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FAMILIES OF SPHERICAL SURFACES AND HARMONIC MAPS

DAVID BRANDER AND FARID TARI

ABSTRACT. We study singularities of constant positive Gaussian curvature surfaces and deter-
mine the way they bifurcate in generic 1-parameter families of such surfaces. We construct the
bifurcations explicitly using loop group methods. Constant Gaussian curvature surfaces corre-
spond to harmonic maps, and we examine the relationship between the two types of maps and
their singularities. Finally, we determine which finitely A -determined map-germs from the plane
to the plane can be represented by harmonic maps.

1. INTRODUCTION

Constant positive Gaussian curvature surfaces, called spherical surfaces, are related to har-
monic maps N : Ω→ S2, from a domain Ω ⊂ R2 ∼ C to the unit sphere S2 ⊂ R3. A spherical
surface can also be realized as a parallel of a constant mean curvature (CMC) surface. Parallels
are wave fronts and parallels of general surfaces are well studied (see for example [1, 4, 7]).

There are no complete spherical surfaces other than the round sphere. However, there is a rich
global class of spherical surfaces defined in terms of harmonic maps (see Section 2), the global
study of which necessitates the introduction of surfaces with singularities (Figure 1). In [5], a
study of these surfaces from this point of view was carried out, with the goal of getting a sense
of what spherical surfaces typically look like in the large. Visually, singularities are perhaps
the most obvious landmarks on a surface, and therefore an essential task is to determine the
generic (or stable) singularities of a surface class. After the stable singularities, the next most
common singularity type are the bifurcations in generic 1-parameter families of the surfaces.
Understanding these for spherical surfaces is the motivation for this work.

FIGURE 1. Examples of spherical surfaces.

It was shown in [13] that the stable singularities of spherical surfaces are cuspidal edges
and swallowtails (see Figure 2). It is suggested in [5] that, in generic 1-parameter families of
spherical surfaces, we could obtain the cuspidal beaks and the cuspidal butterfly bifurcations. We
prove in this paper that indeed these are the only generic bifurcations that can occur in generic
1-parameter families of spherical surfaces (§5).
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2 DAVID BRANDER AND FARID TARI

FIGURE 2. Stable wave fronts and parallels: cuspidal edge (left) and swallow-
tail (right). Both cases occur on spherical surfaces ([13]).

For the study of bifurcations, we use the fact that spherical surfaces are parallels of CMC
surfaces, hence wave fronts. Recall that the evolutions in wave fronts are studied by Arnold in
[1]. Bruce showed in [7] which of the possibilities in [1] can actually occur and proved that the
generic bifurcations for parallels of surfaces in R3 are the following: (non-transverse) A±3 , A4
and D±4 ; see §3 for notation, and Figure 3.

A4A3
+ A3

-
D4
+ D4

-

No Yes Yes NoNo

FIGURE 3. Generic evolution of wave fronts from ([1]). "Yes" for those that
can occur on families of spherical surfaces and "No" for those that do not.

Spherical surfaces are special surfaces, so we should not expect all the cases considered by
Arnold and Bruce to occur. Indeed, the A+

3 and D±4 cases do not occur for spherical surfaces
(Theorem 3.1). Using loop group methods (see §2.1), one can construct a spherical surface with
an A−3 (cuspidal beaks) or an A4-singularity (cuspidal butterfly), so these singularities do indeed
occur on spherical surfaces (Theorem 3.1). The next question is whether the generic evolution of
parallels of such singularities can actually be realized by families of spherical surfaces. This is
not automatic, see Remark 2.3. Using geometric criteria for R-versality of families of functions
established in §4 and the method described in §2.1, we show that the A4 and A−3 bifurcations do
indeed occur in families of spherical surfaces (Theorem 5.3 for A4-singularity and Theorem 5.4
for the non-transverse A−3 -singularity).

In §5 we describe how to obtain examples of spherical surfaces exhibiting stable singularities
and those that appear in generic families from geometric data along a space curve. The proof of
the existence of solutions and how to compute them using loop group methods is given in [5].

In §6 we turn to the singularities of harmonic maps. Wood [30] characterized geometri-
cally the singularities of such maps. Let A be the Mather right-left group of pairs of germs
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of diffeomorphisms in the source and target. We consider the problem of realization of finitely
A -determined singularities of map-germs from the plane to the plane and of their Ae-versal
deformations by germs of harmonic maps from the Euclidean plane to the Euclidean plane. We
settle this question for the rank1 finitely A -determined singularities listed in [23] and for the
simple rank0 singularities given in [24]. We show, for instance, that some singularities of har-
monic maps can never be Ae-versally unfolded by families of harmonic maps (Proposition 6.6
and Remark 6.8). It is worth observing that the singularities of map-germs from the plane to
the plane arise as the singularities of projections of surfaces to planes or, more generally, of pro-
jections of complete intersections to planes. These projections are extensively studied; see, for
example, [2, 11, 12, 17, 21, 23, 29]. We chose the list in [23] as it exhibits all the rank 1 germs
of A -codimension ≤ 6 and includes all the simple germs obtained in [12].

2. PRELIMINARIES

Let Ω be a simply connected open subset of C, with holomorphic coordinates z = x+ iy. A
smooth map N : Ω→ S2 is harmonic if and only N× (Nxx +Nyy) = 0, i.e.,

N×Nzz̄ = 0.

This condition is also the integrability condition for the equation

(2.1) fz = iN×Nz, i.e., fx = N×Ny, fy =−N×Nx.

That is, ( fz)z̄ = ( fz̄)z if and only if N×Nzz̄ = 0. Hence, given a harmonic map N, we can integrate
the equation (2.1) to obtain a smooth map f : Ω→ R3, unique up to a translation.

A differentiable map h : M → R3 from a surface into Euclidean space is called a frontal if
there is a differentiable map N : M→ S2 ⊂ R3 such that dh is orthogonal to N . The map h
is called a wave front (or front) if the Legendrian lift (h,N ) : M→ R3×S2 is an immersion.
The map f defined above with Legendrian lift L := ( f ,N) is an example of a frontal. From (2.1)
the regularity of f is equivalent to the regularity of N. At regular points the first and second
fundamental forms for f are

I = |N×Ny|2 dx2 +2〈N×Ny,−N×Nx〉dxdy+ |N×Nx|2 dy2,

II = 〈N,Nx×Ny〉(dx2 +dy2).

Thus the metric induced by the second fundamental form is conformal with respect to the con-
formal structure on Ω, and the Gauss curvature of f is a constant equal to 1. Conversely, one
can show that all regular spherical surfaces are obtained this way. We call f the spherical frontal
associated to the harmonic map N.

For spherical frontals we have the following characterization of the wave front condition:

Proposition 2.1. The map f is a wave front near a point p if and only if rank(dN)p 6= 0.

Proof. If rank(dN)p = 2 then clearly L = ( f ,N) is an immersion at p so f is a wave front at p.
Suppose that rank(dN)p = 1. We can write Ny = aNx or Nx = aNy for some real scalar a. In

the first case, from (2.1) we have fx = aN×Nx =−a fy, so

dL = (d f ,dN) = (−a fy,Nx)dx+( fy,aNx)dy,

and this map has rank 2 as (−a fy,Nx) and ( fy,aNx) are not proportional. Similarly, Nx = aNy
also leads to L having rank 2. Therefore, f is a wave front at p.

