
unsupervised and supervised methods, respectively, as we will show.
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3.3 Robust Probabilistic Subspace Model
To improve results on real-world data, instead of a deterministic relationship, a probabilistic
optical flow subspace defines a probability density on optical flow that is robust to outliers,

p(ui |y,λi) ∝

{
N (Wiy,Σv

u) , λi = 1
N
(
Wiy,Σf

u
)
, λi = 0

(7)

where Σv
u ∈ R2×2 is the (small) covariance of an optical flow vector that is an inlier to the

subspace, Σf
u is the (large) covariance of an outlier to the subspace, and λi ∈ {1,0} indicates

a pixel is an inlier or an outlier, respectively. Here we will derive an EM algorithm to
bound this likelihood using estimated inlier probabilities, but inlier assignments could also
be calculated using other methods, such as RANSAC. Thus an optical flow subspace is(
W,Σv

u,Σ
f
u, p(λ )

)
, where p(λ ) is a constant Bernoulli prior probability that any pixel is an

inlier to the subspace.

3.4 Estimating Egomotion
Suppose we have now already found some q-dimensional linear subspace (q is near 4 in
our experiments) in the optical flow ut ∈ Rd (d typically on the order of 3000) for every
t th frame using the method in Section 3.6. To estimate the latent variables for new frames
online, we iterate only the E-step, Eqs. 14 and 15 above.

We now turn to estimating the egomotion online, given that we can calculate the latent
variables for new frames online. This requires an additional learning step using known
platform velocity for some training data. We know from Eq. 2 that there is a linear mapping
W from the latent variables y to the flow u, but we also know there there is some other
linear mapping V from the true platform velocity v to the optical flow. Thus, there is
also a mapping M ∈ R6×q from latent variables to platform velocity, which we learn via
iteratively-reweighted least-squares, optimizing

M = argmin
◦
M

∑
t

∥∥∥ ◦Myt− vt

∥∥∥2
(8)

over the training set with known velocity vt at each time step. After learning this mapping
M from training data, we can estimate the egomotion for new frames by evaluating v = My
with the latent variables y estimated for that frame.

We conducted an experiment using a differential-drive robot with two forward facing
cameras, which instead of forming a stereo pair, face outwards at angles of approximately
20◦. The robot was equipped with a well-tuned pose filter that fused wheel odometry
with an inertial measurement unit (IMU). Figure 4 shows the trajectories estimated by
this filters, as well as by our method, as described above in this section. We trained our
method using pose estimates from the pose filter on the short training sequence shown in
the figure, and then switched to estimating pose with our method with no further training.
The pose estimated from optical flow is comparable in accuracy to the filtered pose from
wheel odometry and IMU.
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Figure 4: Platform trajectories estimated by our method (blue) and by integrating wheel odometry with an
inertial measurement unit (red). We trained our method from ground truth over a 200 m training segment
(dashed green), then switched to estimating pose for approximately 675 m with no further training. Each
trajectory ends at the circle of the corresponding color.

Figure 5: Detection of outliers in the sparse optical flow in a frame from the 3-camera outdoor driv-
ing sequence. Colored lines are sparse optical flow, ranging from green when p(inlier) = 1, to red when
p(inlier) = 0. Sparse flow vectors that are inconsistent with the linear flow subspace have low inlier proba-
bility. Vectors on the moving pickup truck, in the textureless regions of the road, and on the very close and
very far structure of the wall are labelled as outliers.

An informal timing evaluation revealed that our prototype code, with sparse flow ex-
traction in C++ and dense flow and ego-motion estimation in MATLAB, runs faster than
30 Hz (or 33.3 ms per frame) after training. On 1920× 480 frames, with 45× 13 flow
fields, computing sparse flow takes 19.1 ms, subspace coordinates 6.8 ms, and ego-motion
0.2 ms, for a total of 26.1 ms per frame.

3.5 Detecting Motion Anomalies
Figure 5 shows the inliers and motion anomalies (outliers) that are present in a typical
frame. Green vectors are inliers, while red vectors are outliers. In the left-facing camera,
the vectors on the moving pickup truck are labelled as outliers. In the forward-facing
camera, the erroneous vectors on the textureless portion of the road are mostly ignored.
In the right-facing camera, the structure of the wall that is very close and very far from
the camera are identified as motion anomalies, while the vectors on the structure near the
average distance are labeled as inliers. The colors, ranging from green to red, indicate the
probability of a flow vector being an inlier.
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3.6 Learning Optical Flow Subspaces from Data
To learn the probabilistic optical flow subspaces, we develop a robust extension of proba-
bilistic PCA [85] to find the principal subspace encoding global correlations in optical flow.
This robustness is not limited to the traditional case where entire samples (i.e. frames) are
discarded as outliers. Instead, we can find dimensions (i.e. individual flow vectors) in each
sample whose values are not consistent with the other dimensions. The “intra-sample” ro-
bust PCA method developed by De la Torre and Black [15] accomplishes a similar goal
by minimizing an energy function that weights each pixel with a per-image-pixel analog
outlier process. Here we instead develop a generative model for intra-sample robust PPCA,
which models each pixel as a Gaussian mixture of inlier and outlier densities.

3.6.1 Training Data

Given a training video sequence, we compute a down-sampled sparse optical flow field
over each pair of frames. We divide each image into a grid of 20× 20 pixel cells, then
track the strongest Harris corner [29] in each cell using the Lucas-Kanade algorithm [56].
A threshold on corner response that prevents tracking textureless regions makes the flow
fields sparse.

Each pair of frames at time t yields an observation vector ut , filled with the concatenated
horizontal and vertical optical flow components from each local camera. For flow fields of
size w×h, for example, the length of each observation vector is d = 2wh. For each frame
there is also a set St of the “seen” indices of ut , where optical flow is available. Indices not
in St are missing, and we save computation by ignoring them in calculations, as described
below.

3.6.2 Maximum Likelihood Formulation for Learning

To learn a linear optical flow subspace, we apply a robust variation on probabilistic princi-
pal components analysis [85]. Pertaining to this, the key observations we make about the
generative model for optical flow described in Section 3.3 are:

1. The model is similar to PPCA: if all flow vectors are measured and are inliers, the
basis flows span the principal subspace, as shown in [85].

2. When conditioned on the parameters and the latent variables, each observation vector
is drawn from a mixture model of two spherical normal distributions.

3. Although the flow vectors of each frame are correlated through the basis flows and
latent variables, all flow components are mutually independent when conditioned
on the basis flows and latent variables. Thus, we can solve for the basis flows and
latent variables while simply ignoring missing data; estimating the missing data is
not necessary.

The conditional distribution over a single component of a single flow vector is the mixture
model

uti |yt ,λti,θ ∼N
(
uti; ūti,σ

2
v
)λti N

(
uti; ūti,σ

2
f
)1−λti , (9)
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where ūti =Wiyy and θ =
{

W,σ2
v ,σ

2
f , p(λ )

}
. Every flow vector in fact has a different den-

sity, but they are related through the latent variables y. As with PPCA, there is a Gaussian
prior on the latent variables y:

y∼N
(
0, Iq×q

)
. (10)

We are now ready to formulate the maximum likelihood problem of inferring the pa-
rameters and hidden variables when conditioned on the observations by maximizing

p(θ ,y,λ |u) ∝ p(θ)∏
t

p(xt)∏
i∈St

L (uti |yt ,λti,θ) p(λti) , (11)

where L (·) = logcp(·), denotes the log-likelihood, i.e. c is any constant. Note the product
over i ∈ St , by which we only consider vectors in the training data that were “seen”, and
ignore those that were missing.

3.6.3 EM algorithm

The exact maximum-likelihood solution is intractable because of the combinatorial assign-
ments of the indicator variables λ , so we instead apply EM. The complete log-likelihood
of (11), using the distributions above is

L (θ ,y,λ |u) = ∑
t

logN (yt ; 0, I)+ ∑
i∈St

λti
(
L (λti)+ logN

(
uti; ūti,σ

2
v
))

+(1−λti)
(
L (λti)+ logN

(
uti; ūti,σ

2
f
))

. (12)

Finding the expectation of this log-likelihood with respect to y and λ simultaneously would
be intractable, but we can instead first find the expectation with respect to y, and then with
respect to λ , comprising a generalized EM algorithm. We obtain update equations by
taking the derivatives of (12) w.r.t. the parameters, and then solving for each parameter:

σ
2
v =

(
∑

t, i∈St

〈λti〉
)−1

∑
t, i∈St

〈λti〉
(

u2
ti−2utiWi 〈yt〉+ tr

(〈
ytyTt

〉
WT

i Wi

))

Wi = ∑
t∈Si

〈λti〉σ−2
v 〈yt〉T uti

(
∑
t∈Si

〈λti〉σ−2
v

〈
ytyTt

〉)−1

,

(13)

where St is as above, while Si is the set of frame indices whose ith flow component was not
missing. The outlier variance σ2

f is estimated in the same way but substituting 〈1−λti〉 for
〈λti〉.

We find the expectation 〈yt〉with respect to its posterior p(y |u,λ ,θ)∝ p(u |y,λ ,θ) p(y)
using Bayes’ law and the distributions (9) and (10). Combining the conditional distribu-
tions over each uti into a multivariate distribution over ut with diagonal covariance Λ

−1
t
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(a) Typical frame (640× 480)
showing outlying sparse flow
vectors (in red) found by our
method.

(b) One of the two basis
flows found by standard
PPCA.

(c) The same basis flow
found by our method.

Figure 6: a) A pan-tilt camera, viewing a person walking while the camera moves. b) In a basis flow found
by standard PPCA, the vectors are not parallel due to outliers (in red), as they should nearly be for this dataset.
c) In the same basis flow found by our robust method, the vectors are properly much closer to parallel.

simplifies finding the distribution over yt . Following, p(y |u,λ ,θ) has mean and covari-
ance

〈yt〉=
(

WT
StΛtWSt + Iq×q

)−1
WT

StΛtyt , (14)〈
ytyTt

〉
=
(

WT
St

ΛtWSt + Iq×q

)−1
+ 〈yt〉〈yt〉T ,

where Λt = σ
−2
v Iq×qλt .

