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The Kelvin inversion method will be outlined to determine the potential distribution 
due to a point charge (or the Green's function) in geometries bounded by flat and 
spherical surfaces. 

1. INTRODUCTION 

For two dimensional potential problems, the conformal transformation is a 
very powerful technique to obtain analytical or semi analytical solutions.  

For the boundary element method, it is very useful if the Green's function is 
known analytically. Especially when the boundary included sharp corners or 
spines, a numerical solution with the classical fundamental solution will give rise 
to larger errors. If one could use a Green's function which fulfills the boundary 
condition around a corner or a spine, the latter need not to be discretised. As a 
consequence a higher accuracy will be obtained. The most straightforward way to 
find such a Green's function is certainly the conformal mapping technique.  

A lot of papers have been devoted to singularities in the neighborhood of 
corners or other parts where the boundary is not that smooth. Mostly the boundary 
potential or flux is then written as the sum of an analytical function representing 
the singular behavior and a non singular remainder which is evaluated numerically 
[1, 2, 3, 4]. This kind of singular behavior is often found by a simple conformal 
mapping of the corner or spine into a half plane. Recently efforts have been 
undertaken to attack this problem for three dimensional problems [5]. 

For three dimensional potential problems there exists also a method called 
inversion which transforms geometry into another one so that in both cases the 
Laplace equations still holds. This method, invented by Lord Kelvin, is not so well 
known and is only described in a few textbooks [6]. In many textbooks the method 
is not even mentioned. Also a limited number of papers are devoted to this topic [7, 

                           
1 Technical University of Cluj-Napoca, d_o_micu@yahoo.com 
2 University of Ghent, Department of Electronics, Ghent, Belgium 

Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 58, 1, p. 35–42, Bucarest, 2013 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55762641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


36 Dan Micu, Gilbert De Mey 2 
 

 

8, 9]. The reason is that the inversion has limited applicability. Only when 
spherical geometries are involved, the method has proved its usefulness because a 
sphere can be transformed into a plane when the inversion centre is located on it.  

In this paper we will use the inversion method in order to determine a Green's 
function which satisfies the Dirichlet boundary conditions on a lens shaped 
structure i.e. bounded by two spherical surfaces (or a flat plane and a spherical 
surface). Needless to mention that the Green's function for an electrostatic problem 
is nothing else than the potential distribution due to a single point charge. 

2. BASIC THEORY 

Consider a point P with spherical coordinates ( )θ,,ϕr  as shown in Fig. 1. 

 

Fig. 1 – Kelvin inversion. 

To any point P corresponds another point P' with coordinates ( )θ,,' ϕr , where r' is 
given by the inversion formula with a2 the power of the inversion: 
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Remark that the angular coordinates ϕ  and θ  remain unaltered, a being a 
fixed distance. It has been proved that the inversion of a sphere can give rise to 
another sphere or a flat plane if the originating sphere goes through the origin of 
the coordinate system. If a function ( )θ,,ϕΦ r  exist, one can define a second 
function ( )θ,,'' ϕΦ r  in the inverted domain by the following formula: 
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It has been proved that the function Φ  and 'Φ  satisfy the relation [6]: 
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Hence, (3) means that if Φ  satisfies the Laplace equation, 'Φ  will be a harmonic 
function too. 

If Φ  satisfies the Dirichlet boundary condition Φ  = 0 on a surface S the 
potential 'Φ   will satisfy 'Φ  = 0 on the inverted surface S' due to (2). If one has 
solved the Laplace equation with Φ  = 0 on S, the solution 'Φ  is known 
immediately by using (2).  

In this paper some potential problems will be solved where the surface S is a 
sphere or part of a sphere. The potential Φ  is created by a point charge giving rise 
to a potential distribution which can be considered as the Green's function of the 
Laplace equation. After inversion, the sphere transforms into a flat plane. In the 
inverted domain, the potential distribution 'Φ  due to a point charge is easily found 
by introducing image charges. 

Due to the coefficient 55 '/ ra  in (3), the Poisson equation is not invariant for 
inversion. 

Hence, we have first of all to check how a Coulomb potential of a single 
point charge q is transformed by inversion. Image a point charge q in the point Q 
with coordinates ( )000 θ,,ϕr  as shown in Fig. 1. The potential in the point ( )θ,,ϕrP  
is then: 
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where 0ε  is the dielectric constant of vacuum and Ψ is the angle between the 0r  
and r  vectors. After inversion the point P is transformed into P' and Q into Q'. The 
potential 'Φ  is then found by using (2): 
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(5) 

where rar /' 2= and 0
2

0 /' rar =  have been used. Remark that the angle Ψ  does not 
vary by the inversion. (5) is still a Coulomb potential in the inverted domain 
provided the charge q is replaced by arqq /'' 0⋅= . 
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3. A FEW EXAMPLES 

A first example is shown in Fig. 2a. Only the a cross sectional view across 
the (y, z) plane is displayed 

.  
 

 
 
 
 
 

 

 

 
 
 
 

Fig. 2 – Geometry bounded by flat plane and half sphere. 