If rank(dN)p = 0, then rank(d f )p = 0 so ( f ,N) is not an immersion at p. Consequently, f is
not a wave front at p (it is only a frontal at p). �

If fact, when rank(dN)p 6= 0 we can say more about f .
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Proposition 2.2. Suppose that rank(dN)p 6= 0. Then the spherical surface f is locally a parallel
of a constant mean curvature surface.

Proof. At least one of the maps g = f ±N parameterizes locally a smooth and regular surface in
R3. Indeed, consider g = f +δN, where δ =±1. Then gx = N×Ny +δNx and gy =−N×Nx +
δNy, so

gx×gy =−
(
δ (|Nx|2 + |Ny|2)+2ε|Nx||Ny|sinθ

)
N

where 0 ≤ θ ≤ π is the angle between the vectors Nx and Ny and ε = sign(det(Ny,Nx,N)). It
follows that |gx×gy| 6= 0 for at least one of δ =±1. The regular surface parametrized by g has
constant mean curvature as its Gauss map N is harmonic, and the result follows. �

Remark 2.3. The parallels of a surface g with Gauss map N are given by g+ rN, r ∈ R. If g has
constant mean curvature H0, then the parallel g+ r0N, with r0 = 1/(2H0), has constant Gauss
curvature K = 4H2

0 (see, e.g., [8]; we took K = 1 in the proof of Proposition 2.2.) Therefore,
a spherical surface is a specific parallel of a CMC surface. This means, in particular, that codi-
mension 1 phenomena that appear in the parallels of a generic surface in R3 by varying r do not
appear generically for a single spherical surface. For them to possibly occur, one has to consider
1-parameter families of spherical surfaces.

2.1. The generalized Weierstrass representation for spherical surfaces (DPW). The method
of Dorfmeister, Pedit and Wu (DPW) [9] gives a representation of harmonic maps into symmetric
spaces in terms of essentially arbitrary holomorphic functions via a loop group decomposition.
We refer the reader to [5] for a description of the method as it applies to spherical surfaces. In
brief, a holomorphic potential on an open set U ⊂ C, is a 1-form

ω =
∞

∑
n=0

(
an(z)λ 2n bn(z)λ 2n−1

cn(z)λ 2n−1 −an(z)λ 2n

)
dz = A(z)dz,

where all component functions are holomorphic in z on U , and with a suitable convergence
condition with respect to the auxiliary complex loop parameter λ . Such a potential can be used
to produce a harmonic map N : U → S2 and a spherical surface f : U → R3 that has N as its
Gauss map. The solution can also be computed numerically. Conversely, all harmonic maps and
spherical surfaces can be produced this way.

The singularities of the harmonic map N are closely related to the lowest order (in λ ) terms
of the potential, namely the pair of functions ψ(z) = (b0(z),c0(z)). To produce N from ω ,
one first solves the differential equation Φz = ΦA, with Φ(z0) = I, then a loop group frame F̂
is obtained by the (pointwise in z) Iwasawa decomposition (see [22]) Φ(z) = F̂(z)B(z) where
F̂(z,λ ) ∈ SU(2) for all λ ∈ S1, and B(z,λ ) extends holomorphically in λ to the whole unit
disc. Evaluating F̂ at λ = 1 gives an SU(2)-frame F(x,y) = F̂(z,1), (where z = x+ iy), and the
harmonic map is given by

N = AdF e3, e3 =
1
2

(
i 0
0 −i

)
∈ su(2) = R3.

Note that N takes values in S2 because we use the metric 〈X ,Y 〉=−2trace(XY ), with respect to
which e3 is a unit vector. A critical fact in the DPW method is that the map Φ 7→ (F̂ ,B) in the
Iwasawa decomposition (with a suitable normalization to make the factors unique) gives a real
analytic diffeomorphism from the complexified loop group ΛSL(2,C) to a product of Banach
Lie groups [22]. Using this, it is straightforward to verify the following:

Lemma 2.4. Let N : U → S2 be a harmonic map produced by the DPW method with potential
ω = A(z)dz. Then the k-jet of N is uniquely determined by the (k−1)-jet of A.
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Moreover, the rank of the map N at the integration point z0 is determined just by the holomor-
phic functions b0 and c0 in the potential ω: Note F̂ = ΦB−1, where B is holomorphic in λ on D,

and we can write B(z,λ ) =
(

ρ(z) 0
0 1/ρ(z)

)
+o(λ ), with ρ real analytic, positive real-valued,

and ρ(z0) = 1. It follows that

F̂−1dF̂ =

(
0 ρ2(z)b0(z)

ρ−2(z)c0(z) 0

)
λ
−1dz+higher order in λ .

If we write F−1Fz = Uk +Up, where Uk is parallel to e3 and Up is perpendicular, then, as
usual in loop group constructions for harmonic maps, one finds that F̂−1dF̂ = Upλ−1dz +
higher order in λ . Hence

Nz = AdF([F−1Fz,e3]) = AdF

[(
0 ρ2b0

ρ−2c0 0

)
,e3

]
= AdF

(
−(ρ2b0 +ρ

−2c0)ie2 +(ρ2b0−ρ
−2c0)e1

)
.

It follows in a straightforward manner that rank(dN) < 2 if and only if |ρ2b0| = |ρ−2c0| and
rank(dN) = 0 if and only if b0 = c0 = 0. In particular, since ρ(z0) = 1 we have:

Lemma 2.5. Let N :U→ S2 be a harmonic map produced by the DPW method with holomorphic
potential ω = A(z)dz, integration point z0, and notation as above. Then N fails to be immersed
at z0 if and only if |b0(z0)| = |c0(z0)|. Additionally, N has rank zero at any point z ∈U if and
only if b0(z) = c0(z) = 0.

3. SINGULARITIES OF SPHERICAL SURFACES

We are interested here in the stable singularities of spherical surfaces f as well as those
that occur generically in 1-parameter families of such surfaces. This excludes the case when
rank(dN)p = 0, as can be deduced from Lemmas 2.4 and 2.5 above together with a transver-
sality argument. Therefore, following Propositions 2.1 and Proposition 2.2, for the study of
codimension ≤ 1 phenomena we can consider spherical surfaces as parallels of CMC surfaces.
Observe that in this case rank(dN)p is never zero.

Singularities of parallels of a general surface g : Ω→R3 are studied by Bruce in [7] (see also
[10]). Bruce considered the family of distance squared functions Ft0 : Ω×R3 → R given by
Ft0((x,y),q) = |g(x,y)−q|2− t2

0 . A parallel Wt0 of g is the discriminant of Ft0 , that is,

Wt0 = {q ∈ R3 : ∃(x,y) ∈Ω where Ft0((x,y),q) =
∂Ft0

∂x
((x,y),q) =

∂Ft0

∂y
((x,y),q) = 0}.

For q0 fixed, the function Fq0,t0(x,y) = Ft0(x,y,q0) gives a germ of a function at a point on
the surface. Varying q and t gives a 4-parameter family of functions F . Let R denote the group
of germs of diffeomorphisms from the plane to the plane. Then, by a transversality theorem in
[19], for a generic surface, the possible singularities of Fq0,t0 are those of R-codimension 4, and
these are as follows (with R-models, up to a sign, in brackets): A±1 (x2± y2), A2 (x2 + y3), A±3
(x2± y4), A4 (x2 + y5) and D±4 (y3± x2y).