The expectation 〈λti〉 is easier, as it is the simply the proportion of probability of the flow
component belonging to the inlier distribution:

〈λti〉=
N
(
uti; ûti, σ2

v
)

N (uti; ûti,σ2
v )+N

(
uti; ûti,σ2

f

) , (15)

where ûti = W
(
WTW

)−1 (WTW+σ2
v Iq×q

)
〈yt〉.

3.6.4 Visualizing the Benefits of Robustness

Robustness to outliers improves the quality of the basis flows. Figure 6 illustrates outliers
in a sequence from a pan-tilt camera with a person walking in the view. 6a shows sparse
flow measurements classified as inliers and outliers. 6b and 6c show, respectively, the sec-
ond bases found by non-robust PPCA, and by our method, which probabilistically ignores
outliers when estimating bases. Because this is a narrow-FOV camera in pure rotation, the
vectors in the basis flows should be nearly parallel.

3.6.5 Learned Model Quality and Subspace Dimensionality

Measuring how well the learned subspace model fits the data is important for using opti-
cal flow subspaces because it indicates the true subspace dimensionality and whether the
optical flow indeed can be modeled with a subspace. The inlier distribution variance σ2

v is
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Figure 7: Estimated PPCA inlier distribution variance for models with various numbers of latent variables.
Lower variance indicates a better subspace fit to the optical flow. The pan-tilt and pan-tilt-roll catadioptric
systems are 2 and 3 DOF, respectively. The mobile robot has 2 controllable DOF’s, but additionally pitches
and rolls due to sloped ground.

a measure of how well the robust PPCA model fits the training data. Specifically, it is the
mean squared error between the predicted and observed optical flow in the training data,
weighted by the inlier probability for each flow component. The number of degrees-of-
freedom (DOF) of the motion of an imaging system is reflected in the relationship between
the number of latent variables (i.e. principal components) in a robust PPCA model and the
inlier variance, as shown in Figure 7. The additional decrease in variance in models with
more than 4 latent variables in this case suggests to us that there are additional unaccounted
but predictable aspects of the optical flow or the depth of the environment that additional
latent variables can explain.
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CHAPTER IV

RECOGNIZING THE PATH SHAPE AHEAD OF A ROBOT
FROM SPATIO-TEMPORAL IMAGE GRADIENTS

In this chapter we use instantaneous spatio-temporal image gradients to recognize path
shapes, for example those shown in Figure 8, in front of a mobile robot. We perform this
recognition using Bayesian model selection among several pre-learned linear optical flow
templates, using the observed image gradients as measurements at each time step. Offline,
we learn these linear optical flow templates directly from spatio-temporal image gradients,
from video segments labeled with the class of the observed path shape.

Path shape classification has the potential to provide important information for modern
high-speed mobile robot controllers that use “motion primitives” [22, 79]. Motion primi-
tives are discrete control laws applied under a specific set of environmental constraints and
desired trajectory. A high-level controller then switches between them depending upon
conditions. For example, the sliding turn maneuvers common in rally racing provide in-
creased robustness to unknown friction characteristics during sharp turns, while non-sliding
controllers are best for navigating nearly-straight path segments. At each time step, the cor-
rect controller can be selected depending on the path shape just ahead of the robot.

Additionally, the coarse environment shape provides prior information for high-level
vision tasks that detect and track obstacles and objects such as trees, cars, and pedestrians.
This permits application and learning of top-down knowledge such as “pedestrians appear
on the ground”. This idea has been investigated heavily under scenarios like urban driving
and indoor scene understanding, with information from monocular cues, stereo, and laser
point clouds [33, 9, 82].

Each path shape is associated with one linear optical flow template. A linear optical
flow template encodes a probabilistic subspace of optical flow fields that may be observed
while the camera observes a particular path shape. The choice of a subspace model makes
the template agnostic to the velocity at which the robot moves, and thus only sensitive to
the set of depths at each pixel as well as the camera optics and orientation.

A key feature of the subspace model is that the camera needs not be calibrated, nor do
its optics need to permit a parametric calibration. The fisheye lens used in our experiments,
for example, cannot be calibrated with a radial distortion model. Additionally, the velocity
of the robot need not be known or calculated either for template learning or for online
model selection.

4.1 Recognizing Path Shapes
The overall goal is to quickly recognize the path shape in the camera’s view among several
optical flow templates, each of which we have learned for a particular path shape. We
rely on optical flow because it is sensitive to the scene structure without being sensitive
to appearance such as the locations of edges or textures. Let kt ∈ {1..K} indicate the path
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Optical flow 
color code

Infer template and coefficients 
to explain evidence

Each template is comprised of basis flow fields

We learn templates corresponding to each environment shape

yT = [ ]

Figure 8: Bottom: We classify large-scale environment shape types such as ‘left of path’, ‘center of path’,
‘right of path’ with approximate model selection over a set of linear optical flow templates. Middle: A single
linear optical flow template comprises a set of basis flows that span the subspace of possible optical flow
fields resulting from egomotion in the template’s environment shape. Top: In the illustrated video frame, the
image motion is explained by the particular linear combination specified by the latent variable assignment
y = [ 1.00 0.28 2.03 ]T, which combines forward motion with some camera rotation caused by uneven ground
and turning of the platform. Because we learn the templates with an unsupervised method, the basis flows do
not correspond to canonical motions such as pure forward motion or pure pitch, and are instead combinations
of such motions. The top-right shows the optical flow color code used in the remainder of this thesis. Vector
direction is indicated by color hue and vector magnitude is indicated by color saturation.

shape at time step t, and our goal is to find the maximum-likelihood path shape conditioned
on the spatial and temporal derivatives Dt of the current image, and on the path shape
classification from the previous time step kt−1 (to leverage temporal smoothness)

k̂t = argmax
kt

∑
kt−1

p(kt |Dt ,kt−1) p(kt−1) . (16)

We use the spatial and temporal derivatives as measurements instead of the optical flow
because computing optical flow directly is an under-determined and inherently noisy prob-
lem. We instead implicitly compute optical flow in the framework of the much more well-
determined optical flow template classification problem. To do this, we first apply Bayes’
law to obtain a measurement likelihood of the image derivatives given the template,

p(kt |Dt ,kt−1) ∝ p(Dt |kt) p(kt |kt−1) . (17)

We list our choice of transition model p(kt |kt−1) in Section 4.3.
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We factor (16) into the likelihood of the template given the optical flow, and the optical
flow given the image derivatives, and integrate out the optical flow field ut for the t th frame
(this integral will be analytical and fast to compute),

p(Dt |kt) =

ˆ

ut

p(Dt |ut) p(ut |kt) . (18)

Next, we define models for the image derivatives given the optical flow and the optical flow
likelihood given the template. Subsequently, we derive an efficient closed-form expression
for evaluating the original template likelihood in (17).

4.1.1 The Constant-Brightness Image Derivative Model

To relate the spatial and temporal derivatives Dx and Dt to the optical flow, we use the clas-
sic constant-brightness assumption [34], which states that as an image point corresponding
to some point in the physical world moves through the image, it may change location but not
brightness. Making the brightness constancy constraint probabilistic with Gaussian noise
with variance ΣI ∈ R, yields a Gaussian conditional density of the temporal derivative Dt

ti
at time step t at the ith pixel given the optical flow uti at the ith pixel,

p(Dt |ut) = ∏
i
(2πΣI)

−1
2 exp

−1
2

∥∥Dt
ti +Dx

tiuti
∥∥2

Σ
−1
I . (19)

We optimize the covariance parameter ΣI along with the learned templates as described in
Section 4.2.

4.1.2 The Optical Flow Template Model

We choose to model the likelihood of an optical flow field in each template as a probabilistic
subspace. In other words, our model assumes that any optical flow field observed while
the robot drives on a particular path shape lies close to a subspace, with each path shape
exhibiting a different subspace. Just as any subspace is spanned by a set of basis vectors,
with an optical flow subspace these basis vectors take the form of “basis flows”. An optical
flow field u is generated as a linear combination with coefficients yk ∈ Rq of q basis flows
in the columns of Wk ∈ R2wh×q plus a small amount of uncorrelated noise with diagonal
covariance Σu ∈ R2×2,

p(ut |ytk) = ∏
i

N (Wkiytk, Σu) , (20)

where Wki ∈ R2×q refers to the 2 rows of Wk corresponding to the ith pixel. It is important
to note that the dimensionality of the vector space of optical flow fields is 2wh, twice
the number of pixels in the image. A “vector” in the space of optical flow fields is the
concatenation of all of the individual optical flow vectors in the frame,

u =
[

ux
11 uy

11 ux
21 · · · ux

hw uy
hw

]T (21)

Our motivation for choosing a subspace model is that given a fixed set of scene depths
at each pixel, the optical flow fields generated by any translational or rotational camera
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velocity lie in a subspace. Thus, our optical flow templates respond to a particular set of
scene depths at each pixel while remaining agnostic to the camera velocity.

From (20) we obtain an expression for the flow likelihood p(ut |kt) in (18) by integrat-
ing out the unknown latent coefficients ykt (we now add a t subscript to denote that these
variables are for a single time step as introduced previously)

p(ut |kt) =

ˆ

ytk

∏
i

p(uti |ytk) p(ytk) , (22)

where the likelihood p(ut |ytk) of the optical flow ut given the basis flow coefficients ytk is
Gaussian from (20). The integral will again be analytic, as we show later. We optimize the
covariance parameter Σu along with the learned templates as described in Section 4.2.

