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Abstract. In this paper, the leader-following consensus of second-order nonlinear multiagent
systems (SONMASs) with external disturbances is studied. Firstly, based on terminal sliding model
control method, a distributed control protocol is proposed over undirected networks, which can not
only suppress the external disturbances, but also make the SONMASs achieve consensus in finite
time. Secondly, to make the settling time independent of the initial values of systems, we improve
the protocol and ensure that the SONMASs can reach the sliding surface and achieve consensus
in fixed time if the control parameters satisfy some conditions. Moreover, for general directed
networks, we design a new fixed-time control protocol and prove that both the sliding mode surface
and consensus for SONMASs can be reached in fixed time. Finally, several numerical simulations
are given to show the effectiveness of the proposed protocols.

Keywords: multiagent systems, sliding mode control, consensus, external disturbances, finite time,
fixed time.

1 Introduction

In recent years, distributed cooperative control of multiagent systems (MASs) has at-
tracted great attentions because its wide practical applications in engineering, social
science, biological science, and other fields. A particularly challenging problem in these
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fields is commonly referred to consensus. The main task on consensus of MASs is to
design some feasible controllers such that all agents can achieve an agreement by sharing
information among their neighbors. The consensus of MASs has been studied by many
researchers since it can be used in many potential fields, such as the coordination control
of UAV [10, 20], formation control of vehicles [8, 18, 26], and so on.

Depending on the number of leaders, the existing consensus results on MASs can be
roughly divided into three categories: leaderless consensus [1], single leader-following
consensus [11], and containment control of multiple leaders [9]. These results in [1,
9, 11] did not consider the influence of disturbances in the systems. However, in many
practical applications, agents of MASs may face various disturbance signals. Therefore,
the consensus of MASs with disturbances has become a hot research topic in distributed
cooperative control. There are many techniques to eliminate disturbances in MASs, such
as disturbance observation [6], output regulation [5], and internal model principle [13,24].
Since the sliding mode technology can achieve fast convergence rate, sliding mode control
method is widely used to the control systems with disturbances. With the development of
distributed cooperative control for MASs, many sliding mode control protocols [17,21,30]
were proposed to solve the consensus problems of MASs.

As we all know, the convergence rate is one of the key elements in consensus of MASs.
In [17, 21, 27, 30], the asymptotical consensus was considered, that means the consensus
can be achieved only when the time tended to infinity. However, in practical applications,
all agents should reach consensus in a finite-time interval. Hence, the finite-time L2

leader-follower consensus was investigated for networked Euler–Lagrange systems in
[12]. In [31], the authors studied the consensus problem of MASs by using terminal
sliding mode. In [15], the finite-time containment control for SONMASs with undirected
networks was considered. However, the estimation of settling time depends on initial
conditions of MASs in finite time consensus. To overcome this shortcoming, some fixed-
time consensus and synchronization problems were considered in [7, 16, 22, 25, 32].

The above works [7, 15, 22, 25, 31, 32] show that the finite-time and fixed-time con-
sensus of SONMASs with external disturbances were rarely considered by using sliding
mode control. Thus, it is very meaningful to develop some sliding mode control protocols
to study the finite-time and fixed-time consensus of SONMASs with external distur-
bances. Inspired by this, we propose three terminal sliding mode control protocols to
study the finite-time and fixed-time consensus of SONMASs with external disturbances
on undirected and directed networks, respectively. Compared with the previous works,
the main contributions of the paper are at least the following three points:

(i) Compared with [17, 21, 30], a finite-time terminal sliding mode control protocol
is designed, which can not only suppress the external disturbances, but also make
the SONMASs achieve consensus in finite time.

(ii) In [15], although the sliding mode control protocols were proposed, the estima-
tion of settling time depends on initial values of MASs. In this paper, we over-
come this disadvantage and propose a fixed-time distributed protocol, which can
suppress the external disturbances and make the SONMASs achieve consensus
in fixed time.
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(iii) For SONMASs with external disturbances, a novel sliding mode control proto-
col is carefully designed over general directed networks. Based on fixed-time
stability theory, we also rigorously prove that the external disturbances can be
suppressed, and the leader-following consensus can be reached in fixed time.

The remainder of this paper is organized as follows. Section 2 introduces some prelim-
inaries including graph theory, definitions, lemmas and problem formulation. In Section 3,
three consensus control protocols based on sliding mode technique are proposed, and rel-
evant theorems are given. In Section 4, the effectiveness of the proposed control protocols
is verified by numerical simulations. Finally, some conclusions are given in Section 5.