Bruce showed that F is always an R-versal family of the A±1 and A2 singularities. Conse-
quently the parallels at such singularities are, respectively, regular surfaces or cuspidal edges. It
is also shown in [7] that the transitions at an A2 do not occur on parallel surfaces.

At an A3-singularity one needs to consider the discriminant ∆ of the extended family of dis-
tance squared functions F : Ω×R3×R→ R, with F((x,y),q, t) = |g(x,y)− q|2− t2, with t
varying near t0. The parallels Wt are pre-images of the projection π : ∆→ R to the t-parameter.
If π is transverse to the A3-stratum in ∆, then the parallels are swallowtails near t0. If π is not
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transverse to the A3-stratum (we denote this case non-transverse A±3 ), the projection π restricted
to the A3-stratum is in general a Morse function and the parallels undergo the transitions in the
first two columns in Figure 3 (cuspidal lips or cuspidal beaks). When the function Fq0,t0 has an
A4 or D±4 -singularity and the projection π is generic in Arnold sense [1], the transitions in the
parallels are as in Figure 3.

It is worth making an observation about the singular set of a given parallel Wt . The parallel is
given by f = g+ tN. Take the parameterization g, away from umbilic points, in such a way that
the coordinates curves are the lines of principal curvatures. Then Nx = −κ1gx, Ny = −κ2gy, so
fx = (1−κ1t)gx and fy = (1−κ2t)gy. If the point on the surface is not parabolic, the parallel Wt
is singular if and only if t = 1/κ1 or t = 1/κ2. Therefore, the singular set of the parallel Wt is (the
image of) the curve on the surface M given by κ1 = 1/t or κ2 = 1/t. That is, the singular sets of
parallels correspond to the curves on the surface where the principal curvatures are constant.

If the point p is a parabolic point, with say κ1(p) = 0 but κ2(p) 6= 0, then the parallel as-
sociated to κ1 goes to infinity and the other is singular along the curve κ2 = 1/t. In this case,
ker(d f )p is parallel to the principal direction gy(p) and ker(dN)p is parallel to the other principal
direction gx(p). Observe that for generic surfaces, the parabolic curve κ1 = 0 and the singular
set κ2 = 1/t of the parallel Wt are transverse curves at generic points on the parabolic curve.

We turn now to spherical surfaces f and use the notation in §2. Since N takes values in S2, we
have 〈 fz,N〉 = 0 and hence it follows from equation (2.1) that the ranks of f and N coincide at
every point, i.e., rank(d f )p = rank(dN)p. Hence, the singular set of f is the same as the singular
set of N. Another way to see this is as follows. As f is a parallel of a CMC surface, the principal
curvature κ2 is constant on the parabolic set κ1 = 0 (or vice-versa). Therefore, the singular set
κ2 = κ2(p) of f coincides with the parabolic set which is the singular set of N. In particular, the
singularities of parallels of CMC surfaces occur only on its parabolic set. Observe that on the
parabolic set ker(d f )p and ker(dN)p are orthogonal and coincide with the principal directions of
the CMC surface at the point p.

We are concerned with singularities of spherical surfaces and their deformations within the set
of such surfaces. We start by determining which of the singularities of a general parallel surface
can occur on a spherical surface.

Theorem 3.1. (1) The non-transverse A+
3 and the D±4 -singularities do not occur on spherical

surfaces.
(2) The singularities A2 (cuspidal edge), A3 (swallowtail), A4 (butterfly) and the non-transverse

A−3 (cuspidal beaks) can occur on spherical surfaces; see Figure 2 and Figure 3.

Proof. (1) The non-transverse A+
3 -singularity occurs when rank(dN)p = 1 and the parabolic set

has a Morse singularity A+
1 (see Theorem 4.2 for details). As the parabolic set is the singular

set of the harmonic map N, it follows by Wood’s Theorem 6.1 that the singularity A+
1 cannot

occur for such maps. Therefore, the non-transverse A+
3 -singularity cannot occur for spherical

surfaces. A D±4 -singularity of a wave-front at p has the property that d fp vanishes. It follows
from rank(d( f ,N))p = 2, that dNp has rank 2. This cannot happen for a spherical surface,
because rankd f = rankdN.

(2) Here we first appeal to recognition criteria of singularities of wave fronts, some of which
can be found in [3] in terms of Boardman classes. These criteria are expressed geometrically in
[14, 25, 27]. Denote by Σ the singular set of f . Then the recognition criteria for wave fronts are
as follows:

Cuspidal edge (A2): Σ is a regular curve at p; ker(d f )p is transverse to Σ at p ([27]).
Swallowtail (A3): Σ is a regular curve at p; ker(d f )p has a second order tangency with Σ at p

([27]).
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Butterfly (A4): Σ is a regular curve at p; ker(d f )p has a third order tangency with Σ at p ([14]).
Cuspidal beaks (non-transverse A−3 ): Σ has a Morse singularity at p; ker(d f )p is transverse to

the branches of Σ at p ([15]).
We can now use the geometric Cauchy problem to construct spherical surfaces with the above

singularities as was done in [5]; see §5 for details. �

Remark 3.2. A spherical surface f , which we take as a parallel of a CMC g, is the discriminant
of the family of distance squared function Ft0((x,y),q) = |g(x,y)− q|2− (1/(2H0))

2. Here, we
do not have the freedom to vary t as in the case for general surfaces. To obtain the generic
deformations of wave fronts at an A4 or at non-transverse A−3 -singularity, we need to deform the
CMC surface in 1-parameter families gs of such surfaces in order to obtain a 4-parameter family
F((x,y),q,s) = |gs(x,y)− q|2− (1/(2Hs))

2. For the evolution of wave fronts at an A4 (resp.
non-transverse A−3 ) to be realized by spherical surfaces it is necessary that we find a family
gs of CMC surfaces such that the family F is an R-versal deformation of the A4-singularity
(resp. non-transverse A−3 ) of Ft0 . We establish in §4 geometric criteria for the family F to be
an R-versal deformation at the above singularities and for the sections of the discriminant of F
along the parameter s to be generic in Arnold sense [1]. We then use in §5 the DPW-method to
construct families of spherical surfaces with the desired properties.

Remark 3.3. The singularities of the Gauss map N can be identified using geometric criteria
involving the singular set of N (i.e., the parabolic set) and ker(dN)p ([16, 26]). As we observed
above, ker(d f )p and ker(dN)p are orthogonal when the parabolic set is a regular curve, so in
this case the singularities of f and N are not related. However, we can assert that, generically, a
spherical surface f has a cuspidal beaks singularity if and only if the Gauss map N has a beaks
singularity. The genericity condition being that neither ker(d f )p nor ker(dN)p is tangent to the
branches of the parabolic curve.

4. GEOMETRIC CRITERIA FOR R-VERSAL DEFORMATIONS

Let now gs be any 1-parameter family of regular surfaces in R3, and let

(4.1) F((x,y),q,s) = |gs(x,y)−q|2− r(s)

be a germ of a family of distance squared function on gs, where r is a smooth function (see
Remark 3.2 for when gs are CMC surfaces). We establish in this section geometric criteria
for checking when F as in (4.1) is an R-versal deformation of an A4 or a non-transverse A−3 -
singularity of F0 = Fq0,r(0).

