5,587 research outputs found

    Spherical Surfaces

    Get PDF
    We study surfaces of constant positive Gauss curvature in Euclidean 3-space via the harmonicity of the Gauss map. Using the loop group representation, we solve the regular and the singular geometric Cauchy problems for these surfaces, and use these solutions to compute several new examples. We give the criteria on the geometric Cauchy data for the generic singularities, as well as for the cuspidal beaks and cuspidal butterfly singularities. We consider the bifurcations of generic one parameter families of spherical fronts and provide evidence that suggests that these are the cuspidal beaks, cuspidal butterfly and one other singularity. We also give the loop group potentials for spherical surfaces with finite order rotational symmetries and for surfaces with embedded isolated singularities.Comment: 23 pages, 18 figures. Version 3: Typos correcte

    Local Isometric immersions of pseudo-spherical surfaces and evolution equations

    Full text link
    The class of differential equations describing pseudo-spherical surfaces, first introduced by Chern and Tenenblat [3], is characterized by the property that to each solution of a differential equation, within the class, there corresponds a 2-dimensional Riemannian metric of curvature equal to −1-1. The class of differential equations describing pseudo-spherical surfaces carries close ties to the property of complete integrability, as manifested by the existence of infinite hierarchies of conservation laws and associated linear problems. As such, it contains many important known examples of integrable equations, like the sine-Gordon, Liouville and KdV equations. It also gives rise to many new families of integrable equations. The question we address in this paper concerns the local isometric immersion of pseudo-spherical surfaces in E3{\bf E}^{3} from the perspective of the differential equations that give rise to the metrics. Indeed, a classical theorem in the differential geometry of surfaces states that any pseudo-spherical surface can be locally isometrically immersed in E3{\bf E}^{3}. In the case of the sine-Gordon equation, one can derive an expression for the second fundamental form of the immersion that depends only on a jet of finite order of the solution of the pde. A natural question is to know if this remarkable property extends to equations other than the sine-Gordon equation within the class of differential equations describing pseudo-spherical surfaces. In an earlier paper [11], we have shown that this property fails to hold for all other second order equations, except for those belonging to a very special class of evolution equations. In the present paper, we consider a class of evolution equations for u(x,t)u(x,t) of order k≥3k\geq 3 describing pseudo-spherical surfaces. We show that whenever an isometric immersion in E3{\bf E}^3 exists, depending on a jet of finite order of uu, then the coefficients of the second fundamental forms are functions of the independent variables xx and tt only.Comment: Fields Institute Communications, 2015, Hamiltonian PDEs and Applications, pp.N

    Families of spherical surfaces and harmonic maps

    Get PDF
    We study singularities of constant positive Gaussian curvature surfaces and determine the way they bifurcate in generic 1-parameter families of such surfaces. We construct the bifurcations explicitly using loop group methods. Constant Gaussian curvature surfaces correspond to harmonic maps, and we examine the relationship between the two types of maps and their singularities. Finally, we determine which finitely A-determined map-germs from the plane to the plane can be represented by harmonic maps.Comment: 30 pages, 7 figures. Version 2: substantial revision compared with version 1. The results are essentially the same, but some of the arguments are improved or correcte

    Green's functions of potential problems in lens shaped geometries

    Get PDF
    The Kelvin inversion method will be outlined to determine the potential distribution due to a point charge (or the Green's function) in geometries bounded by flat and spherical surfaces

    Fresnel cup reflector directs maximum energy from light source

    Get PDF
    To minimize shielding and overheating, a composite Fresnel cup reflector design directs the maximum energy from a light source. It consists of a uniformly ellipsoidal end surface and an extension comprising a series of confocal ellipsoidal and concentric spherical surfaces

    Phase transition of triangulated spherical surfaces with elastic skeletons

    Full text link
    A first-order transition is numerically found in a spherical surface model with skeletons, which are linked to each other at junctions. The shape of the triangulated surfaces is maintained by skeletons, which have a one-dimensional bending elasticity characterized by the bending rigidity bb, and the surfaces have no two-dimensional bending elasticity except at the junctions. The surfaces swell and become spherical at large bb and collapse and crumple at small bb. These two phases are separated from each other by the first-order transition. Although both of the surfaces and the skeleton are allowed to self-intersect and, hence, phantom, our results indicate a possible phase transition in biological or artificial membranes whose shape is maintained by cytoskeletons.Comment: 15 pages with 10 figure
    • …
    corecore