Notations. In this paper, Rn denotes the n-dimensional Euclidean space. In denotes
n dimensional unit matrix. For q = [q1, q2, . . . , qN ]T, ‖q‖1, ‖q‖, and ‖q‖∞ represent
the 1-norm, 2-norm, and ∞-norm of vector q, respectively. |q|α = [|q1|α, . . . , |qN |α]T,
sgn(q) = [sgn(q1), . . . , sgn(qN )]T, sigα(q) = [|q1|α sgn(q1), . . . , |qN |α sgn(qN )]T,
where α > 0. For a matrixA ∈ RN×N , letAT represents its transpose,A−1 represents its
inverse, λmax(A) and λmin(A) represent the maximum eigenvalue and minimum eigen-
value of A, respectively. 1N is the column vector with all elements of 1. The symbol ⊗
denotes the Kronecker product of matrices. sgn(·) represents the sign function. diag(·)
represents the diagonal matrix.

2 Preliminaries

2.1 Algebraic graph theory

A MAS consisting of N agents is represented by a graph G = (V, E ,A) where V =
{v1, . . . , vN} is a set of nodes, E denotes a set of edges in which (i, j) ∈ E if there is
an edge between vi and vj . The weighted adjacency matrix is denoted as A = [aij ] ∈
RN×N , where aij > 0 if (j, i) ∈ E , and aij = 0 otherwise. The set of neighbors of agent
i is denoted by Ni = {j ∈ V: (j, i) ∈ E}. G is an undirected graph if aij = aji. The
graph G is called directed and strongly connected if there is a directed path between each
pair of nodes. The graph G contains a directed spanning tree if there is at least one root.
A node is called globally reachable if it is a root. The Laplacian matrix L = [lij ]N×N
is defined by lij = −aij for i 6= j, and lii =

∑N
j 6=i aij . For a leader-following MAS,

bi > 0 if the ith agent can receive information from the leader, bi = 0 otherwise. Let
B = diag(b1, . . . , bN ). The matrix L + B is invertible if the network topology G has
a directed spanning tree.

2.2 Definitions and lemmas

Consider the following differential equation:

ẋ(t) = f
(
x(t)

)
, x(0) = x0, (1)

where x(t) ∈ Rn denotes the state variable, and f(·) : Rn 7→ Rn is a nonlinear function.
Assume that the origin is the equilibrium point of system (1).
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The following definitions and lemmas are given.

Definition 1. (See [19].) The origin of system (1) is said to be globally finite-time stable
if for any solution x(t) with x0 ∈ Rn, there is a positive number T (x0) such that x(t) = 0
for all t > T (x0). The positive number T (x0) is called the settling time. Moreover, if the
positive number T (x0) independent of initial value x0, the origin is said to be globally
fixed-time stable.

Lemma 1. (See [2].) Let V (x(t)) : Rn → R be a continuous, positive definite, and
radially unbounded function, and x(t) : [0,+∞) → Rn is absolutely continuous on any
compact interval. If there are scalars γ > 0 and 0 < k < 1 such that V̇ (x(t)) 6
−γV (x(t))

k, then V (x(t)) ≡ 0 for all t > T . Furthermore, the settling time can be
estimated by T = V 1−k(0)/γ(1− k).

Lemma 2. (See [29].) Consider the differential equation (1). If there is a continuous,
positive definite, and radially unbounded function V (x(t)) : Rn → R such that any
solution of (1) satisfies the inequality

V̇
(
x(t)

)
6 −

(
τV p

(
x(t)

)
+ φV q

(
x(t)

))%
, x(t) ∈ Rn \ {0},

where τ, φ, p, % > 0, q > 0, p% > 1, q% < 1, then the origin of system (1) is fixed-time
stable, and the settling time T (x0) is estimated by

T (x0) 6
1

φ%

(
φ

τ

)(1−q%)/(p−q)(
1

1− q%
+

1

p%− 1

)
.

Lemma 3. (See [29].) Let ξ1, ξ2, . . . , ξN > 0 be nonnegative numbers. Then

N∑
i=1

ξri >

(
N∑
i=1

ξi

)r
, 0 < r 6 1,

N∑
i=1

ξri > N
1−r

(
N∑
i=1

ξi

)r
, 1 < r 6∞.

2.3 Problem formulation

Consider a SONMAS consisting of N followers and a leader. The dynamics of the ith
(i = 1, 2, . . . , N ) follower is described by

ẋi(t) = vi(t),

v̇i(t) = f
(
xi(t), vi(t)

)
+ ui(t) + wi(t),

(2)

where xi(t) ∈ Rn and vi(t) ∈ Rn denote the position and velocity, respectively. wi(t) ∈
Rn is the external disturbance, ui(t) ∈ Rn is the control input, and f(xi(t), vi(t)) :
Rn × Rn × R 7→ Rn is a nonlinear function, which represents the inherent dynamics. In
addition, we assume that the external disturbance is bounded, which satisfies ‖wi(t)‖∞ 6
b <∞ for b > 0.
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The dynamics of the leader is described by

ẋ0(t) = v0(t),

v̇0(t) = f
(
x0(t), v0(t)

)
+ w0(t),

(3)

where x0(t) ∈ Rn and v0(t) ∈ Rn are the position and velocity of the leader, respec-
tively. f(x0(t), v0(t)) is a nonlinear function, which represents the inherent dynamics.
For convenience, we write f(x0(t), v0(t)) as f0(t). In addition, we also assume that the
external disturbance is bounded, which satisfies ‖w0(t)‖∞ 6 c <∞ for c > 0.