4.1.3 Efficiently Evaluating Template Likelihood

We calculate the template likelihood in (17) given the image derivatives efficiently by
means of analytic integrals and problem decomposition. The first key is that the optical
flow likelihood is independent in each pixel uti when conditioned on the coefficients yt .
This leads to a per-pixel form of the template likelihood in (18)

p(Dt |kt) ∝

ˆ

ytk

∏
i

ˆ

uti

p(Dti |uti) p(uti |ytk) p(ykt) p(kt |kt−1) (23)

We compute the integral over the unknown optical flow uti analytically leveraging the fact
that the image derivative likelihood p(Dti |uti) from (19) and the flow likelihood p(uti |ytk)
from (20) are both Gaussian, to yield a likelihood of the image derivatives given the basis
flow coefficients,

p(Dti |ytk) =

ˆ

uti

p(Dti |uti) p(uti |ytk) = (2π)
−1
2 Ji exp

−1
2

J2
i
∥∥Dt

ti +Dx
tiWkiytk

∥∥2
, (24)

where J2
i =

(
Dx

tiΣuDxT
ti +ΣI

)−1

Substitution of this more compact image derivative likelihood p(Dti |ytk) into (23) yields

p(kt |Dt ,k) ∝

ˆ

ytk

∏
i

p(Dti |ytk) p(ykt) p(kt |kt−1) . (25)

Next we integrate out the basis flow coefficients ytk in closed form to produce a new
likelihood p(Dt |kt) of the image derivatives Dt for every pixel given the template kt ,

p(Dt |kt) =

ˆ

ykt

∏
i

p(Dti |ytk) p(ytk) (26)

The key to efficiently evaluating this integral is that although the resulting Gaussian over
all of the image derivatives is of high dimensionality, wh, its information matrix takes a
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much more compact special form of the sum of a diagonal and an outer product of small
matrices. To arrive at its compact factored form, we first write the information form of the
joint density on the image derivatives and basis flow coefficients, without yet integrating,

p(Dt ,ytk) = ∏
i

p(Dti |ytk) p(ytk)

=

∣∣∣∣ Λ

2π

∣∣∣∣ 1
2

log
−1
2
[

Dt
t ytk

](
Λ
[

Dt
t ytk

]T
+η

)
(27)

From the image derivative likelihood (24) and assuming a normal Gaussian prior p(ykt) =
N (0,I) on the latent variable coefficients, we write the blocks of the joint information
matrix Λ and information vector η ,

Λ =

[
ΛII ΛIy

ΛIyT Λyy

]
, η =

[
η I

ηy

]
(28)

where

• each diagonal entry of the diagonal matrix ΛII ∈ Rwh×wh is ΛII
ii = J2

i ,

• each row of ΛIy ∈ Rwh×q is Λ
Iy
i = J2

i Dx
tiWi,

• the matrix Λyy ∈ Rq×q is Λyy = J2WT
i DxT

ti Dx
tiWi + I,

• the vector η I ∈ Rwh is η I = 0, and

• the vector ηy ∈ Rq is ηy = ykt .

All of these matrices are specific to a single time step t and a single template hypothesis kt ,
but we have left out these subscripts to avoid further burdening the notation.

To integrate out the unknown basis flow coefficients ykt while obtaining the compact
factored form of the marginal information matrix Λ̄II and information vector η̄ I (the bar
differentiates these from the blocks of the joint matrices in the previous expressions), we
use the Schur complement,

Λ̄
II = Λ

II−Λ
Iy (Λyy)−1

Λ
IyT, and η̄

I = η
I−Λ

Iy (Λyy)−1
η

y (29)

with determinant ∣∣Λ̄II∣∣= ∣∣∣Λyy +Λ
IyT

Λ
II

Λ
Iy
∣∣∣ ∣∣∣(Λyy)−1

∣∣∣ ∣∣ΛII∣∣ (30)

The marginal image derivative likelihood is thus

p(Dti |kt) = (2π)
−wh

2
∣∣Λ̄II∣∣ 1

2 log
−1
2

Dt

(
Λ̄

IIDT
t + η̄

I
)

(31)

The key with the factored forms of the marginal information matrix (29) and its determi-
nant (30) is that the large dense wh×wh matrix Λ̄II never needs to be formed explicitly.
Instead, substituting its factored form into the image derivative likelihood (31) allows effi-
cient evaluation, with no operations on matrices larger than wh×q. Finally, we substitute
this efficiently-computed image derivative likelihood into the template likelihood expres-
sion (17).
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4.2 Learning Optical Flow Templates
To learn the optical flow templates, we first collected training data consisting of video from
a front-facing camera on a robot driven through a course comprised of straight and curved
segments. We separated the video into clips according to the path shape observed, resulting
in videos observing straight course segments, left curves, and right curves. We then learned
templates individually for each course shape video segment.

To learn the template Wk for the path shape k, from video frames t ∈ Tk, we wish to
maximize the likelihood of the template given the image derivatives D,

Ŵk = argmax
Wk

p(Wk |D) . (32)

Using Bayes’ law this likelihood is

p(Wk |D) = ∏
t∈Tk

p(Dt |Wk) p(Wk) (33)

and the image derivative likelihood is equivalent to that derived earlier in (26), i.e. p(Dt |Wk)≡
p(Dt |k).

Instead of optimizing the template likelihood (33) directly, we re-introduce the basis
flow coefficients yt as latent variables and alternately update the basis flows Wk and coeffi-
cients yt by conditioning each on the other and the data according to

1. Ŵk← argmaxWk p(Wk |D, ŷk)

2. ŷk← argmaxyk p
(
yk |D,Ŵk

)
.

This method is similar to probabilistic principal components analysis [85]. This method is
also similar to the method presented in [76] for learning basis flows, though in the latter
sparse optical flow was precomputed whereas here we learn basis flows directly from image
derivatives. Each of these maximizations is a least-squares problem, which we solve using
Cholesky factorization.

All of the component likelihoods needed to perform the updates on the basis flows and
basis flow coefficients have been derived in Section 4.1. To use them, we apply Bayes law
to obtain

p(Wk |D, ŷk) =

(
∏
t∈Tk

∏
i

p(Dti |Wki, ŷtk)

)
p(Wk)

and

p
(
yk |D,Ŵk

)
= ∏

t∈Tk

(
∏

i
p
(
Dti |Ŵki,ykt

))
p(ykt)

with p(Dti |Wki,ytk) ≡ p(Dti |ytk) from (24). As above, we use a normal prior on the
basis flow coefficients p(ykt) = N (0, I). The prior on the basis flows p(Wk) is a pair-
wise smoothness model that reduces the effect of noise and makes the optimization fully-
constrained,

p(Wk) = ∏
i

∏
j∈N(i)

exp
−1
2

∥∥Wki−Wk j
∥∥2

ΣW
,
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where N (i) is the set of pixels directly adjacent (above, below, left, right) to pixel i, and
ΣW ∈ R2×2 is a covariance matrix. In our experiments we use ΣW = (0.01)2 I. We deter-
mined this parameter empirically, though it has little effect on the overall accuracy.

We also optimize the covariance parameters for the constant brightness and optical flow
subspace models, ΣI and Σu, by maximizing the image derivative likelihood p

(
D | ŷk,Ŵk

)
.

We use Newton’s method paired with Cholesky factorization, simplifying the flow covari-
ance Σu ∈ R2×2 to be uniform diagonal, and subject to the constraint that the variance
parameters are greater than a small positive number (10−5) to prevent numerical problems.

4.3 Implementation Details and Parameters
All datasets were collected from a 640× 480 30Hz Unibrain Fire-i camera mounted on a
wheeled platform. The free parameters of our method are the standard deviation of the
image intensity noise for inlier and outlier pixels, for which we used σv

I = 1
255 and σ f

I =
5

255 , both in normalized grayscale units, and the per-pixel inlier prior, p(λkti=1) = 0.95.
The optical flow covariances Σv

k and Σ
f
k are learned from the data as part of the templates.

We initialize all indicator expectations with 〈λkti〉 = 1. We perform the optimization
using the Gauss-Newton method.

Additionally, it is not necessary to perform inference up to the largest pyramid level. In
our experiments we stop at level 3, corresponding to 80×60 images and basis flows scaled
down from the original 640×480. Additionally, for optimization and inference, we sample
only every other pixel, meaning that for the same image size, 1200 pixels are sampled at the
largest pyramid level. With these parameters our single-threaded research implementation
operates at approximately 15Hz on a 2.2GHz Intel Core i7 laptop.

Our method is highly parallelizable, in that the optimization and likelihood computation
described in Section 4.1 may be performed independently and in parallel for each template.
Also the image filtering operations such as gradient computations, resampling, and differ-
encing may be threaded or even implemented on DSP, FPGA, or GPU hardware [38].

4.4 Experimental Results
In this section we provide experimental evidence to support the claims that a) our method
efficiently classifies between multiple coarse path shapes and b) that to accomplish this it
is important to use information from image motion instead of image appearance, to capture
differences in structure. To support these claims we perform a quantitative evaluation and
comparison with a supervised learning method trained on image appearance. Please see
the end of this section for implementation details and parameters.

All datasets contain vibration, yawing, and side-to-side motions of the platform, which
violate the ideal linearity described in Section 4.1.2, but fit the approximate linearity and
are thus handled by our method.

4.4.1 Quantitative Evaluation

We learned linear optical flow templates for the environments exemplified by the top row
of thumbnails of Figure 9, and performed inference on the environments exemplified by the
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Figure 9: Confusion matrices showing classification results of our method and a learned classifier on image
appearance. The images are representative of each environment type in the training and testing datasets. Our
higher accuracy on ‘left wall’, ‘right wall’, and ‘walkway’ highlight our use of image motion information
versus image appearance. The appearance classifier’s higher accuracy in differentiating between ‘left curve’
and ‘right curve’ is due to the appearance similarity between the training and testing sets, which were taken
on two different floors of the same building. The image motion information, on the other hand, is subtle in
these two environments because the hallway curvature is gentle.
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Figure 10: Classification accuracy for linear optical flow templates learned with various numbers of basis
flows, i.e. latent variable dimensionalities q, learned and evaluated with the same datasets as in Figure 9.
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left column of thumbnails. For the first three environments, the coarse environment shapes
are similar between the training and testing datasets, but there are differences such as the
height of the wall and distance to it varying. Additionally, the texture and image appearance
is quite different. The last 2 environment types are left and right curving hallways (which
we consider two different discrete types) with the same curvature. Texture and appearance
differ less between training and testing sets in the curved hallways, they are from different
building floors. The distance from the robot to the wall varies with side-to-side motions and
yawing motions in all videos, and there is also camera vibration. We empirically selected
to learn templates with q = 3 basis flows as this provided the highest accuracy.

Figure 9 shows the confusion matrices for our method and a learned classifier on image
appearance. For the image appearance classifier, we use a neural network learned from
hand-labeled data using Gist features. The Gist features were computed by the software1

accompanying [80]. We chose to use Gist features because they are claimed to capture
information about the coarse environment shape and appearance of a scene. We selected
the subset of Gist features suggested by [80], and trained a neural network with 200 and
100 node hidden layers for 500 epochs (verifying that error on a holdout set did not increase
during training) using Weka [28].