Denote by SAk the set of points ((x,y),q,s)∈R2×R3×R such that Fq,s has an A≥k-singularity
at (x,y). Consider the following system of equations

Fq,s = 0(4.2)

∂Fq,s

∂x
= 0(4.3)

∂Fq,s

∂y
= 0(4.4)

∂ 2Fq,s

∂x2
∂ 2Fq,s

∂y2 −
(

∂ 2Fq,s

∂x∂y

)2

= 0(4.5)

∂ 3Fq,s

∂x3

(
∂ 2Fq,s

∂x∂y

)3

−
∂ 3Fq,s

∂x2∂y
∂ 2Fq,s

∂x2

(
∂ 2Fq,s

∂x∂y

)2

+
∂ 3Fq,s

∂x∂y2

(
∂ 2Fq,s

∂x2

)2(
∂ 2Fq,s

∂x∂y

)
−

∂ 3Fq,s

∂y3

(
∂ 2Fq,s

∂x2

)3

= 0

(4.6)
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at (x,y). Equation (4.5) means that the quadratic part of the Taylor expansion of Fq,s at a singu-
larity (x,y) is a perfect square L2, and equation (4.6) means that its cubic part divides L. Then
SA2 (resp. SA3) is the set of points ((x,y),q,s) with Fq,s satisfying equations (4.2) - (4.5) (resp.
(4.2) - (4.6)) at (x,y).

4.1. The A4-singularity.

Theorem 4.1. The family F in (4.1) is an R-versal deformation of an A4-singularity of F0 at
p0 if and only if the SA3 set is a regular curve at p0. When this is the case, the sections of the
discriminant of F along the parameter s are generic if and only if the projection of the SA3 curve
to the (x,y) domain is a regular curve (then we get the bifurcations in Figure 3, third column, in
the wave fronts Wr(s) as s varies near zero).

Proof. We take, without loss of generality, the family of surfaces in Monge form gs(x,y) =
(x,y,hs(x,y)) at p0 = (0,0) and write q = (a,b,c).

We write the homogeneous part of degree k in the Taylor expansion of h0 as ∑
k
i=0 ai,k−ixiyk−i

and set a0,0 = a1,0 = a0,1 = 0.
As we want the origin to be a singularity of F0, we take q0 = (0,0,c0) and r(0) = c2

0 so
that F0(0,0) = 0. We can make a rotation of the coordinate system and set a1,1 = 0. Then
a0,2− a2,0 6= 0 as the origin is not an umbilic point. In particular, a0,2 6= 0 or a2,0 6= 0. We
suppose a2,0 6= 0 and take c0 = 1/(2a0,2) in order for F0 to have an A≥2-singularity at the origin.
Then the conditions for the origin to be an A4-singularity of F0 are:

a0,3 = 0, a2
1,2 +4(a0,2−a2,0)(a0,4−a3

0,2) = 0,
4(a0,2−a2,0)

2a0,5 +a1,2(a2,1a1,2 +2a1,3a0,2−2a1,3a2,0) 6= 0.

Denote by Ḟa = (∂F/∂a)|a=0,b=0,c=c0,s=0 (similarly for Ḟb, Ḟc and Ḟs). Let E (2,1) be the
ring of germs of functions (R2,0)→ R and M2 its maximal ideal. The family F is an R-versal
deformation of the singularity of F0 if and only if

(4.7) E (2,1){∂F0

∂x
,
∂F0

∂y
}+R · {Ḟa, Ḟb, Ḟc, Ḟs}= E (2,1).

(see, e.g., [20]). As F0 is 5-R-determined, it is enough to show that (4.7) holds modulo M 6
2 ,

i.e., we can work in the 5-jet space J5(2,1). Write j5hs = j5h0 + j5
(
∑i, j,k βi, j,k−i− jxiy jsk−i− j

)
s.

Then, using ∂F0/∂x, ∂F0/∂y and Ḟb, we can get all the monomials in x,y of degree≤ 5 in the left
hand side of (4.7) except 1,x,y2,y3. Now, we can write ∂F0

∂x , Ḟa,Ḟb,Ḟc,Ḟs modulo the monomials
already in the left hand side of (4.7) as linear combinations of 1,x,y2,y3:

∂F0
∂x ∼ 2x− a1,2a2,1+a1,3(a0,2−a2,0)

(a0,2−a2,0)2 y3,

Ḟa ∼ 2x+ a1,2
a0,2−a2,0

y2,

Ḟc ∼ 1
a0,2
−2a0,2y2,

Ḟs ∼ (a0,2r′(0)−β0,0,0)−β1,0,0x+
2(a0,2−a2,0)(2a2

0,2β0,0,0−β0,2,0)−a1,2β1,0,0

2(a0,2−a2,0)
y2

+
2(a0,2−a2,0)(2a2

0,2β0,1,0−β0,3,0)−a1,2β1,1,0

2(a0,2−a2,0)
y3.

The family F is an R-versal deformation if and only if the above vectors are linearly inde-
pendent, equivalently,

4a3
0,2(a1,2a2,1 +a1,3(a0,2−a2,0))r′(0)−4a2

0,2a1,2(a0,2−a2,0)β0,1,0

+a2
1,2β1,1,0−2(a1,2a2,1 +a1,3(a0,2−a2,0))β0,2,0 +2a1,2(a0,2−a2,0)β0,3,0 6= 0.
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We consider now the SA3 set. Equations (4.3) - (4.5) give a,b,c as functions of x,y,s. Sub-
stituting these in equations (4.2) and (4.6), gives the following 1-jets of their left hand sides,
respectively, up to non-zero scalar multiples,

−a1,2x+(2a3
0,2r′(0)−β0,2,0)s,

2(a1,3a2,0−a1,3a0,2−a1,2a2,1)x+
(
2(a0,2−a2,0)(2a2

0,2β0,1,0−β0,3,0)−a1,2β1,1,0
)

s.(4.8)

The set SA3 is a regular curve if and only if the above 1-jets are linearly independent, which is
precisely the condition above for F to be an R-versal family.

It is not difficult to show that we get the generic sections of the discriminant of F (see [1]) if
and only if the coefficient of y3 in Ḟs above is not zero. This is precisely the condition for for
coefficient of s in (4.8) to be non-zero, which in turn is equivalent to the projection of the curve
SA3 to the (x,y) domain to be regular. �

4.2. The non-transverse A−3 . Bruce gave in [7] geometric conditions for parallels of a surface
M in R3 to undergo the generic bifurcations of wave fronts in [1] at a non-transverse A±3 . In [7],
r(s) = s0+s in (4.1) and gs = g0, so F is an R-versal deformation and SA2 (resp. SA3) is a regular
surface (resp. curve). For F as in (4.1), the geometric conditions in [7] are: (i) F is an R-versal
deformation of F0, so SA2 (resp. SA3) is a regular surface (resp. curve)) and (ii) the projection
π : SA2 → (R,0) to the parameter s is a submersion and its restriction to the SA3 curve is a Morse
function (i.e., π−1(0) and SA3 have ordinary tangency). Then the parallels Wr(s) undergo the
bifurcations in Figure 3, second column. (When π−1(0) is transverse to the SA3 curve, i.e., F0
has a transverse A±3 -singularity, the parallels Wr(s) are all swallowtails for s near zero.) We give
below equivalent geometric conditions which are useful for constructing families of spherical
surfaces in §5 with the desired properties.