Definition 2. For the SONMASs (2)–(3), the fixed-time leader-following consensus is
achieved for any initial conditions if there exists a positive constant T such that

lim
t→T

∥∥xi(t)− x0(t)
∥∥ = 0, lim

t→T

∥∥vi(t)− v0(t)
∥∥ = 0,∥∥xi(t)− x0(t)

∥∥ ≡ 0,
∥∥vi(t)− v0(t)

∥∥ ≡ 0,

for all t > T , i = 1, 2, . . . , N , where T > 0 is called the settling time.

Before moving on, the following assumptions are presented.

Assumption 1. For the nonlinear function f(·), there are two nonnegative constants l1
and l2 such that∥∥f(x(t), z(t)

)
− f

(
y(t), ς(t)

)∥∥ 6 l1∥∥x(t)− y(t)
∥∥+ l2

∥∥z(t)− ς(t)∥∥, (4)

where x(t), y(t), z(t), ς(t) ∈ Rn.

Remark 1. Assumption 1 is very mild and usually used in SONMASs [17,21,28], which
is so-called QUAD condition on vector fields [3]. This condition can be satisfied for
all linear and piecewise-linear continuous functions. In addition, the condition is also
satisfied if ∂fi/∂xj (i, j = 1, 2, . . . , n) are uniformly bounded, which includes many
well-known systems.

Assumption 2. The leader is globally reachable and the communication topology of
followers is undirected.

Assumption 3. The leader is globally reachable and the communication topology of
followers is directed.

3 Main results

In this section, three different control protocols are designed for SONMASs described
by (2) and (3). To achieve consensus between leader and followers, we need to design the
following error variables.

Nonlinear Anal. Model. Control, 27(6):1091–1109, 2022
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Define the consensus errors as follows:

exi(t) =

N∑
j=1

aij
(
xi(t)− xj(t)

)
+ bi

(
xi(t)− x0(t)

)
, i = 1, 2, . . . , N,

evi(t) =

N∑
j=1

aij
(
vi(t)− vj(t)

)
+ bi

(
vi(t)− v0(t)

)
, i = 1, 2, . . . , N.

(5)

Let ex(t) = [eTx1
(t), eTx2

(t), . . . , eTxN
(t)]T, ev(t) = [eTv1(t), eTv2(t), . . . , eTvN (t)]T, then

(5) can be rewritten as

ex(t) =
(
(L+B)⊗ In

)
x̃(t), ev(t) =

(
(L+B)⊗ In

)
ṽ(t), (6)

where x̃(t) = x(t)−1N⊗x0(t), ṽ(t) = v(t)−1N⊗v0(t), x(t) = [xT1 (t), xT2 (t), . . . ,
xTN (t)]T, and v(t) = [vT1 (t), vT2 (t), . . . , vTN (t)]T.

Combining (2), (3), and (6), it yields

ėx(t) = ev(t),

ėv(t) =
(
(L+B)⊗ In

)[
F
(
x(t), v(t)

)
−
(
1N ⊗ f0(t)

)
+ u(t) + w(t)−

(
1N ⊗ w0(t)

)]
,

(7)

where F (x(t), v(t)) = [fT(x1(t), v1(t)), fT(x2(t), v2(t)), . . . , fT(xN (t), vN (t))]T,
w(t) = [wT

1 (t), wT
2 (t), . . . , wT

N (t)]T, and u(t) = [uT1 (t), uT2 (t), . . . , uTN (t)]T.

3.1 Finite-time consensus with undirected networks

We choose the sliding mode manifold as follows:

σi(t) = evi(t) + sigα
(
exi(t)

)
+ sigβ

(
exi(t)

)
, i = 1, 2, . . . , N, (8)

where 0 < α < 1 and β > 1. The sliding mode manifold (8) can be rewritten in the
following comport form:

σ(t) = ev(t) + sigα
(
ex(t)

)
+ sigβ

(
ex(t)

)
,

where σ(t)= [σT
1 (t), . . . , σT

N (t)]T, sigα(ex(t))= [(sigα(ex1(t)))T, (sigα(ex2(t)))T, . . . ,
(sigα(exN

(t)))T]T.
In order to guarantee the closed-loop system reaching the sliding mode manifold in

finite time, the following control protocol is proposed for the ith agent:

ui(t) = −
(
k1
∥∥ex(t)