Figure 10 shows the classification accuracy on the same evaluation set for models
learned with various numbers of basis flows, i.e. latent variable dimensionality q.

Our higher accuracy on ‘left wall’, ‘right wall’, and ‘walkway’ highlights our use of im-
age motion information versus image appearance. The image appearance classifier’s higher
accuracy in differentiating between ‘left curve’ and ‘right curve’ is due to the appearance
similarity between the training and testing sets, which were taken on two different floors
of the same building. The key point to note is the difference in the accuracy of the appear-
ance classifier when the training and evaluation images appear similar versus when they
appear different. When appearance differs, the accuracy of the appearance-based classifier
decreases, where the accuracy of our method remains the approximately the same.

4.5 Summary
In this chapter we presented a method for classifying coarse environment shape from image
motion. To do this classification, the method performs approximate model selection over
a collection of linear optical flow templates. Each template encodes a coarse environment
shape, by means of a set of basis flows spanning the subspace of optical flow fields that
a moving platform may observe in that environment, under the assumption of per-pixel
depth constancy over time. The input is a video stream, and the output is a set of likeli-
hoods for each frame that the image change from the previous frame is explained by each
linear optical flow template. Inference takes place directly on spatial image gradients, not
requiring optical flow to be computed first. Our results show that our method classifies be-
tween training and evaluation datasets whose corresponding environment types are similar
in large-scale structure but different in appearance and contain outliers like passing objects.

1Available from http://ilab.usc.edu/siagian/Research/Gist/Gist.html
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CHAPTER V

OPTICAL FLOW TEMPLATES FOR SUPERPIXEL LABELING
IN AUTONOMOUS ROBOT NAVIGATION

For a camera attached to a mobile robot, instantaneous image motion contains rich infor-
mation about the robot’s egomotion and the structure of the environment. In this chapter,
our contribution is to present a new framework for capturing this information, in which
we attempt to address some shortcomings of previous work, and present an experimental
proof-of-concept of this framework.

This framework, which we call optical flow templates, illustrated in Figure 11, permits
semantically labeling image regions according to their observed optical flow and the pre-
dicted optical flow of several templates. Optical flow templates predict the optical flow
due to robot egomotion, for a given robot velocity and attitude, and for a particular type of
environment structure.

In this work, we use templates for ground plane and distant structure, and label regions
that are not consistent with any other template as possible obstacles. Ground plane labels
are likely to indicate fairly flat ground that can be driven upon. Far-away objects “at infin-
ity” indicate line-of-sight directions that are likely free of obstacles. Image regions that are
not consistent with either of these are likely to be nearby objects or other moving objects
to be considered as obstacles.

The work to date towards using image motion for autonomous navigation has several
drawbacks that limit its usefulness. While our framework does not completely solve the
problem, it is a new way of looking at the problem that addresses some of the drawbacks.

5.1 Optical Flow Templates
An optical flow template encodes the space of possible optical flow fields corresponding
to a certain environment structure, invariant to the platform velocity. In turn, optical flow
templates also specify a linear mapping from platform velocity ξ = [ωx,ωy,ωz,vx,vy,vz]

T

to optical flow, for a given robot attitude, and for a particular environment structure class.
Shown in Figure 11, we specifically work with 3 possible classes: ground plane, distant
structure, and obstacle. Let W k (θ) ∈ R2wh×q be the optical flow template for environment
structure class k, where w and h are the image width and height, and q is the velocity
dimension (for our experiments q = 6). Optical flow templates are nonlinear functions of
the platform attitude θ . Thus they predict a flow field for structure class k as uk =W k (θ)ξ .
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5.1.1 Optical Flow as a Gaussian Mixture of Templates

Because each pixel may be generated from any template, we model the optical flow ui at
each pixel i as a Gaussian mixture of the flow predicted ûk

i by each template,

p(ui |Λi,ξ ) = N
(
0, Σ

0)Λ0
i

κ

∏
k=1

N
(

ûk
i (ξ ) , Σ

)Λk
i
, (34)

where Λk
i ∈ {0,1} is a binary indicator of 1 if pixel i takes the discrete label k, and 0

otherwise. Σ is the covariance of the Gaussian noise on the optical flow consistent with
the template, and Σ0 is the covariance of zero-mean Gaussian noise on optical flow that is
not consistent with any template, i.e. is labeled as obstacle. ûk

i (v) =W k
i (θ)ξ is the optical

flow predicted by template k at pixel i, and we assume that the platform attitude θ is known,
as explained in Section 5.1.2 where we calculate the templates. The notation W k

i selects
the pair of rows corresponding to pixel i from the optical flow template W k. As is typical
with notation in Gaussian mixtures, raising each term to the power of the indicator variable
effectively makes only one term active for a given labeling.

Because the optical flow templates result in a linear relationship between velocity and
optical flow, the measurement likelihood in Eq. 34 is Gaussian, allowing inference to be
fast and guaranteeing convergence. Each optical flow template is one instance of the optical
flow subspace model introduced in our previous work [76].

5.1.2 Calculating Optical Flow Templates

The optical flow field in a calibrated projective camera is (see e.g. [32] for derivation)

ui =

 yi
xiyi

f − f − x2
i
f

xi
zi

− f
zi

0

−xi f + y2
i
f

−xiyi
f

yi
zi

0 − f
zi

ξ , (35)

where xi and yi are the horizontal and vertical image coordinates (with the origin at the
image center) at pixel i, zi is the depth at pixel i, and f is the focal length. The matrix is
arranged such that ξ = [ωx,ωy,ωz,vx,vy,vz]

T is the rotational and translational velocity in
“robot coordinates”, where the x-axis points forwards and the z-axis points down.

For a flow field u comprised of the concatenated flow vectors ui ∈ R2, the optical flow
template W k (θ) is thus formed by stacking all of the matrices in Eq. 35. The depth zi
at each pixel depends on both the scene structure and the platform attitude θ . Here, we
consider templates corresponding to ground plane and distant structure. For ground plane,
we compute zi using plane-line intersection geometry. For brevity, we omit the derivation
which is a straightforward application of the tools in Chapter 2 of [30]. For distant struc-
ture, we use zi = ∞ everywhere. In Figure 11, the ground plane template shows the camera
is pitched slightly down – the boundary between the black and the colorful regions is the
horizon.

We assume the platform attitude θ is known. In our experiments, we obtain it from an
attitude/heading reference system (AHRS). On autonomous ground vehicles and aircraft,
this is common equipment, and is typically implemented using measurements from an
accelerometer and gyroscope [19].
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5.2 Superpixel Labeling
Our method assigns a probability that each superpixel of optical flow in a frame of video
belongs to each class, with each class represented by an optical flow template. Inference
is a matter of labeling superpixels such that all superpixels assigned to the same template
exhibit consistent optical flow within that template, and that all superpixels across all tem-
plates predict a consistent platform velocity. To simplify notation, we do not include frame
numbers or time steps, but each frame is labeled independently.

Let λ j ∈ Rκ be the vector of probabilities that superpixel j belongs to each class, and
λ k

j ∈ R be the kth element, i.e. the probability that superpixel j belongs to class k. Let
k ∈ {0,1,2}, where the special class k = 0 corresponds to obstacle, and κ = 3 is the number
of classes (including obstacle). Both the superpixel labels λ j and the velocity estimate ξ

are alternatively refined, but for simplicity we omit iteration numbers from the notation.

5.2.1 Superpixel Labeling Given a Velocity Estimate

Our end goal is to label superpixels according to which optical flow template they are con-
sistent with. This requires knowing the optical flow templates themselves (as obtained in
Section 5.1.2). Although each optical flow template encodes an optical flow subspace that
is invariant to platform velocity, we want to enforce that all superpixels predict a consistent
platform velocity. Thus, we will iteratively estimate the platform velocity (as explained in
Section 5.2.2), and in this section, take the current velocity estimate ξ .

While in the previous Section 5.1 we defined the density of optical flow at a pixel i
predicted by an optical flow template, we now switch to superpixels. All of the inference
here may equally be performed at the pixel level, but using superpixels greatly reduces
the computational expense. We use the index j to denote a superpixel, and use u j and
Λ j to denote the flow and labeling of a superpixel, and W k

j (θ) to denote the pair of rows
corresponding to the pixel at the center of superpixel j.

We estimate the probability λ k
j of each jth superpixel belonging to each class. These

probabilities define a multinomial distribution p
(
Λ j = ek

)
= λ k

j over the labels (where
ek ∈ Rκ is a vector with 1 in position k and 0 elsewhere, i.e. an assignment of the discrete
indicator variables). Each assignment probability λ k

j is the normalized likelihood that the
superpixel is consistent with template k,

λ
k
j =

l
(
Λ j = ek | ũ j,ξ

)
∑k̄ l

(
Λ j = ek̄ | ũ j,ξ

) , (36)

where l (·) ∝ p(·) denotes a likelihood and ũ j is the average measured optical flow in
superpixel j. We calculate the likelihoods here using Bayes’ law,

l
(
Λ j | ũ j,ξ

)
= p

(
ũ j |Λ j,ξ

)
p
(
Λ j
)

, (37)

where the measurement likelihood p
(
ũ j |Λ j,ξ

)
is as in Eq. 34, except that the predicted

flow ûk
i (ξ ) is calculated by choosing pixel i to be at the center of superpixel j. p

(
Λ j
)

is
the class prior, which in our experiments is a simple multinomial distribution.

33



In the next section, we describe refining the velocity estimate ξ given the labeling esti-
mated with Eq. 36 above. As mentioned before, the velocity and labeling are alternatingly
refined until convergence.

5.2.2 Refining the Velocity Estimate Given the Labeling

To refine the velocity ξ , we treat the labeling Λ j as a hidden variable and update the velocity
using expectation-maximization (EM),

ξ ← argmax
ξ

〈L (ξ | ũ,Λ)〉 , (38)

where L (·) = log l (·) denotes a log-likelihood, ũ and Λ are the collections of optical flow
vectors and indicator vectors for all superpixels, and the expectation 〈·〉 is with respect to
p(Λ | ũ,ξ ). Using Bayes’ law and the linearity of the expectation, we have

〈L (ξ | ũ,Λ)〉= L (ξ )+∑
j

〈
L
(
ũ j |Λ j,ξ

)〉
, (39)

where the expectation is now with respect to p
(
Λ j | ũ j,ξ

)
. To compute the expected log

measurement likelihood
〈
L
(
ũ j |Λ j,ξ

)〉
, we note that the class probabilities λ k

j calculated
in the previous section comprise the sufficient statistics for this EM algorithm, giving ev-
erything we need to calculate〈

L
(
ũ j |Λ j,ξ

)〉
= ∑

k
λ

k
j L
(
ũ j |Λ j = ek,ξ

)
, (40)

where the the log measurement likelihood is the log of Eq. 34. Note that the velocity ξ

used in Eq. 34 is in fact the variable being optimized for in this section, and is not fixed
here as it was in Section 5.2.1.