Theorem 4.2. (1) The family F as in (4.1) is an R-versal deformation of a non-transverse A±3 -
singularity of F0 if and only if the projection π is a submersion, equivalently, the surface formed
by the singular sets of Wr(s) in the (x,y,s)-space is a regular surface.

(2) Suppose that (1) holds. Then, the projection π|SA3
is a Morse function if and only if the

singular set of the parallel Wr(0), in the domain, has a Morse singularity.
(3) As a consequence, the wave fronts Wr(s) undergo the bifurcations in Figure 3, second

column if and only if the surface formed by the singular sets of Wr(s) in the (x,y,s)-space is a
regular surface and its sections by the planes s= constant undergo the generic Morse transitions
as s varies near zero.

Proof. (1) We take the surfaces gs in Monge form gs(x,y) = (x,y,hs(x,y)) and use the notation in
the proof of Theorem 4.1. For h0, we have a2,0−a0,2 6= 0 and we can take a0,2 6= 0. Then F0 has
a non-transverse A±3 -singularity at the origin if and only if a0,3 = 0, a1,2 = 0 and a3

0,2−a0,4 6= 0.
Calculations similar to those in the proof of Theorem 4.1 show that F is an R-versal deforma-

tion of the non-transverse A±3 -singularity of F0 at the origin if and only if 2a3
0,2r′(0)−β0,2,0 6= 0.

We calculate the set SA2 in the same way as in the proof of Theorem 4.1 by solving the system
of equations (4.2)-(4.5). We use (4.3)-(4.5) to write a,b,c as functions of (x,y,s) and substitute
in (4.2) to obtain

(4.9) (2a3
0,2r′(0)−β0,2,0)s−Q(x,y)+α1sx+α2s2 +O3(x,y,s) = 0,

with α1,α2 irrelevant constants, O3 a smooth function with a zero 2-jet and

(4.10) Q(x,y) =
2a2

02a2
20−2a02a3

20−a02a22 +a20a22−a2
21

a02−a20
x2−3a13xy+6(a3

02−a04)y2.

Clearly, (4.9) shows that the condition 2a3
0,2r′(0)−β0,2,0 6= 0 for F to be an R-versal family

is precisely the condition for π to be a submersion and for the projection of the set SA2 to the
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(x,y,s)-space to be a regular surface (which is the surface formed by the family of the singular
sets of the wave fronts Wr(s)).

For (2), the singular set of Wr(0), in the domain, is obtained by setting s = 0 in (4.9). We can
always solve (4.6) for y. Substituting in (4.9) gives the equation of the set SA3 in the form

(2a3
0,2r′(0)−β0,2,0)s−

Λ

24(a3
02−a04)

x2 +O3(x,s) = 0,

with Λ the discriminant of the quadratic form Q in (4.10), and the result follows.
Statement (3) is a consequence of (1) and (2) and application of the results from[7]. �

5. CONSTRUCTION OF SPHERICAL SURFACES AND THE SINGULAR GEOMETRIC CAUCHY

PROBLEM

In this section we show how to construct all the codimension ≤ 1 singularities as well as their
bifurcations in generic 1-parameter families of spherical surfaces, from simple geometric data
along a regular curve in S2.

Singularities of spherical surfaces are analyzed in [5], using SU(2) frames for the surfaces.
The SU(2) frames are needed in order to construct the solutions using loop group methods,
however they are not needed to discuss singularities in terms of geometric data along the curve.
We therefore begin with a more direct geometric derivation of some of the results of [5].

As mentioned above, for a spherical frontal f , with corresponding Gauss map N, we have
rank(d f ) = rank(dN), so the singular set of f is the same as the singular set of N and is deter-
mined by the vanishing of the function

µ = 〈 fx× fy,N〉= 〈Nx×Ny,N〉.
A singular point is called non-degenerate if dµ 6= 0 at that point (see [27]).

5.1. Stable singularities. If a frontal is non-degenerate at a point then the local singular locus is
a regular curve in the coordinate domain. In such a case we can always choose local conformal
coordinates (x,y) such that the singular set is locally represented by the curve {y = 0} in the
domain and by f (x,0) on the spherical surface. We make this assumption throughout this section.
To analyze the singular curve in terms of geometric data, it is also convenient to use an arc-length
parameterization. Considering the pair of equations

(5.1) fx = N×Ny, fy =−N×Nx,

it is clear that, at a given singular point, either fx 6= 0 or Nx 6= 0 (or both). This allows us to use
either the curve f (x,0) or the curve N(x,0) as the basis of analysis, since at least one of them is
regular.

5.1.1. Case that f (x,0) is a regular curve. In this case, we assume further that coordinates are
chosen such that | fx(x,0)|= 1. An orthonormal frame for R3 is given by

e1 =
fx

| fx|
, e2 = e3× e1 =−

Ny

| fx|
, e3 = N,

where the expression for e2 comes from (5.1). Now let us write

fy = ae1 +be2.

Then fx× fy = µe3, where µ = | fx|b, and the singular curve C in the domain is locally given by
b = 0. Along C, we have

dµ = 0+1 ·db = db =
∂b
∂y

dy,
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so the non-degeneracy condition is by 6= 0. From (5.1), we also have

Nx =−be1 +ae2.

To find the Frenet-Serret frame (t,n,b), along the curve f (x,0), we can differentiate fx = N×Ny
to obtain

κn = fxx = Nx×Ny +N×Nxy

= N×Nxy,

because Nx and Ny are parallel along the singular curve. Here κ(x) is the curvature function of
the curve f (x,0). Hence n is orthogonal to N, and so we conclude that

(t,n,b) = (e1(x,0),e2(x,0),e3(x,0)).

Then the Frenet-Serret formulae gives

−τn = bx = Nx.

Comparing with the expression above for Nx we conclude that

a =−τ.

Thus, along C, we have fx = e1 and fy =−τe1. Hence the null direction for f , i.e. the kernel of
d f is given by

η f = τ∂x +∂y.

Since the null direction is transverse to the singular curve, it follows by using the recognition
criteria in [27] that the singularity is a cuspidal edge.

(κ,τ) = (1,1) (κ,τ) = (1,0) (κ,τ) = (1,s)

FIGURE 4. Above: the spherical surface f generated by the singular curve data
(κ(s),τ(s)). Below: the corresponding harmonic Gauss map N.

Note: the nondegeneracy condition ∂yb 6= 0 can be given in terms of the curve f (x,0) as
follows. We have b =−〈Nx,e1〉, so

∂b
∂y

=−〈Nyx,e1〉−〈Nx,∂ye1〉.

Along C we have Nx =−τe2 and Ny =−e2 = fx×N, so

Nyx = κe1− τe3.
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Differentiating e1 = fx/| fx| and restricting to the curve f (x,0) along which | fx(x,0)| = 1 , we
have

∂e1

∂y
=

∂

∂y

(
1
| fx|

)
e1 + fxy = Me1− τκe2,

where the factor M is immaterial. Hence
∂b
∂y

=−κ(1+ τ
2),

and so the non-degeneracy condition is κ 6= 0.