∥∥+ k2
∥∥ev(t)∥∥+ k3 + k4

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥

+ k5
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥) sgn

(
σi(t)

)
, i = 1, 2, . . . , N, (9)

where k1, k2, k3, k4, and k5 are positive constants to be determined.
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Similarly, controller (9) can be rewritten in the following comport form:

u(t) = −
(
k1
∥∥ex(t)

∥∥+ k2
∥∥ev(t)∥∥+ k3 + k4

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥

+ k5
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥) sgn(σ(t)). (10)

According to (7) and (10), we obtain

ėx(t) = ev(t),

ėv(t) =
(
(L+B)⊗ In

)[
F
(
x(t), v(t)

)
−
(
1N ⊗ f0(t)

)
+ w(t)−

(
1N ⊗ w0(t)

)
−
(
k1
∥∥ex(t)

∥∥+ k2
∥∥ev(t)∥∥+ k3 + k4

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥

+ k5
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥) sgn

(
σ(t)

)]
.

(11)

Theorem 1. Suppose that Assumptions 1 and 2 hold. The finite-time leader-following
consensus can be achieved for SONMASs (2)–(3) under the protocol (10) if the following
inequalities are satisfied:

k1 > l1λmax

(
(L+B)−1

)
, k2 > l2λmax

(
(L+B)−1

)
, k3 > b+ c,

k4 > αλmax

(
(L+B)−1

)
, k5 > βλmax

(
(L+B)−1

)
.

(12)

Proof. Consider the following Lyapunov function candidate:

V (t) =
1

2
σT(t)

(
(L+B)−1 ⊗ In

)
σ(t).

The time derivative of V (t) along system (11) can be calculated as

V̇ (t) = σT(t)
[
F
(
x(t), v(t)

)
− F

(
x0(t), v0(t)

)
+ w(t)−

(
1N ⊗ w0(t)

)
−
(
k1
∥∥ex(t)

∥∥+ k3 + k2
∥∥ev(t)∥∥+ k4

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥

+ k5
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥) sgn

(
σ(t)

)]
+ ασT(t)

(
(L+B)−1 ⊗ In

)
diag

(
ev(t)

)∣∣ex(t)
∣∣α−1

+ βσT(t)
(
(L+B)−1 ⊗ In

)
diag

(
ev(t)

)∣∣ex(t)
∣∣β−1, (13)

where F (x0(t), v0(t)) = 1N ⊗ f0(t).
Combining (4) and (6), it is easy to verify that

σT
[
F
(
x(t), y(t)

)
− F

(
x0(t), v0(t)

)]
6 l1λmax

(
(L+B)−1

)∥∥ex(t)
∥∥∥∥σ(t)

∥∥+ l2λmax

(
(L+B)−1

)∥∥ev(t)∥∥∥∥σ(t)
∥∥.

Furthermore, we have∥∥σT(t)
(
w(t)−

(
1N ⊗ w0(t)

))∥∥
∞ 6

∥∥σ(t)
∥∥
1
(b+ c).
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Based on (12), the following inequalities hold:

−k3σT(t) sgn
(
σ(t)

)
+ σT(t)

(
w(t)−

(
1N ⊗ w0(t)

))
6 −k3

∥∥σ(t)
∥∥
1

+
∥∥σ(t)

∥∥
1

∥∥w(t)−
(
1N ⊗ w0(t)

)∥∥
∞

6 −
(
k3 − (b+ c)

)∥∥σ(t)
∥∥
1
6 0,

ασT(t)
(
(L+B)−1 ⊗ In

)
diag

(
ev(t)

)∣∣ex(t)
∣∣α−1

6 αλmax

(
(L+B)−1

)∥∥σ(t)
∥∥∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥,

−σT(t)k4
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥ sgn

(
σ(t)

)
+ ασT(t)λmax

(
(L+B)−1

)
diag

(
ev(t)

)∣∣ex(t)
∣∣α−1

6 −k4
∥∥σ(t)

∥∥
1

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥

+ αλmax

(
(L+B)−1

)∥∥σ(t)
∥∥
1

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥,

βσT(t)
(
(L+B)−1 ⊗ In

)
diag

(
ev(t)

)∣∣ex(t)
∣∣β−1

6 βλmax

(
(L+B)−1

)∥∥σ(t)
∥∥∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥,

−σT(t)k5
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥ sgn

(
σ(t)

)
+ βσT(t)λmax

(
(L+B)−1

)
diag

(
ev(t)

)∣∣ex(t)
∣∣β−1

6 −k5
∥∥σ(t)

∥∥
1

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥

+ βλmax

(
(L+B)−1

)∥∥σ(t)
∥∥
1

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥.