Because the measurement likelihood is Gaussian, the expected log-likelihood is a quadratic,
and thus refining the velocity estimate with the maximization in Eq. 38 is a linear least-
squares problem that is easily solved using direct methods.

5.2.3 Summary and Implementation of Method

Given each of the components we have introduced in this section, we now summarize the
steps that take place for each incoming video frame here in Algorithm 1:

5.3 Experiments
Our experimental platform is a car equipped with a Point Grey Flea3 (gigabit ethernet
version) camera running at 1380× 480 at 10Hz, and a MicroStrain 3DM-GX3-45 inertial
navigation system (INS), from which we use only the AHRS attitude estimate. Both were

1This convergence criteria relies on the likelihood normalization constant remaining constant during op-
timization. To accomplish this, it is sufficient to include in the likelihood calcaulations the normalization
constants from all Gaussians involving the velocity v.
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Algorithm 1: Superpixel labeling for each frame.
Input: Current and previous video frames.
Input: Platform attitude θ (e.g. from AHRS).
Result: Class label probabilities λ k

j for each superpixel j and class k.

1 For current frame, compute SLIC superpixels [2].
2 For previous and current frames, compute TV-L1 [98, 77] optical flow ũ and average

flow ũ j in each superpixel.
3 Compute basis flows W k

j (θ), at image locations corresponding to superpixel centers.
4 Initialize class label probabilities uniformly, λ k

j =
1
κ

.
5 while change in 〈L (ξ | ũ,Λ)〉 is greater than convergence threshold1 ε do

Update ξ ← argmaxξ 〈L (ξ | ũ,Λ)〉 (Sec. 5.2.2)

Update λ k
j ←

l(Λ j=ek | ũ j,ξ)
∑k̄ l(Λ j=ek̄ | ũ j,ξ)

(Sec. 5.2.1)

end
6 return λ k

j

connected to an Intel Core i7 laptop for data logging, and the computations described were
performed on the logged data.

We operated the car in an urban environment. In collecting the dataset, we took care
not to follow any car in front too closely. We did not make any other special considerations
in driving style while collecting the dataset.

The parameters Σ= diag(7.0) and Σ0 = diag(15.0) were used for the noise covariances.
These values were selected empirically: Too tight covariance causes too many superpixels
to be labeled as obstacle due to slight noise in optical flow measurements, while too loose
covariance causes all superpixels to be labeled only ground plane or distant structure. For
the label priors, we used p(Λ = ground plane) = 0.4 and p(Λ = distant structure) = 0.4
for superpixels below the horizon, and p(Λ = ground plane)= 0 and p(Λ = distant structure)=
2/3 above the horizon (in each case the remaining probability is for obstacle). These values
were chosen by manual estimation of the image portion occupied by each class in several
typical frames, although the algorithm is not very sensitive to this prior.

Our implementation of the algorithms is in C++ using the GTSAM factor graph li-
brary [16]. The C++ classes are wrapped in MATLAB using the wrap utility included
in GTSAM, and we perform data loading, scripting, and visualization in MATLAB. All
source code and datasets will be made available online on the authors’ web site by the time
of publication (link will be provided in camera-ready version).

5.3.1 Qualitative Analysis

In Figure 12, we present examples of the labeling produced by our method that we consider
successful. These examples are successful because the information they contain is useful
for autonomous navigation. For the most part the major structure above the ground plane
and close to the camera is labeled as “obstacle” (red), and the ground plane (green) and dis-
tant structure (blue) are mostly correctly labeled. The obstacle structure above the ground
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plane is often obstacles, road boundaries, or independently-moving objects. Such structure
could be avoided by a navigation method or passed on to higher-detail vision processing.

Sometimes the labeling produced by our method contains errors. One type of error
arises because the optical flow estimate is incorrect. Most frequently, this occurs in regions
with smooth or repetitive texture, as shown in Figure 14a. This type of error points us
towards future work because the root cause of this problem is computing optical flow as
an input that is unaware of the global optical flow constraints provided by our optical flow
templates. We expand on this in the discussion. Another type of error occurs when the
differences between the predicted optical flow from two templates becomes too small to
distinguish from noise, as shown in Figure 14b. In this case, superpixels on the ground
plane may be be labeled with 50% probability of belonging to either the ground plane
or distant structure classes, indicated in the figure by the green/blue or turquoise blended
color; also, ground plane superpixels may be labeled as distant structure if small error in
the velocity estimate of our method causes the optical flow on the ground plane to agree
more closely with rotational flow than with translational flow.

5.3.2 Quantitative Analysis

We hand-evaluated 200 frames of video and labels produced by our method, the results
of which are shown in Figure 15. In each frame, we determined the number of objects
or regions of environment structure mislabeled by our method. “Extra obstacles” are im-
age regions that our method labels in the obstacle class, yet there is no structure above
the ground plane near the camera in that region. “Missed obstacles” are image regions
containing structure above the ground plane near the camera but that our method does not
label as obstacle. For example, in Figure 14a we would count the region mislabeled on the
ground plane as one “extra obstacle”, and a missed car or pedestrian would count as one
“missed obstacle”. In hand-labeling, we took into account the smoothing inherent in the
optical flow calculation, so several objects close together, for example poles on the side of
the road, are only counted as one object.

Because our method estimates superpixel labels jointly with platform velocity, we test
whether errors in superpixel labels are coupled with errors in yaw-rate estimation. Fig-
ure 15 plots the yaw-rate error of our method as compared with the vehicle’s gyroscope.
While gross yaw errors would certainly be coupled with many incorrect superpixel labels,
the comparison demonstrates that there is no correlation between small yaw errors and
errors in superpixel labeling.

5.3.3 Timing

Our research implementation is single-threaded, and takes approximately 20ms per frame
(±2ms) to infer superpixel labels and velocity, already having the optical flow and su-
perpixel segmentation available as input. For each frame, the combined time to calculate
TV-L1 optical flow and SLIC superpixels on the CPU is 500ms per frame, however, there
are GPU versions available of both algorithms that achieve real-time performance using
CUDA. All timings were measured on an Intel Core i7 3.4 GHz desktop. The nature of the
linear least-squares problem makes it adaptable to parallelization and GPU implementation.
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5.4 Summary
We have presented a new framework for interpreting optical flow observed by a mobile
robot, called optical flow templates. Using templates for ground plane and distant structure,
our method labels image regions whose flow is consistent with these templates, as well as
labeling flow inconsistent with either as obstacle. This latter class comprises objects that
occupy space above the ground plane near to the robot, and may be passed on for more
detailed and computationally intensive processing.

The key aspects of the superpixel labeling method using this framework, in relation to
previous work, include that computational complexity is very low, and geometric models
of optical flow remove the need for hand-labeled training data or heuristics. We present an
experimental proof-of-concept, labeling video in an urban driving scenario.

We have observed, as shown in Section 5.3.1, that many of the errors made by our
method come from errors in optical flow estimation. These errors especially occur in re-
gions of smooth texture, where the task of optical flow is underconstrained and ill-posed
without a global optical flow model. Our optical flow templates in fact provide such a
model, and joint inference makes much more accurate labels possible, as we show in the
next chapter.
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Each template is a probabilistic optical flow subspace with a 
basis flow for each velocity component.  Linear combination 
by each component predicts the flow field from egomotion.

Template 1 (k = 1)
ground plane

Template 2 (k = 2)
distant structure

Input: Platform 
attitude

θ 

Observed frame and 
optical flow superpixels

ωx, ωy, ωz, 
vx, vy, vz

ωx ωy ωz

vx vy vz

ωx ωy ωz

vx vy vz

Superpixel 
labeling

Estimated 
velocity

Iteratively refine labeling and velocity so observed 
flow agrees with flow predicted by templates.

InputInference  Obstacle  — not 
explained by templates 

Figure 11: Optical flow templates for superpixel labeling. Optical flow templates W k (θ), one for each
structure class ground plane (k = 1) and distant structure (k = 2), predict optical flow ui at each ith image
location, given a platform velocity estimate ξ = [ωx,ωy,ωz,vx,vy,vz]

T and attitude estimate θ ∈ SO(3). Each
template consists of 6 flow fields that combine linearly for each velocity component. For the optical flow color
code, see Figure 13. Using observed optical flow, alternatively refine the labeling ki for each ith superpixel
and the estimated velocity ξ . The special class k = 0 indicates optical flow pixels that cannot be explained
by any template, which we label as obstacle.

(a) Car crossing perpen-
dicularly while platform
stationary

(b) Passing lamps on
right side while driving
forwards

(c) Passing cars parked
on both sides while driv-
ing forwards

(d) Encountering pedes-
trians during a right turn

Figure 12: Example video frames, superpixel optical flow fields, and superpixel labels by our method.

Figure 13: The optical flow color code, as in [5]. Flow fields (e.g. Figure 11) are displayed with a color at
each pixel. The hue indicates the direction of the flow and the saturation its magnitude. Here, the center of
the black cross (color white) is zero flow. Yellow is downwards flow, red rightwards, etc.
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(a) Error in labeling the ground as obstacle due to
optical flow errors caused by smooth texture.

(b) Error in labeling ground plane as distant structure
due to similarity between rotational and translational
basis flows.

Figure 14: Examples demonstrating errors in labeling by our method.
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Figure 15: Number of objects mislabeled by our method, evaluated by hand-inspecting 200 frames labeled
by our method. We counted “extra obstacles”, which are image regions detected by our method as the
obstacle class when no nearby structure was in fact present, and “missed obstacles”, where nearby structure
was present but not detected.
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CHAPTER VI

DIRECTLY LABELING SUPERPIXELS FROM
SPATIOTEMPORAL GRADIENTS

We are interested in autonomous obstacle avoidance for mobile robots using camera sen-
sors. Most of the work to date on this problem has focused primarily on either building and
analyzing sparse point clouds, or labeling pixels or superpixels based on image appearance.
However, both these families of methods have shortcomings, and optical flow provides an
additional powerful source of information to complement point clouds and image appear-
ance.