Comparison with the singular set of N: Along C we have Nx = −τe2 and Ny = −e2, so the
null direction for N is

ηN = ∂x− τ∂y.

Therefore it is possible for the null direction for N to point along the curve. According to the
terminology in [30], the harmonic map N has, at p = (x0,0):

(1) A fold point if τ(x0) 6= 0;
(2) A collapse point if τ(x)≡ 0, on a neighbourhood of x0;
(3) A good singularity of higher order otherwise.

Note that these singularities of N all correspond to cuspidal edge singularities of f . Geometri-
cally, they are reflected in the geometry of the spherical frontal by whether or not the singular
curve is planar, or has a single point of vanishing torsion (see Figure 4).

5.1.2. Case that N(x,0) is a regular curve. In this case we can choose coordinates such that the
curve N(x,0) is unit speed, so |Nx(x,0)|= | fy(x,0)|= 1, and a frame

e1 =
Nx

| fy|
, e2 =−

fy

| fy|
, e3 = N.

Write
fx = ae1 +be2,

so fx× fy = µe3, where µ =−a| fy|, so the singular curve C in the domain is the set a = 0, and
the non-degeneracy condition is

∂a
∂y
6= 0.

From fx = N×Ny we have
Ny = be1−ae2.

Since, along C, we have fx = be2 and fy = −e2, and Nx = e1 and Ny = be1, the null directions
for the two maps are:

η f = ∂x +b∂y,

ηN = b∂x−∂y.

Hence the singularity for N is always a fold point, because ηN is transverse to the singular curve.
For the map f , which is a wave front, we can use the criteria from [18] to conclude that the

singularity at the point (x0,0) is:

(1) A cone point if and only if b(x,0)≡ 0 in a neighbour of x0;
(2) A cuspidal edge if b(x0,0) 6= 0.
(3) A swallowtail if and only if b(x0,0) = 0 and bx(x0,0) 6= 0;
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b = 0 b = t b = 1 b = t2

FIGURE 5. Above: the spherical surface f generated by non-degenerate sin-
gular curve data, with b(t,0) as indicated. Below: the corresponding harmonic
Gauss map N.

Examples are shown in Figure 5.
Let’s consider the above in terms of the geometry of the curve α(x) =N(x,0) in S2. Along the

curve α , the Darboux frame is e1 = Nx, e2 = N×Nx =− fy, e3 = N, and the Darboux equations
reduce to (writing the geodesic curvature of α in S2 as κ̂g),

Nxx = κ̂ge2− e3,

−∂xe2 = fyx = κ̂gNx = κ̂ge1.

For the non-degeneracy condition ay 6= 0, we have a = 〈 fx,e1〉, so

∂a
∂y

= 〈 fyx,e1〉+ 〈 fx,
∂e1

∂y
〉.

The first term on the right is 〈κ̂ge1,e1〉= κ̂g, and for the second compute (along C)

∂e1

∂y
= ∂y

(
1
|Nx|

)
e1 +Nyx

= ∂y

(
1
|Nx|

)
e1 +bxe1 +bNxx,

so 〈 fx,∂ye1〉= b2κ̂g, and ay = (b2 +1)κ̂g. Hence the non-degeneracy condition is

κ̂g 6= 0.

The speed of the curve f (x,0), namely b, is arbitrary, and not related to the geometry of
α . Along C, we have Ny = bNx, and any choice of b will generate a solution with α as a
singular curve. In terms of the curve f (x,0), we have fx = be2 along C, so |b| is the speed of
this parameterization of γ(x) = f (x,0). We also have fxx = bxe2− κ̂ge1, so the normal to γ is
n =±e1 and the binormal along γ is b =±e3. Up to sign, the Frenet-Serret equations gives

−τe1 =−τn =
1
|b|

db
dx

=
1
|b|

(−Nx) =−
1
|b|

e1.

Hence the torsion of the curve f (x,0) is (up to a choice of sign)

τ =
1
b
.
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5.2. Codimension 1 Singularities. As in the previous section, if the surface is a front, then
either fx or Nx is non-zero. In the case fx non-vanishing, as we described above, the non-
degeneracy condition is κ 6= 0. In [5], it is shown that, at a point where τ 6= 0, then κ vanishes
to first order if and only if the surface has a cuspidal beaks singularity at the point. Here, the
curve C in the domain given by y = 0 is contained in the singular set of f but is not necessarily
the whole singular set of f , as is the case at a non-transverse A−3 .

To obtain both types of singularities (non-transverse A−3 and A4) from the same setup, we
need to consider the case that Nx is non-vanishing. Choose a frame (e1,e2,e3) = (rNx,−r fy,N)
as above, with r = 1/|Nx|= 1/| fy| and r(x,0) = 1, fx = ae1 +be2 and fx× fy = µN, with

µ =−a| fy|,
and the null direction for f is η = ∂x +b∂y. By the recognition criteria in [14, 15], a singularity
of a front is diffeomorphic at p to :

(1) Cuspidal butterfly (A4) if and only if rank(dµ)= 1, ηµ(p)=η2µ(p)= 0 and η3µ(p) 6= 0;
(2) Cuspidal beaks (non-transverse A−3 ) if and only if rank(dµ) = 0, det(Hess(µ(p))) < 0

and η2µ(p) 6= 0.

Lemma 5.1. Let f be as above. Then, at p0 = (x0,0):
(1) f has a cuspidal butterfly singularity if and only if b(x0,0) = bx(x0,0) = 0 , bxx(x0,0) 6= 0

and κ̂g(p0) 6= 0.
(2) f has a cuspidal beaks singularity if and only if κ̂g(p0)= 0, ∂ κ̂g

∂x (p0) 6= 0 and b(x0,0) 6= 0.

Proof. The proof of the first item is given in [5] (Theorem 4.8). To prove the second item, we
have already shown that the degeneracy condition dµ = 0 is equivalent to κ̂g = 0. Here we have
µ(x,0) = 0 along C, so µx = µxx = 0 along C. Noting that | fy|= 1 along C, and using the formula
ay = (b2 +1)κ̂g obtained earlier, we have

det(Hess(µ(p))) =−(µxy)
2 =−

(
∂

∂x
((b2 +1)κ̂g)

)2

=−(b2 +1)2
(

∂ κ̂g

∂x

)2

,

at a degenerate point (i.e., a point where κ̂g = 0). Thus the Hessian condition amounts to ∂ κ̂g
∂x 6= 0.

Finally, we have, η2µ = 2b(b2 +1) ∂ κ̂g
∂x along C, from which it follows that the three conditions

for the cuspidal beaks are equivalent to κ̂g(p0) = 0, ∂ κ̂g
∂x (p0) 6= 0 and b(x0,0) 6= 0. �

5.3. Codimension ≤ 1 singularities from geometric Cauchy data. We show here how to ob-
tain singularities of spherical frontals from Cauchy data along a regular curve in S2. We first
re-state Theorem 4.8 from [6], incorporating Lemma 5.1.