Therefore, equality (13) can be written as

V̇ (t) 6 l1λmax

(
(L+B)−1

)∥∥ex(t)
∥∥∥∥σ(t)

∥∥+ l2λmax

(
(L+B)−1

)∥∥ev(t)∥∥∥∥σ(t)
∥∥

− k1
∥∥σ(t)

∥∥∥∥ex(t)
∥∥− k2∥∥σ(t)

∥∥∥∥ev(t)∥∥− (k3 − (b+ c)
)∥∥σ(t)

∥∥
1

− k4
∥∥σ(t)

∥∥
1

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥+ αλmax

(
(L+B)−1

)∥∥σ(t)
∥∥
1

×
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥− k5∥∥σ(t)

∥∥
1

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥

+ βλmax

(
(L+B)−1

)∥∥σ(t)
∥∥
1

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥

6 −
(
k3 − (b+ c)

)∥∥σ(t)
∥∥
1

6 −
(
k3 − (b+ c)

)√
2λmin(L+B)V 1/2(t).

By Lemma 1, it can be concluded that the closed-loop system will reach the sliding
mode surface σ(t) = 0 in finite time. The settling time can be estimated as

T1 =

√
2V 1/2(0)

(k3 − (b+ c))
√
λmin(L+B)

,

where V (0) is the initial value of V (t).
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For t > T1, the sliding mode surface σ(t) = 0, that is, ev(t) + sigα(ex(t)) +
sigβ(ex(t)) = 0, and we have ev(t) = − sigα(ex(t))− sigβ(ex(t)). Since ėx(t) = ev(t),
so ėx(t) = − sigα(ex(t))− sigβ(ex(t)).

Define the Lyapunov function V1(t) = ex
T(t)ex(t)/2. Then taking the time deriva-

tive of V1(t), we obtain

V̇1(t) = eTx (t)ev(t) = −
N∑
i=1

n∑
j=1

((
exij (t)

)2)(α+1)/2 −
N∑
i=1

n∑
j=1

((
exij (t)

)2)(β+1)/2

6 −
(∥∥ex(t)

∥∥2)(α+1)/2 − (Nn)(1−β)/2
(∥∥ex(t)

∥∥2)(β+1)/2

= −
(
2V1(t)

)(α+1)/2 − (Nn)(1−β)/2
(
2V1(t)

)(β+1)/2
.

By using Lemma 2, it is shown that V1(t) converges to 0 in fixed time, which means
ex(t)→ 0 and ev(t)→ 0 in fixed time. The estimation of settling time is

T 6 T1 +
1

2(α+1)/2

[
1

(Nn)(1−β)/22(β−α)/2

](1−α)/(β−α)(
2

1− α
+

2

β − 1

)
. �

Remark 2. In existing works [17, 21, 30], although the sliding mode control technique
was applied in the consensus of MASs, the main results focused on asymptotical conver-
gence. In addition, similar to [14], the traditional variable structure control adopts linear
sliding mode, and the tracking error will converge in infinite time. In order to overcome
this shortcoming, a new terminal sliding mode control protocol, which both can suppress
the external disturbances and make all agents achieve consensus in finite time, is proposed
in this paper.

3.2 Fixed-time consensus with undirected networks

In this section, in order to solve the drawback that the settling time depends on initial
value of the system, we improve the proposed protocol (10) and prove that both the sliding
surface and the consensus of SONMASs can be achieved in fixed time.

The following control protocol is proposed:

u(t) = −
(
k1
∥∥ex(t)

∥∥+ k2
∥∥ev(t)∥∥+ k3 + k4

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥

+ k5
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥) sgn

(
σ(t)

)
− θ sigh

(
σ(t)

)
, (14)

where 0 < α < 1, β > 1, h > 1, θ, k1, k2, k3, k4, and k5 are positive constants to be
determined.

According to Eqs. (7) and (14), we have

ėx(t) = ev(t),

ėv(t) =
(
(L+B)⊗ In

)[
F
(
x(t), v(t)

)
−
(
1N ⊗ f0(t)

)
+ w(t)−

(
1N ⊗ w0(t)

)
−
(
k1
∥∥ex(t)

∥∥+ k2
∥∥ev(t)∥∥+ k3 + k4

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥

+ k5
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥) sgn

(
σ(t)

)
− θ sigh

(
σ(t)

)]
.

(15)
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Theorem 2. Suppose that Assumptions 1 and 2 hold. The fixed-time leader-following
consensus can be achieved for SONMASs (2)–(3) under protocol (14) if the following
inequalities are satisfied:

k1 > l1λmax

(
(L+B)−1

)
, k2 > l2λmax

(
(L+B)−1

)
, k3 > b+ c+ 1,

k4 > αλmax

(
(L+B)−1

)
, k5 > βλmax

(
(L+B)−1

)
.