The most ubiquitous methods to date in autonomous robot systems using camera input
have focused on two families of methods. In one, stereo or structure-from-motion is used
to build point clouds or depth maps, which are analyzed to estimate a ground traversability
map, for example [61], [73], [37]. In [27], [51], and [50], image appearance traversability
classifiers, combined with a model of the ground plane, are used to propagate stereo-labeled
image regions to distances in the traversability map beyond the range of stereo. Many
successful methods also use image appearance to propagate traversability but without the
use of nearby stereo-informed labels [54], and others use examples provided by a human
operator to inform labeling [97]. In most of the working systems described by the preceding
papers, stereo and appearance traversability are combined to produce the traversability map
used for motion planning.

The above methods are ill-suited for small or inexpensive robots. The point clouds
and depth maps of the first family of methods must be fairly dense to support obstacle
avoidance, which necessitates expensive and powerful hardware. Additionally, they re-
quire a calibrated camera, and calibrating wide-angle lenses, which are certainly useful
for obstacle avoidance, is challenging and requires special models and methods. While
appearance-based classification methods are computationally fast and do not rely on cali-
bration, they either must be adapted online using information from point clouds or depth
maps, or trained offline and thus unable to cope with unexpected appearance changes.

Thus, we argue that optical flow provides a rich source of information to complement
image appearance and point clouds in determining traversability. To demonstrate this, we
present a method for labeling superpixels in video as ground, distant, obstacle, or unknown
using as input the observed spatiotemporal image gradients, and a learned optical flow
template model, as previewed in Figure 16. We additionally present a method for learning
these optical flow templates.

The contributions of this work over previous work in superpixel labeling with optical
flow templates [74] are that we 1) improve labeling accuracy and computational efficiency
over prior work by inferring labels directly from spatiotemporal gradients, instead of from
separately-computed optical flow, 2) improve labeling accuracy by improved modeling of
the obstacle class, and 3) expand applicability to uncalibrated cameras of arbitrary optics,
by developing a method for unsupervised learning of optical flow templates from video.
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(a) Camera frame (b) Superpixel label probabilities

ground obstacledistant unknown
(c) Superpixel label legend

(d) Learned rotational optical flow template (e) Learned translational optical flow template

Figure 16: We are concerned with obstacle avoidance for mobile robots a) from a single uncalibrated camera
sensor with arbtrary optics. Note the large radial distortion which cannot be undistorted by typical methods.
b) Towards this goal our method labels superpixels using information from optical flow. d,e) Our method
learns optical flow templates to inform this labeling. Arbitrary camera optics are supported, and there is no
need to calibrate the camera or hand-label any training data.
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Learned optical flow templates

Superpixel labels

Predicted flow

Optical flow
color code Robot velocity

Figure 17: Illustrated Bayes net of the optical flow template model.

6.1 Labeling Superpixels Using
Optical Flow Templates

Our goal is to label superpixels according to the scene structure at each superpixel, using
as input the spatiotemporal image gradients. To inform this labeling, we use learned mod-
els of the optical flow fields due to platform egomotion for a set of possible typical scene
structure, called optical flow templates. Note that we perform this labeling without comput-
ing optical flow – dense optical flow calculation is ill-posed and unnecessarily expensive,
which is why we instead directly use the spatiotemporal image gradients. Additionally, no
velocity information is needed to perform the labeling.

The method explained in this section is the on-line inference component, which is used
after the optical flow templates have already been learned off-line using the method ex-
plained in Section 6.2.

6.1.1 Labeling Superpixels in Observed Images

We wish to infer superpixel labels Λi ∈ {0..κ} for each ith superpixel in an image, given
the image temporal and spatial derivatives Itxy of the image and the parameters Θ of the
learned optical flow template model. κ is the number of labeling classes other than the
unknown class.

We will perform inference in the generative model illustrated in Figure 17, whose joint
density is

p
(
Itxy,U,Λ,ω,v |Θ

)
= p

(
Itxy |U

)
p(U | Λ,ω,v,Θ) p(Λ) p(ω,v) . (41)

In this model, the unknowns are the superpixel labels Λ, the robot velocity ω,v, and the
optical flow U at each pixel, while the observations are the image spatiotemporal gradients
Itxy. The optical flow templates, encapsulated in the optical flow template parameters Θ,
are known from the learning phase to be explained in Section 6.2.
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Exact inference of the superpixel labels would require an intractable marginalization of
the remaining unknown flow U and velocity ω,v, so we instead employ a variational infer-
ence method. Our method alternates between updating the probability of each superpixel
label, and a Gaussian density approximation of the robot velocity.

In this variational method, the inference problem is approximated as

p
(
Λ | Itxy,Θ

)
≈
ˆ

ω,v

p
(
Λ | Itxy,ω,v,Θ

)
N
(
(ω̂, v̂) , Σ̂ω,v

)
, (42)

where ω̂, v̂ is the mean and Σ̂ω,v is the covariance of a Gaussian density estimate that we
will iteratively update. We will derive a simple closed form expression for Eq. 42 at each
iteration. The two steps in each iteration are:

6.1.1.1 Label Probability Update

In this step we update a vector of label probabilities Λ̃i ∈Rκ+1 for each superpixel by evalu-
ating Eq. 42. The first term in Eq. 42 is obtained by applying Bayes’ law and marginalizing
out the unknown optical flow U in the generative model in Figure 17,

p
(
Λ | Itxy,ω,v,Θ

)
= ∏

i
p
(

Λi | Itxy
Ji

,ω,v,Θ
)

∝ ∏
i

∏
j∈Ji

p
(

Itxy
j | Λi,ω,v,Θ

)
p(Λi |Θ)

= ∏
i

∏
j∈Ji

ˆ

U j

p
(

Itxy
j ,U j | Λi,ω,v,Θ

)
p(Λi |Θ)

= ∏
i

∏
j∈Ji

ˆ

U j

p
(

Itxy
j |U j

)
p
(
U j | Λi,ω,v,Θ

)
p(Λi |Θ) , (43)

where Ji is the set of pixels in superpixel i. Note that in the first line, the superpixel labels
are independent of each other when conditioned on the robot velocity ω,v.

The first term p
(

Itxy
j |U j

)
in Eq. 43 is the image intensity likelihood which, assuming

a static and non-occluding scene, depends only on the optical flow. Thus we define it using
the brightness constancy constraint,

p
(

Itxy
j |U j

)
= N

(
0; It

j + Ixy
j U j,σI

)
, (44)

where Ixy
j ∈ R1×2 is the spatial image gradient at pixel j, and σI is the standard deviation

of pixel intensity noise.
The second term p

(
U j | Λi,ω,v,Θ

)
is the optical flow likelihood, which in the optical

flow template model depends on the superpixel label Λi, the robot velocity ω,v, and the
template parameters Θ. The form of the optical flow template model is Gaussian, with
mean linear in the robot velocity,

p
(
U j | Λi,ω,v,Θ

)
= N

(
Wω, jω +WΛi, jv, ΣΛi

)
(45)
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for matrices Wω, j ∈ R2×3, WΛi, j ∈ R2×q, ΣΛi ∈ SPD2×2, which will be fully explained in
Section 6.1.2.

The label prior p(Λi |Θ) is a categorical distribution. The outlier class unknown is
assigned a small probability (p

(
Λ j=unknown

)
= 0.05 in our experiments). Then, the region

of pixels close to the horizon receives equal probability distant and ground, and slighly
lower probability obstacle. The pixels above that region receive zero ground probability,
and the pixels below that region receive zero distant probability.

Since all terms in Eq. 43 are Gaussian as just explained, the integral in Eq. 43 can be
computed analytically as

p
(

Itxy
j | Λi,ω,v,Θ

)
=

ˆ

U j

p
(

Itxy
j |U j

)
p
(
U j | Λi,ω,v,Θ

)
= N

(
It

j;−Ixy
j
(
Wω, jω̂ +WΛi, jv̂

)
,ρ j

)
, (46)

with
ρ j = σ

2
i + Ixy

j

(
ΣΛ j +

[
Wω, j WΛ j, j

]
Σ̂ωv

[
Wω, j WΛ j, j

]T) Ixy
j

T,

where ω̂, v̂ and Σ̂ωv are the statistics of the Gaussian density estimate on velocity from the
previous iteration, whose calculation we will now explain.

6.1.1.2 Velocity Gaussian Density Update

As mentioned, we update the mean ω̂, v̂ and covariance Σ̂ωv of the estimated velocity den-
sity using the label probability vectors Λ̃i from the previous iteration. The mean is the
maximization of the expected log-likelihood with respect to the label distribution from the
previous iteration,

ω̂, v̂←argmax
ω,v

〈
log p

(
ω,v | Itxy,Λ,Θ

)〉
= argmax

ω,v ∑
i

∑
j∈Ji

〈
log p

(
Itxy

j | Λi,ω,v,Θ
)〉

+ log p(ω,v)

= argmax
ω,v ∑

i
∑
j∈Ji

∑
k∈{0..κ}

Λ̃i,k log p
(

Itxy
j | Λi,ω,v,Θ

)
+ log p(ω,v) (47)

where the prior p(ω,v) is assumed to be uninformative and

p
(

Itxy
j | Λi,ω,v,Θ

)
= N

(
It

j;−Ixy
j
(
Wω, jω +WΛi, jv

)
,η j

)
, with (48)

η j = σ
2
I + Ixy

j ΣΛiI
xy
j

T.

The maximization is a linear least-squares problem. The definition in Eq. 48 is obtained by
computing the integral

´
U j

p
(

Itxy
j ,U j | Λi,U j,Θ

)
in closed-form.