The geometry we are interested in is the upper part above the plane z = 0 and 
above the half sphere. The sphere has diameter a and its centre point is located in 
( )0,2/,0 a  in the (x, y) plane. Both the plane z = 0 and the half sphere are at zero 
potential. In order to solve the problem of Fig. 2a, a Kelvin inversion will be used 
taking B as the centre and a2 as the power of the inversion. The geometry 

∞∞BCDAA  is then transformed into two planes ''' DAB ∞  and ∞''' BCD , 
perpendicular to each other as shown in Fig. 2b. The index ∞  is used for points at 
infinity. Obviously BA ≡'  and DD ≡' . If )(rQQ ≡  then )( 1rQQ ′≡′  when 

22
1 / rarr = . The charge q = 1 (we search for the Green formula) is then also 

transformed into a charge q' = qa/r = a/r in the point Q'. 
For the geometry of Fig. 2b, the potential is easily calculated by introducing 

two negative -q' images charges (in the points defined by the 2r  and 4r  vectors) and 
one positive +q' image charge (in the point defined by 3r ). The 2r , 3r and 4r  vectors 
are calculated with respect to a and 1r  . Let be the arbitrary )( 0rMM ≡  point. 

The inverse of the point M is )( 0rMM ′′≡′  where 2
0

2
00 / rarr =′ . 

The potential Φ  established in the )( 0rM  point by the q = 1 charge placed in 
the )(rQ  we are looking for, can be found by using (2). This potential is given by 
Green’s formula in the Dirichlet problem for Laplace equation: 
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Another possibility is to transform the image charges back to the original 
domain (Fig. 2a) taking (5) into account but this is more difficult. 

If )( 0rM is in the boundary surface then ),( 0rrG  = 0. If we know the 

potential )(rfΦ=Φ of the boundary surface Σ (with condition 0)(
0
=Φ

>Rrf r , 

where R0 >a is fixed value) the potential in the arbitrary )( 0rM point is: 
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For the computation the following observation is useful:  
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The second example (Fig. 3a) is quite similar except that the centre of the 
sphere is now above the z = 0 plane. 

 

Fig. 3 – Geometry bounded by flat plane and sphere. 

The z-coordinate of M was chosen in such a way, that the geometry after 
inversion is transformed into the domain bounded by two planes ''' EAB ∞  and 

∞'''' BCDE  intersecting each other at an angle of 45o. 
In this configuration the image charges can be easily found to determine the 

potential distribution 'Φ . 
A third example is shown in Fig. 4a. The domain has the shape of a lens, 

bounded by two spherical surfaces. 
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Fig. 4 – Lens shaped geometry bounded by two spheres. 

After inversion the interior domain in transformed into a quarter space as 
shown in Fig. 4b. For the latter configuration, image sources can be easily found as 
already explained in the first example. If one considers the lens bounded by the 
upper sphere and the plane z = 0 or the structure ABCM the inversion method is 
still applicable. After transformation one obtains the geometry '''' MCBA∞  or two 
planes with an intersecting angle of 45o. The method of image charges is still 
applicable. 

4. GREEN'S FUNCTION FOR ARBITRARY INTERSECTING ANGLE  

The examples in the foregoing section were all carefully chosen in such a 
way that the two planes after inversion have an intersecting angle of 180o/n where 
n = 2, 3, 4, ... [8]. It is then quite easy to use the method of image charges to 
determine the potential distribution. Generally, this is not always possible. First of 
all one can consider the example of Fig. 2a again, but this time one is interested in 
the complementary domain, i.e. the half space z < 0 and the hollow half sphere. 
This geometry is mapped into two the space bounded by the two half planes but 
this time one has to consider the other side or in other words the intersecting angle 
is not 270o and the method of image charges is not possible. 

There is however a solution available for a point charge between two planes 
at an arbitrary angle β  (Fig. 5).  
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Fig. 5 – Geometry with arbitrary intersection angle β . 

 
Using polar coordinates for ( )zrP ,,ϕ  and ( )0,, 00 ϕrQ  the potential Φ  is given 

by [10]: 
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where: 
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The evaluation of the Green's function requires a numerical integration of (8). 
However the integrand of (8) does not involve oscillating functions of the variable 
ζ , which is an advantage from numerical point of view. 

It is important to mention that the observations in this paper can be extended 
to other time variation regimes for the sizes [11, 12]. 

The results are also useful for the hybrid finite element-boundary element 
method technique for unbounded domains, namely in the establishment of the 
boundary element method equation [13, 14]. 

We also mention its usefulness in building functions that model the 
singularities for surface edges. These functions can be added to the ones of the 
form finite element method [15]. 
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5. CONCLUSIONS 

It has been shown that the potential distribution caused by a point charge can 
be found by the Kelvin inversion for geometries where the boundary involves 
spheres and flat planes. This potential distribution is also known as the Green's 
function which can be used in numerical methods such as the boundary element 
method and in analytical computation of potential in the Dirichlet problem for the 
Laplace equation. 

Received on 12 June 2012 
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