(16)

Proof. Consider the following Lyapunov function candidate:

V (t) =
1

2
σT(t)

(
(L+B)−1 ⊗ In

)
σ(t).

The time derivative of V (t) along system (15) can be calculated as

V̇ (t) = σT(t)
[
F
(
x(t), v(t)

)
− F

(
x0(t), v0(t)

)
+ w(t)−

(
1N ⊗ w0(t)

)
−
(
k1
∥∥ex(t)

∥∥+ k3 + k2
∥∥ev(t)∥∥+ k4

∥∥diag
(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥

+ k5
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥) sgn

(
σ(t)

)
− θ sigh

(
σ(t)

)]
+ ασT(t)

(
(L+B)−1 ⊗ In

)
diag

(
ev(t)

)∣∣ex(t)
∣∣α−1

+ βσT(t)
(
(L+B)−1 ⊗ In

)
diag

(
ev(t)

)∣∣ex(t)
∣∣β−1. (17)

Based on Lemma 3, we have

−
N∑
i=1

n∑
j=1

|σij(t)|h+1 = −
N∑
i=1

n∑
j=1

(|σij(t)|2)(h+1)/2

6 −(Nn)
(1−h)/2

(
N∑
i=1

n∑
j=1

|σij(t)|2
)(h+1)/2

.

Similar to analysis of Theorem 1, combining with (16), inequality (17) can be written
as

V̇ (t) 6 −k3
∥∥σ(t)

∥∥
1
− θ(Nn)

(1−h)/2

(
N∑
i=1

n∑
j=1

∣∣σij(t)∣∣2)(h+1)/2

6 −k3
(
2λmin(L+B)V (t)

)1/2
− θ(Nn)(1−h)/2

(
2λmin(L+B)V (t)

)(h+1)/2
.

Using Lemma 2, we can conclude that the closed-loop system will reach the sliding
mode surface σ(t) = 0 in fixed time. Moreover, the settling time can be estimated as

T2 6
1

k3
√

2
√
λmin(L+B)

[
k3
√

2

θ(Nn)(1−h)/22(h+1)/2
(
λmin(L+B)h/2)

]1/h(
2+

2

h−1

)
.
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Therefore, for t > T2, we have ev(t) = − sigα(ex(t)) − sigβ(ex(t)). Since ėx(t) =
ev(t), then we can obtain that ėx(t) = − sigα(ex(t))− sigβ(ex(t)).

Define the Lyapunov function V1(t) = eTx (t)ex(t)/2. Then taking the time derivative
of V1(t) yields

V̇1(t) = eTx (t)ev(t)

= −
N∑
i=1

n∑
j=1

((
exij

(t)
)2)(α+1)/2 −

N∑
i=1

n∑
j=1

((
exij

(t)
)2)(β+1)/2

6 −
(
2V1(t)

)(α+1)/2 − (Nn)(1−β)/2
(
2V1(t)

)(β+1)/2
.

According to Lemma 2, we can conclude that V1(t) converges to 0 in fixed time,
which means that ex(t)→ 0 and ev(t)→ 0 in fixed time. The estimation of settling time
is

T 6 T2 +
1

2(α+1)/2

(
1

(Nn)(1−β)/22(β−α)/2

)(1−α)/(β−α)(
2

1−α
+

2

β−1

)
. �

Remark 3. In control protocol (9), the sign function is applied to make the systems reach
the sliding mode surface in finite time. However, in protocol (14), we make an improve-
ment by adding a term −θsig(σ(t))h to improve the convergence time. In theoretical
analysis, we also prove the fixed-time reachability of sliding mode surface. Moreover, the
improved protocol (14) can make all agents reach consensus in fixed time.

3.3 Fixed-time consensus with directed networks

The consensus of SONMASs with undirected networks is concerned in previous sections.
In some practical, the communication among agents may be directed. Hence, the fixed-
time consensus of SONMASs with directed networks will be discussed in this section.

We choose the sliding mode manifold as follows:

σ̄(t) = ev(t) + µ sigα
(
ex(t)

)
+ µ sigβ

(
ex(t)

)
,

where 0 < α < 1, 1 < β, µ is a positive constant, σ̄(t) = [σ̄T
1 (t), σ̄T

2 (t), . . . , σ̄T
N (t)]T,

sigα(ex(t)) = [(sigα(ex1
(t)))T, . . . , (sigα(exN

(t)))T]T.
The following control protocol is proposed:

u(t) = −(k1
∥∥ex(t)

∥∥+ k2
∥∥ev(t)∥∥+ k3) sgn

(
σ̄(t)

)
− k4ua(t)− k5ub(t)− ηuc(t),

ua(t) =
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣α−1∥∥((L+B)−1 ⊗ In

)
sgn
(
σ̄(t)

)
,

ub(t) =
∥∥diag

(
ev(t)