The covariance estimate Σ̂ωv is that of the Gaussian defined by the exponential of the
expected log-likelihood in Eq. 47, exp〈log p(ω,v | Itxy,Λ,Θ)〉, and is obtained efficiently
as Σ̂ωv =

(
RTR

)−1, where R ∈ R(3+q)×(3+q) is the Cholesky factor obtained in optimizing
Eq. 47.
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6.1.2 Optical Flow Templates

An optical flow template models the optical flow at each pixel resulting from typical en-
vironment structure, for any possible platform velocity. This model defines the optical
flow likelihood p

(
U j | Λi,ω,v,Θ

)
introduced in Section 6.1.1. The explanation here is

self-contained, but [74] may be referenced for additional information.
The key to superpixel labeling using optical flow templates is that the label Λi de-

termines which typical environment structure predicts the optical flow U j, and thus the
labeling problem is simply model selection as derived in Section 6.1.1. Here, Λi=ground
predicts optical flow consistent with a ground plane, Λi=distant predicts optical flow from
distant structure where flow is determined only by camera rotation, Λi=obstacle predicts
obstacle flow for structure nearer to the camera than that expected for the ground plane,
and Λi=unknown predicts zero-mean wide-variance optical flow to identify superpixels that
cannot be explained by the learned templates.

Two intuitive points regarding optical flow templates are:

• Optical flow due to rotation is independent of the scene structure, the contribution
due to platform translation is the only one that informs the pixel labels.

• For any constant environment structure relative to the robot, implicitly captured in
an optical flow template, the optical flow is indeed linear in the platform translational
velocity v as modeled in Eq. 49. Optical flow is also linear in the platform rotational
velocity ω .

With these two points in mind, the optical flow template model predicts the optical flow U j
as

U j =


εunknown, Λi=unknown
Wω, jω +WΛi, jv+ εΛi , Λi=ground,obstacle
Wω, jω + εdistant, Λi=distant,

(49)

where ω ∈R3 is the platform rotational velocity, v ∈Rq is the platform translational veloc-
ity, Wω, j ∈R2×3 is the optical flow template that generates the optical flow due to platform
rotation, and WΛi ∈ R2×q is one of κ templates that generates the optical flow due to plat-
form translation for a particular environment structure. εx denotes Gaussian noise with
covariance Σx (with ‘x’ representing one of the labeling classes). The optical flow template
model parameters are thus comprised of Θ = (Wω ,W1,Σ1, ... ,Wκ ,Σκ). Here, q is the di-
mensionality of translational velocity accounting for non-holonomic constraints. Thus for
the car-steering robot used in our experiments, q = 1.

6.2 Learning Optical Flow Templates from Unlabeled Video
We now wish to learn the optical flow templates used for labeling superpixels in Sec-
tion 6.1.1 from recorded video. No velocity estimates, camera calibration, or hand-labeling
are required to learn the templates – the learning algorithm is almost entirely unsupervised.

The input to the learning algorithm is two videos – one while arbitrarily rotating the
camera (hand-held is sufficient) in various directions, and one while the robot drives safely
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in its typical environment. In practice, using the separate rotation video improves the qual-
ity of the learned templates by preventing translational flow from appearing in the rotational
flow template Wω , and vice versa. Even without the separate rotation video, with increasing
amounts of training data that is unbiased in turning direction, this confusion vanishes.

The learning algorithm is also a variational method that updates, in turn, the probability
vectors of the pixel labels Λ̃t, j for every pixel (not superpixel) j in frame t, the Gaussian
velocity density on ωt ,vt for every frame, and the optical flow templates Wω and Wk for
each template k.

The optical flow templates are updated by maximizing the expected log-likelihood of
the templates in the generative model in Figure 17, conditioning on all other unknowns
fixed at their estimates from the previous iteration. Unlike in the inference algorithm,
in learning it suffices to condition on fixed values for ω,v instead of using the Gaussian
density,

Wω,1..κ = arg max
Wω,1..κ

〈
log p

(
Wω,1..κ | Itxy

1..T ,(Λ, ω̂, v̂)1..T
)〉

= arg max
Wω,1..κ

〈
∑
t

log p
(
Itxy
t | (Λ, ω̂, v̂)t ,Θ

)〉
+ log p(Wω,1..κ) , (50)

where Wω,1..κ is all optical flow templates Wω and Wk for k ∈ {1..κ}, and T is the number
of frames in the training dataset. The term

p
(
Itxy
t | (Λ, ω̂, v̂)t ,Θ

)
= ∏

j
N
(

It
t, j;−Ixy

t, j
(
Wω, jω̂t +WΛ j, jv̂t

)
,η j

)
(51)

is identical to Eq. 48 just with appropriate subscripts.
The updates for the label probabilities Λ̃t, j and velocity mean ω̂t , v̂t are identical to

those for the inference algorithm in Eqs. 43 and 47 (the notation of those update equations
may then be interpreted with each superpixel containing only one pixel each), except that
the priors for learning are defined as follows:

• The label priors p
(
Λt, j |Θ

)
are almost the same as during inference, Section 6.1.1.1,

except that for the frames that are part of the rotation-only video ground receives
zero probability, and the obstacle class probability is always zero for learning.

• For the velocity prior p(ω,v) in Eq. 47, we use a Gaussian with fairly large diagonal
covariance diag

(
σ2

ωv
)
, with σωv = 104. This constrains the scale ambiguity between

velocity magnitude and optical flow magnitude.

• For the template prior p(Wω,1..κ) in Eq. 50, we use a gentle 4-connected smoothness
prior:

p(Wω,1..κ) = ∏
x∈{ω,1..κ}

∏
j

∏
n∈N( j)

N
(
Wx, j−Wx,n, Σb

)
,

where N ( j) is the two neighboring pixels of j to the right and below, and Σb =
diag

(
σ2

b

)
, with σb = 2 in our experiments.
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The learning is not highly sensitive to the parameters, p
(
Λt, j |Θ

)
, σωv, σi, and σb, the

values we used here should also be appropriate for most other datasets. A summary of all
parameter values used in our experiments is provided in Table 1 of the Experiments and
Results section. While in Chapter 3 we estimated the optical flow standard deviations, in
this case, the marginalization of the optical flow and presence of the pixel intensity noise
with standard deviation σi would make such an estimation more complicated, and we were
not able to find a straightforward solution.

Over multiple iterations, Wω converges to the rotational flow fields and Wground to the
translational flow fields. Intuitively, the following points are responsible for the maximum-
likelihood state of this optimization being the desired solution:

• Within each label class, the templates identify a subspace [Wω WΛ ] in the training
data, represented as a rank-deficient Gaussian. Thus, the maximum-likelihood solu-
tion occurs when the Gaussian is indeed aligned with this subspace in the data.

• The separation of the rotational and translational flow fields occurs because the rota-
tional flow fields contribute to all label classes whereas the translational flow fields
contribute to only non-distant classes. This means that the Gaussian prediction of
the optical flow U j has smaller variance and thus higher probability if the distant
class is chosen to label pixels that are well-explained by rotation only, as opposed to
labeling pixels as ground class whose flow is explained equally well by only rota-
tional components. Due to this effect, while the prior for distant-only labeling in the
rotation-only video ensures clean separation of rotational and translational flow, it is
unnecessary for unbiased training data.

The learning does not estimate a template Wobstacle for the obstacle class. Instead, we
leverage the fact that the contribution of translational flow of static obstacles is in the same
direction as translational flow for any other structure (and still includes the same rotational
flow component as any other structure), and that we are interested in identifying obstacles
that are closer to the robot than the ground plane. Thus, we set the obstacle template to
be the same as the ground plane template but with slightly larger magnitude, Wobstacle =
αWground, with α = 1.1 in our experiments.

One important implementation note is that when solving the least-squares update for
the templates, the full system Jacobian is too large to fit in memory. Thus instead, during
each iteration we accumulate the system Hessian, updating it with each successive frame.
In our implementation each learning iteration thus requires one pass through the data on
disk, with label updates, velocity updates, and template Hessian updates all performed as
each frame is read.

6.3 Experiments and Results
6.3.1 Sensitivity to Parameters

Most of the parameters in our method do not affect the results much and are thus require
little to no tuning, though the inference algorithm is fairly sensitive to appropriate choices
of the optical flow covariance Σk and the pixel intensity stardard deviation σI . We tuned
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Figure 18: Our platform is a high-speed mobile robot, a modified 1/8-scale radio-controlled car approxi-
mately 50cm in length with all power, computing, computing, data storage, and sensors on-board. For our
experiments we use the front-looking camera sensor, which has a high-distortion 110◦ FOV lens. The robot
was operated at approximately 2m/s during data collection, and the camera framerate is 100Hz.

these by running the inference algorithm several times with a range of values and choosing
those that yielded the best results according to visual inspection.

The parameters we list here are typically usable on any other dataset without further
tuning, though one needs to scale the flow covariance Σk according to resolution and field-
of-view. Table 1 lists all of the parameters used in our experiments.

6.3.2 Convergence

Our method uses two iterative algorithms as described in Sections 6.1 and 6.2, so conver-
gence speed and susceptibility to local minima are of interest. We were not able to math-
ematically prove any bounds or convergence guarantees, but in practice both algorithms
converge quickly and in all our experiments have not been susceptible to local minima.

A convergence proof to probabilistic principal components analysis may be found in
Tipping and Bishop [86], and our algorithms are built off of this. The key differentiating
aspect related to convergence is the introduction of per-pixel indicator variables in our
method. In practice, our algorithms converge unless there is an overwhelming portion of
outliers in a frame, in which case the indicator variables converge on indicating that the
outliers are in fact the inliers, and vice versa.

The inference algorithm that labels superpixels online (Section 6.1) converges very
quickly. The labels typically reach very close to their final values within 3 iterations, and
fully converge to tight tolerance within 10 iterations. The learning algorithm takes longer,
but as it is an offline step, this is not a concern. It typically converges within 30 iterations.

6.3.3 Experimental Platform and Setup

We collected learning and evaluation videos from the front-looking camera of a small, high-
speed mobile robot, shown and described in Figure 18, with which to evaluate our method.
Each video was collected while driving the robot manually around an oval test track. In the
training videos the track was free of hand-placed obstacles, though the track has tufts of
grass, and there were structures and objects near to the track that we expected to be outliers
for the learning algorithm. In the evaluation videos, we placed objects on the track with
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Description Symbol Value

Prior for
unknown class

p
(
Λt, j=unknown

)
0.05

Pixel intensity
noise (img.

intensities in
[0,1])

σI 0.02

Optical flow
prediction noise

for unknown
class

Σunknown diag(1.0pix)2

Optical flow
prediction noise
for other classes

Σω,1..κ diag(0.35pix)2

Learning velocity
prior

σωv 104

Learning
template

smoothness

σb 2

Obstacle
template scaling

α 1.1

Superpixel
average size

100pix2

Iterations for
inference

3

Table 1: Parameters selected for our experiments.