Theorem 5.2. ([6]) Let I ⊂R be an open interval. Let κ̂g : I→R and b : I→R be a pair of real
analytic functions. Let U ⊂ C be a connected open set containing the real interval I×{0} such
that the functions κ̂g and b both extend holomorphically to U, and denote these holomorphic
extensions by κ̂g(z) and b̂(z). Set

ωb,κ̂g =

(
2κ̂g(z)i (−1− ib(z))λ−1 +(−1+ ib(z))λ

(1+ ib(z))λ−1 +(1− ib(z))λ −2κ̂g(z)i

)
dz,

Let f : U→R3 and N : U→ S2 denote respectively the spherical frontal and its harmonic Gauss
map produced from ωb,κ̂g via the DPW method of Section 2.1. Then κg is the geodesic curvature
of the curve N(x,0), and b(x) = b(x,0) is the speed of the curve f (x,0). Moreover, the set I×{0}
is contained in the singular set of f , and the singularity at (x0,0) is:

(1) A cuspidal edge if and only if b(x0) 6= 0 and κ̂g(x0) 6= 0.
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(2) A swallowtail if and only if b(x0) = 0, b′(x0) 6= 0 and κ̂g(x0) 6= 0.
(3) A cuspidal butterfly if and only if b(x0) = b′(x0) = 0, b′′(x0) 6= 0, and κ̂g(x0) 6= 0.
(4) A cone point if and only if b(x,0)≡ 0 and κ̂g(x0) 6= 0.
(5) A cuspidal beaks if and only if κ̂g(x0) = 0, ∂ κ̂g

∂x (x0) 6= 0 and b(x0) 6= 0.
Conversely, all singularities of the types listed can locally be constructed in this way.

We can now prove the main results about the realization of the generic bifurcations of parallel
surface by families of spherical surface at the cuspidal butterfly and cuspidal beaks singularities.

FIGURE 6. Cuspidal butterfly bifurcation

Theorem 5.3. The evolution of wave fronts at an A4 (butterfly) is realized in a 1-parameter
family of spherical surfaces fs(x,y)≡ f (x,y,s) obtained from Theorem 5.2 with the potentials:

ωbs,κ̂g , bs(x) = s+ x2, κ̂g(x) = 1.

Proof. We use the DPW-method in §2.1 to construct the 1-parameter family of spherical sur-
faces fs with potential as stated in the theorem. The surface f0 has a butterfly singularity by
Theorem 5.2. The set SA3 associated to the family of distance squared functions on fs has a
parameterization in the form (x,0,q(x),−2x), so is a regular curve and its projection to the first
two coordinates is also a regular curve. Then the result follows by Theorem 4.1. �

The spherical surface fs in Theorem 5.3 is computed numerically for three values of s close
to zero and shown in Figure 6.

Theorem 5.4. The evolution of wave fronts at a non-transverse A−3 (cuspidal beaks) is realized
in a 1-parameter family of spherical surfaces fs obtained from Theorem 5.2 with the potentials:

ωs = ωb,κ̂g +αs, b(x) = 1, κ̂g(x) = x, αs =

(
0 sλ−1

0 0

)
dz.

Proof. The DPW method described in Section 2.1 produces a family of surfaces fs from the
potentials ωs, and the construction is real analytic in all parameters. Using the same notation as
in Section 2.1, we have here

b0(z,s) = s−1− i, c0(z,s) = 1+ i.

The singular set, as noted before Lemma 2.5, is given at each s by the equation ρ2(x,y,s)|b0(z,s)|=
ρ−2(x,y,s)|c0(z,s)|, i.e., by

ρ
2(x,y,s)

√
(s−1)2 +1 = ρ

−2(x,y,s)
√

2.

Since we have a cuspidal beaks singularity at s = 0, it follows from Theorem 4.2 that the family
fs realizes the evolution of the cuspidal beaks if and only if the set h−1(0), with

h(x,y,s) := ρ
4(x,y,s)−

√
2√

(s−1)2 +1
,



16 DAVID BRANDER AND FARID TARI

is a regular surface in R3 in a neighbourhood of the point (x,y,s) = (0,0,0), i.e., dh(0,0,0) 6=
(0,0,0). But, in the DPW construction, where the integration point is (x,y) = (0,0) for all s, we
have ρ(0,0,s) = 1 for all s, which implies that ∂h

∂ s 6= 0 at (0,0,0), and the claim follows. �

Three solutions for s close to zero are shown in Figure 7.

FIGURE 7. Cuspidal beaks bifurcations.

Remark 5.5. Theorem 3.1 lists the possible codimension 1 phenomena of generic wave fronts
that may occur in families of spherical surfaces. Theorems 5.4 and 5.3 show that these do indeed
occur. These bifurcations exhaust all possible bifurcations in generic 1-parameter families of
spherical surfaces. In fact, given a z0 ∈ C, a harmonic map from an open neighbourhood of z0
into S2 is uniquely determined by an arbitrary pair of holomorphic functions (b−1(z),c−1(z)),
the so-called normalized potential at the point z0 (see, e.g. [9]). An instability of a spherical
surface f is thus expressed in terms of the pair of (b−1(z),c−1(z)). If further conditions are
imposed on a−1 and b−1, then these lead to codimension ≥ 2 instabilities.

6. SINGULARITIES OF GERMS OF HARMONIC MAPS FROM THE PLANE TO THE PLANE

Wood [30] defined the following concepts for harmonic maps N : D→ E between two Rie-
mannian surfaces. Denote by Σ the singular set of N and let p ∈ Σ. The set Σ is the zero set of
the function J = det(dN)p. The point p is called a degenerate point if J vanishes identically in a
neighbourhood of p. It is called a good point if J is a regular function at p (i.e., if Σ is a regular
curve at p). Then (dN)p has rank 1. Wood classified the singularities of N as follows:

(1) rank(dN)p = 1
(A) fold point if ∇σ N 6= 0 at p where σ is a tangent direction to Σ.
(B) collapse point if ∇σ N ≡ 0 locally on Σ.
(C) good singular point of higher order if ∇σ N = 0 at p but not identically zero on Σ.
(D) C1-meeting point of s general folds if the singular set consists of pairwise transverse

intersections of s regular curves.
(2) rank(dN)p = 0: p is called a branch point.

Theorem 6.1. ([30]) Let N : D→ E be a harmonic mapping between Riemannian surfaces.
Then, if p is a singular point for N, one of the following holds:

(1) N is degenerate at p. Then: N must be degenerate on its whole domain and either (1A)
N is a constant mapping (so dN ≡ 0) or (IB) dN is nonzero except at isolated points of
the domain.

(2) p is a good point: it may be (2A) fold point, (2B) collapse point or (2C) good singular
point of higher order.

(3) p is a C1-meeting point of an even number of general folds. The general folds are
arranged at equal angles with respect to a local conformal coordinate system.

(4) p is a branch point.
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We are discussing here only harmonic maps between Euclidean planes so we treat them as
germs of mappings N : (R2,0)→ (R2,0). Thus, N = (Re(g1),Re(g2)) where g1,g2 are germs
of holomorphic functions in z = x+ iy. Such germs are of course special in the set E (2,2) of
map-germs from the plane to the plane.