)∣∣ex(t)
∣∣β−1∥∥((L+B)−1 ⊗ In

)
sgn
(
σ̄(t)

)
,

uc(t) =
(
(L+B)−1 ⊗ In

)
sigh

(
σ̄(t)

)
, (18)
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where η, k1, k2, k3, k4, and k5 are positive constants to be determined, h > 1, ua(t) =
[uTa1(t), uTa2(t), . . . , uTaN (t)]T, ub(t) = [uTb1(t), uTb2(t), . . . , uTbN (t)]T, and uc(t) = [uTc1(t),

uTc2(t), . . . , uTcN (t)]T.
According to Eq. (7) and (18), we obtain

ėx(t) = ev(t),

ėv(t) =
(
(L+B)⊗ In

)[
F
(
x(t), v(t)

)
−
(
1N ⊗ f0(t)

)
+ w(t)

−
(
1N ⊗ w0(t)

)
−
(
k1
∥∥ex(t)

∥∥+ k2
∥∥ev(t)∥∥+ k3

)
sgn
(
σ̄(t)

)
− k4ua(t)− k5ub(t)− ηuc(t)

]
.

(19)

Theorem 3. Suppose that Assumptions 1 and 3 hold. The fixed-time leader-following
consensus can be achieved for SONMASs (2)–(3) under protocol (18) if the following
inequalities are satisfied:

k1 > l1
∥∥(L+B)−1

∥∥, k2 > l2
∥∥(L+B)−1

∥∥,
k3 > b+ c+ 1, k4 > µ, k5 > µ.

(20)

Proof. Consider the following Lyapunov function candidate:

V2(t) =
1

2
σ̄T(t)σ̄(t). (21)

The time derivative of V2(t) along system (19) can be calculated as

V̇2(t) = σ̄T(t)
[(

(L+B)⊗ In
)(
F (x(t), v(t)

)
− F

(
x0(t), v0(t)

)
+ w(t)−

(
1N ⊗ w0(t)

)
−
(
k1
∥∥ex(t)

∥∥+ k2
∥∥ev(t)∥∥+ k3

)
sgn
(
σ̄(t)

)
− k4ua(t)− k5ub(t)− ηuc(t)

)]
+ µσ̄T(t) diag

(
ev(t)

)∣∣ex(t)
∣∣α−1

+ µσ̄T(t) diag
(
ev(t)

)∣∣ex(t)
∣∣β−1.

Similar to analysis of Theorem 2, based on (20), it yields

V̇2(t) 6 −k3
∥∥σ̄(t)

∥∥
1
− η(Nn)(1−h)/2

(
N∑
i=1

n∑
j=1

∣∣σ̄ij(t)∣∣2)(h+1)/2

6 −k3
(
2V2(t)

)1/2 − η(Nn)(1−h)/2
(
2V2(t)

)(h+1)/2
.

Using Lemma 2, we obtain that the sliding mode surface σ̄(t) = 0 can be reached in
fixed time. Furthermore, the settling time can be estimated as

T3 6
1

k3
√

2

[
k3

η(Nn)(1−h)/22h/2

]1/h(
2 +

2

h− 1

)
. (22)

Consequently, for t > T3, the sliding mode surface σ̄(t) = 0 is reached. Then we
have ėx(t) = −µ sigα(ex(t))− µ sigβ(ex(t)). Similar to analysis of Theorem 2, we also
can prove that ex(t)→ 0 and ev(t)→ 0 in fixed time. The estimation of settling time is

T 6 T3 +
1

µ2(α+1)/2

[
1

(Nn)(1−β)/22(β−α)/2

](1−α)/(β−α)(
2

1− α
+

2

β − 1

)
. �
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Remark 4. In Theorems 1 and 2, some finite-time and fixed-time consensus conditions
are obtained for SONMASs with undirected networks, respectively. Since network topol-
ogy is undirected, the convergence analysis mainly utilizes the symmetry of the Lapalcian
matrix. However, the Lapalcian matrix is asymmetry in directed networks. Therefore, the
design of control protocol (18) and the selection of Lyapunov (21) are different form
previous ones.

Remark 5. Since the sign function is employed in protocol (10), (14), and (18), there
exists chattering in the control process. How to reduce or eliminate chattering is an
interesting issue. At present, some methods including the fuzzy control [4] and the neural
network control [23] are used to solve the chattering problem. In our future work, we will
further improve the control protocol and use some special functions such as saturation
function to reduce the chattering phenomenon.

Remark 6. In protocols (10), (14), and (18), we may find that when the states of the
followers move to ex(t) = 0 and ev(t) 6= 0, the denominator control law equation will
be zero. That means ex(t)→ 0 will lead to a singular problem, thus rendering a big peak
torque value. Whereas, in practice it is difficult to implement a large value of torque. How
to design a nonsingular terminal sliding mode control protocol will be further considered
in our future work.