Figure 19: Successful labeling results, see Section 6.3.4 for observations and explanations.
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Figure 20: Two types of failure for our method, see Section 6.3.4 for observations and explanations.

the intent that they should be detected as obstacles by our inference algorithm.

6.3.4 Qualitative Results

The optical flow templates learned by our method are shown in Figures 16d and 16e. The
rotational template is shown as three flow-fields, whose linear combinations under the robot
rotational velocity form the contribution to optical flow from rotation. The translational
template is a single flow-field because our non-holonomic robot has only one degree-of-
freedom for velocity, “forward velocity” in the body frame. The use of these templates for
labeling and their learning was described in Sections 6.1 and 6.2.

Examples of successful labeling results are shown in Figure 19. Typically, boundaries
of objects are detected more strongly than smooth-texture regions within objects, a result
that is expected since smooth-texture regions provide little-to-no information to optical
flow. These results also show that ground and distant structure are well-distinguished, with
distant structure often being sky.

Another observation to make is that obstacles are sometimes classified as unknown.
The underlying reason for this phenomenon is that the definition of the obstacle template
as a scaling in magnitude of the ground template is exact only for a particular depth-change
due to an obstacle. The unknown class thus captures regions whose flow is not explained
by the ground model or the particular choice of obstacle model. Improving the modeling
of the obstacle template is part of our future work, but presently we note that the union of
the obstacle and unknown labels is a good indicator of the presence of obstacles.

Figure 20 shows the types of failure cases that occur with our method. The first shows
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Superpixel
labeling rate

obstacle∪
unknown as

obstacle

Only
obstacle as

obstacle

True positive
rate

0.4195 0.1385

False positive
rate

0.0170 0.0118

Table 2: Quantitative results using hand-labeled ground truth. See Section 6.3.5 for explanation of these
statistics.

that small objects directly at the focus-of-expansion of the image motion cannot be detected
because image motion at that point is very close to zero. During forward camera motion,
the focus-of-expansion is at the image center, but in this example the robot is turning left,
which moves the focus-of-expansion towards the left. The second example shows a few
superpixels of false positives detected at the bottom of the image. This occurs when the
robot speed is very large relative to the camera frame-rate, and the image spatio-temporal
gradients are no longer a good linear approximation of the video. The image motion is
largest, of course, at the bottom of the image where the ground is close to the camera and
the translation vector is less co-incident with the camera rays. One remedy for this is to
warp the image successively to improve the linear approximation, and another remedy is
simply to increase the frame rate if the camera is capable.

An important metric for robot navigation is the range at which obstacles are detected.
Most obstacles are initially detected several meters from the robot. Large obstacles are
typically detected up to 10m and small or thin obstacles may be detected only 2m away.
We were unfortunately unable to gather more detailed quantitative data on the detection
range. The detection range depends upon a number of factors, and optimizing the detection
range is a topic of our future work.

Our current implementation in C++ runs at 30frames/s on 256× 256 images and at
100frames/s on 128× 128 images, though there is currently obvious room for code opti-
mization. This is several times faster than [74] due to our direct inference from spatiotem-
poral gradients. Our code and datasets are available online at [will be uploaded in time for
camera-ready version].

6.3.5 Superpixel Labeling Accuracy

To quantitatively our method, we measured superpixel true positive and false negative la-
beling rates against hand-labeled ground truth on the dataset described in Section 6.3.3, as
shown in Table 2. These rates are calculated as

True positive rate =
Superpixels correctly labeled obstacle
Superpixels that are actually obstacle

False positive rate =
Superpixels incorrectly labeled obstacle

Superpixels that are actually clear
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Intuitively, the true positive rate is the fraction of obstacle superpixels correctly labeled,
and the false positive rate is the fraction of clear superpixels incorrectly labeled.

Additionally, each rate in Table 2 interprets the output of our method in two ways.
“obstacle∪unknown as obstacle” counts both obstacle and unknown labels as obstacle, as
is motivated by the explanation in Section 6.3.4, while “Only obstacle as obstacle” counts
only obstacle labels as obstacle.

While superpixel labeling accuracy rates around 40% may seem low, this does not mean
that only half of the obstacles are detected. Smooth texture regions on objects are often
not detected while boundaries and textured regions on the same objects are. In fact, all
obstacles in the dataset are detected but at varying distances, as described in Section 6.3.4.

6.4 Summary
Towards the goal of autonomous obstacle avoidance for mobile robots, we have presented a
method for superpixel labeling using optical flow templates. The argument we make is that
optical flow provides a rich source of information that complements image appearance and
point clouds in determining traversability. While much past work uses optical flow towards
traversability in a heuristic manner, the method we present here instead classifies accord-
ing to several optical flow templates that are specific to the typical environment shape. We
make large improvements over prior work using optical flow templates in accuracy and
efficiency due to labeling directly from spatiotemporal gradients and improved modeling
of optical flow from obstacles. We also extend optical flow template methods to arbitrary
camera optics without the need to calibrate the camera, by learning these templates from
unlabeled video. Our results demonstrate successful obstacle detection in an outdoor mo-
bile robot dataset.
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CHAPTER VII

CONCLUSIONS

In this thesis we have introduced optical flow templates, which encode a learned rela-
tionship between robot motion, scene structure, and optical flow. Optical flow templates
combine classical optical flow linearity relationships with modern probabilistic reasoning,
allowing them to be applied to long, fairly unconstrained outdoor mobile robot sequences
to semantically label pixels and image regions.

In contrast to state-of-the-art methods that require a calibrated camera, the methods
we develop here apply to uncalibrated imaging systems with arbitrary optics. Requiring a
camera that can be calibrated introduces calibration challenges and places limitations on
the types of camera optics that may be used. Wide-angle lenses, systems with mirrors, and
multiple cameras all require different calibration models and can be difficult or impossible
to calibrate at all.

The applications we consider and evaluate in this thesis are egomotion estimation and
semantic superpixel labeling from optical flow. We develop practical algorithms for both
that are computationally efficient and able to run in real time. These algorithms exhibit
accuracy comparable to other algorithms that are already used for autonomous robot navi-
gation.

In closing we provide a very high-level description of the lessons learned in this thesis.
First, we are able to leverage 3D information without building point clouds, by instead
considering the linear relationships that exist because we are working with motion though
a 3D scene. Second, optical flow works well for egomotion estimation and superpixel
labeling, but not for environment shape classification.

We now review the claims and contributions of this thesis.

7.1 Review of Claims
Here we will briefly review the claims of this thesis and the experimental results presented
in earlier chapters that support them:

Learned optical flow subspaces are an effective tool for inferring robot egomotion and
motion anomalies from cameras with arbitrary optics, in scenarios exhibiting depth
regularity. (Chapter 3) We applied our method for learning optical flow subspaces to an
urban outdoor mobile robot dataset and successfully used the learned subspace to estimate
egomotion with comparable accuracy to wheel odometry.

Selecting among multiple optical flow subspaces allows classification of coarse envi-
ronment shapes from cameras with arbitrary optics, though this information is of
limited usefulness to robot navigation. (Chapter 4) We learned multiple subspaces cor-
responding to environment shapes on indoor and outdoor mobile robot datasets, and were
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able to successfully classify between these shapes using observed optical flow. However,
we also found that the results were extremely sensitive to camera orientation, and ran
into considerable challenges extending classification to continuously-varying environment
shapes. Thus we decided to instead move ahead with superpixel labeling.

Optical flow templates are an effective tool for semantically labeling superpixels as
“ground plane”, “distant”, or “obstacle” from optical flow measured in a camera
with arbitrary optics, and this information is useful for autonomous robot navigation.
(Chapter 5) We introduced optical flow templates as an optical flow model that encodes
multiple types of environment structure and allows labeling pixels or image regions ac-
cording to which structure they exhibit. Specifically, we label superpixels as “ground”,
“distant”, and “obstacle” on an outdoor urban driving dataset. We found that results were
usually accurate for obstacles outside of the optical flow focus of expansion, but depended
heavily on the accuracy of the computed optical flow.

Accuracy, versatility, and computational efficiency of optical flow templates is im-
proved by several adaptations informed by our experiences working with optical flow
in this thesis. (Chapter 6) We learned optical flow templates from video data instead of
calculating them, which extends our superpixel labeling method to work with uncalibrated
imaging systems with arbitrary optics. Additionally, we perform both learning and infer-
ence directly from spatiotemporal gradients instead of precomputing optical flow, which
improves labeling accuracy and improves computational efficiency.

7.2 Future Work
In order to quantitatively evaluate the usefulness of optical flow templates for autonomous
navigation, an autonomous navigation system that is informed by our superpixel labels is
needed. Doing so would open up research directions into the practical application of fast
optical flow methods with generalized optics into autonomous navigation. Furthermore, it
would evaluate the utility of our methods in real-world navigation tasks.

Additionally, while the goal of thesis was to understand what information can be ob-
tained using optical flow alone, the best possible scene understanding system should lever-
age both optical flow information and image appearance information. We believe that
optical flow is a strong complementary source of information to image appearance. Ideally,
combining optical flow and image appearance would produce more accurate results than
either method can produce alone. As reasoning for this, consider that optical flow labels are
most accurate close to the robot where motion parallax is largest, whereas image appear-
ance can propagate the information from nearby structure further into the distance where
appearance is the same but parallax is imperceptible.

Another way in which image appearance may compliment optical flow is via recent
methods (reviewed in Chapter 2) that classify scene depth using image appearance. This
scene depth estimate could inform the calculation or learning of optical flow templates,
which themselves depend on scene depth. Yet another possibility would be to train a joint
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classifier to label image regions on both image appearance and optical flow or even image
spatiotemporal gradients.

Finally, given that optical flow template methods are capable of interpreting video data
where the scene structure is consistent with that of the learned templates but otherwise
identifies structure as “unknown”, optical flow template methods could be used as part of a
two-tier perception system. Most of a scene can usually be understood using optical flow
templates and regions that cannot be understood can be passed onto a more computationally
intensive system, which for example could build 3D point clouds only for those small
regions.
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