4 Numerical example

In this section, we give three numerical examples to demonstrate the effectiveness of the
theoretical results.

Example 1. Consider the SONMAS (2)–(3) with one leader and four followers. The
interaction topology among the leader and followers is shown in Fig. 1(a). The nonlinear
function are defined as follows:

f
(
xi(t), vi(t)

)
=

cos(xi1(t))− vi1(t)− 2xi1(t)
cos(xi2(t))− vi2(t)− xi2(t)

−2vi3(t)− 2xi3(t)

 , i = 0, 1, . . . , 4.

(a) (b)

Figure 1. The network topology.
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Figure 2. The states of xi(t) with control protocol (10).
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Figure 3. The states of vi(t) with the control protocol (10).
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Figure 4. The states of sliding mode
variables.

0 5 10 15 20
−2

−1

0

1

2
x 10

6

t

u
ij(t

),
i=

1
,2

,3
,4

,j
=

1
,2

,3

 

 

u
11

(t)

u
21

(t)

u
31

(t)

u
41

(t)

u
12

(t)

u
22

(t)

u
32

(t)

u
42

(t)

u
13

(t)

u
23

(t)

u
33

(t)

u
43

(t)

Figure 5. The control input ui(t).

The external disturbances are chosen to satisfy ‖wi(t)‖∞ 6 0.5, i = 1, 2, 3, 4, and
‖w0(t)‖∞ 6 2.5. In control protocol (10), we choose k1 = 5.4, k2 = 4.8, k3 = 4,
k4 = 1.1, k5 = 1.8, α = 0.9, and β = 1.5. It can be verified that all conditions of
Theorem 1 are satisfied. The simulation results are presented in Figs. 2–5. Specifically,
Fig. 2 describes the position states of four followers and one leader. Figure 3 describes
the velocity states of four followers and one leader. Figure 4 describes the evolution of
sliding mode variables, and the estimation of the setting time is T 6 14.85. Figure 5
describes the evolution of the control protocol (10).

Example 2. Consider the SONMAS (2)–(3) with one leader and four followers. The
nonlinear function, external disturbances, and interaction topology are same as the ones
in Example 1. In control protocol (14), we choose k1 = 3.7, k2 = 4.8, k3 = 5,
k4 = 1.1, k5 = 1.8, α = 0.9, β = 1.5, θ = 1, and h = 1.3. Then all conditions of
Theorem 2 are satisfied. The simulation results are presented in Figs. 6–9. Specifically,
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Figure 6. The states of xi(t) with control protocol (14).
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Figure 7. The states of vi(t) with control protocol (14).
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Figure 8. The states of sliding mode
variables.
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Figure 9. The control input ui(t).

Fig. 6 describes the position states of four followers and one leader. Figure 7 describes
the velocity states of four followers and one leader. Figure 8 describes the evolution of
sliding mode variables, and the estimation of the setting time is T 6 19.56. Figure 9
describes the evolution of the control protocol (14).

Example 3. Consider the SONMAS (2)–(3) with one leader and four followers. The
directed interaction topology among the leader and followers is shown in Fig. 1(b). The
nonlinear function and external disturbances are same as the ones in Example 1. In control
protocol (18), we choose k1 = 5.4, k2 = 4.8, k3 = 8, k4 = 3, k5 = 2.5, α = 0.9,
β = 1.5, µ = 2, h = 1.2, and η = 1. Then all conditions of Theorem 3 are satisfied.
The simulation results are presented in Figs. 10–13. Figure 10 describes the position
states of four followers and the leader. Figure 11 describes the velocity states of four
followers and the leader. Figure 12 describes the evolution of sliding mode variables, and
the estimation of the setting time is T 6 17.10. Figure 13 describes the evolution of the
control protocol (18).
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Figure 10. The states of xi(t) with control protocol (18).
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Figure 11. The states of vi(t) with control protocol (18).
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Figure 12. The states of sliding mode
variables.
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Figure 13. The control input ui(t).

5 Conclusion

In this paper, the leader-following consensus of SONMASs with external disturbances
was studied. Three control protocols were developed to guarantee the consensus perfor-
mance of SONMASs over undirected and directed networks, respectively. Firstly, a fixed-
time sliding mode manifold was designed, and some control protocols over undirected
networks were proposed, which can make all agents achieve consensus in finite time
and fixed time, respectively. Moreover, we improved the proposed protocol and studied
the fixed-time consensus of SONMASs with directed networks. In addition, a fixed-time
control protocol was designed for directed networks. The settling time was estimated
by using an improved lemma. Finally, some numerical simulations were given to show
the effectiveness of the proposed control protocols. In the future work, the consensus
of higher-order MASs with dynamic event-triggered communication mechanism will be
considered.
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