Let E (2,1) denote the ring of germs of smooth functions (R2,0)→R, M2 its unique maximal
ideal and E (2,2) the E (2,1)-module of smooth map-germs (R2,0)→ R2. Consider the action
of the group A of pairs of germs of smooth diffeomorphisms (h,k) of the source and target on
M2.E (2,2) given by k ◦ g ◦ h−1, for g ∈M2.E (2,2) (see, for example, [3, 20, 28]). A germ g
is said to be finitely A -determined if there exists an integer k such that any map-germ with the
same k-jet as g is A -equivalent to g. Let Ak be the subgroup of A whose elements have the
identity k-jets. The group Ak is a normal subgroup of A . Define A (k) = A /Ak. The elements
of A (k) are the k-jets of the elements of A . The action of A on M2.E (2,2) induces an action
of A (k) on Jk(2,2) as follows. For jk f ∈ Jk(2,2) and jkh ∈A (k), jkh. jk f = jk(h. f ).

The tangent space to the A -orbit of f at the germ f is given by

LA · f = M2.{ fx, fy}+ f ∗(M2).{e1,e2},

where fx and fy are the partial derivatives of f , e1,e2 denote the standard basis vectors of R2

considered as elements of E (2,2), and f ∗(M2) is the pull-back of the maximal ideal in E2. The
extended tangent space to the A -orbit of f at the germ f is given by

LeA · f = E2.{ fx, fy}+ f ∗(E2).{e1,e2}.

We ask which finitely A -determined singularities of map-germs in E (2,2) have a harmonic
map-germ in their A -orbit, that is, which singularities can be represented by a germ of a har-
monic map. We also ask whether an Ae-versal deformation of the singularity can be realized by
families of harmonic maps. (This means that the initial harmonic map-germ can be deformed
within the set of harmonic map-germs and the deformation is Ae-versal.)

The most extensive classification of finitely A -determined singularities of maps germs in
E (2,2) of rank 1 is carried out by Rieger in [23] where he gave the following orbits of A -
codimension ≤ 6 (the parameters α and β are moduli and take values in R with certain excep-
tional values removed, see [23] for details):

(x,y2)
(x,xy+P1(y)), P1 = y3, y4, y5± y7, y5, y6± y8 +αy9, y6 + y9 or y7± y9 +αy10 +βy11

(x,y3± xky), k ≥ 2
(x,xy2 +P2(y)), P2 = y4 + y2k+1(k ≥ 2), y5 + y6, y5± y9, y5 or y6 + y7 +αy9

(x,x2y+P3(x,y)), P3 = y4± y5, y4 or xy3 +αy5 + y6 +βy7

(x,x3y+αx2y2 + y4 + x3y2)

The A -simple map-germs of rank 0 are classified in [24] and are as follows

Il,m
2,2 = (x2 + y2l+1,y2 + x2m+1), l ≥ m≥ 1

Il
2,2 = (x2− y2 + x2l+1,xy), l ≥ 1.

We answer the above two questions for the singularities in Rieger’s list and for the A -simple
rank 0 map-germs.

Proposition 6.2. (i) The fold (x,y2) can be represented by the harmonic map (x,Re(x+ iy)2). It
is Ae-stable.

(ii) Any finitely A -determined map-germ in E (2,2) with a 2-jet A (2)-equivalent to (x,xy)
can be represented by a harmonic map. Furthermore, there is an Ae-versal deformation of such
germs by harmonic maps.
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Proof. (i) is trivial. For (ii), since rank(dN)0 = 1, we can make holomorphic changes of coordi-
nates and set g1 = z. We can also take j1N = (x,0).

Any k-A -determined map-germ with 2-jet (x,xy) is A -equivalent to one in the form (x,xy+
P(y)), where P is a polynomial in y and 3≤ degree(P)≤ k (see [23]).

We have jkN = (x,∑k
j=2 Re(a j(x+ iy) j)), with a j = a j,1 + ia j,2. Changes of coordinates are

carried out inductively on the jet level to reduce jkN to the form (x,xy+P(y)). Monomials
of the form (0,xp) are eliminated by changes of coordinate (u,v) 7→ (u,v+ cup) in the target,
and monomials of the form (0,xpyq), q ≥ 1, are eliminated by changes of coordinate (x,y) 7→
(x,y+ cxpyq−1) in the source (c an appropriate scalar). These inductive changes of coordinates
reduce the k-jet of N to the form (x,xy+∑

k
j=3 c jy j) with c j = Re(a j(i) j)+Q, Q a polynomial

in ai,1,ai,2 with i < j. Clearly, the map Ck−2 → Rk−2 given by (a3, . . . ,ak) 7→ (c3, . . . ,ck) is
surjective and this proves the first part of the proposition.

For the second part, an Ae-versal deformation of g(x,y) = (x,xy+P(y)) can be taken in the
form G(x,y,λ1, . . . ,λl) = (x,xy+P(y)+∑

l
i=1 λiyi), where the λi are the unfolding parameters

and l is the Ae-codimension of the singularity of g. The same argument as above shows that N+
(0,∑k

j=2 Re(b j(x+ iy) j)) is an Ae-versal deformation of N, with b j = b j,1 + ib j,2 the unfolding
parameters. �

Harmonic map-germs with finitely A -determined singularities as in Proposition 6.2 are the
good singular points of higher order in Wood’s terminology. Observe that the collapse point is
a ‘singularity of a map-germ A -equivalent to (x,xy); this is not finitely A -determined.

Proposition 6.3. The only map-germ in the series (x,y3± xky), k ≥ 2, that can be realized by
a harmonic map is the so-called beaks-singularity (x,y3− x2y). In that case, there exists an
Ae-versal deformation of the singularity by a 1-parameter family of harmonic map-germs.

Proof. Two A -equivalent map-germs have diffeomorphic singular sets. The singular set of the
map-germ (x,y3± xky) is given by 3y2± xk. For k > 2, this is either an isolated point, a single
branch singular curve or two tangential smooth curves. All these cases are excluded for harmonic
maps by Wood’s Theorem 6.1. For k = 2, the lips-singularity (x,y3 + x2y) is also excluded by
Wood’s theorem as the singular set is an isolated point. The beaks singularity can be realized by
the harmonic map (x,Re(i(x+ iy)3)) = (x,y3− 3x2y). The family (x,y3− 3x2y+ a1,2y), which
can be written as (x,Re(i(x+ iy)3−a1,2i(x+ iy))), is an Ae-versal deformation and is given by
harmonic map-germs. �

Proposition 6.4. Any finitely A -determined map-germ in E (2,2) with a 3-jet A (3)-equivalent to
(x,xy2) can be represented by a harmonic map. Furthermore, there are Ae-versal deformations
of such germs by harmonic maps.

Proof. Any finitely A -determined map-germ with a 3-jet (x,xy2) is A -equivalent to (x,xy2 +
P(y)) for some polynomial function P (see [23]). The proof then continues in a way similar to
that of Proposition 6.2. �

Proposition 6.5. (i) Map-germs with a 3-jet A (3)-equivalent to (x,x2y) cannot be represented
by a harmonic map.

(ii) The map-germ (x,x3y+αx2y2 + y4 + x3y2) cannot be represented by a harmonic map.

Proof. Such germs have the form (x,x2y+P(x,y)) with j3P≡ 0. Their singular set has equation
x2 +Py(x,y) = 0, so has an Ak-singularity with k ≥ 2. These are excluded for harmonic maps
by Wood’s Theorem 6.1. Similarly, the singular set of the germ in (ii) has an odd number of
branches (one or three) and this is excluded for harmonic maps by Wood’s Theorem 6.1. �
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Propositions 6.2, 6.3, 6.4, 6.5 together give a complete classification of finitely A -determined
singularities of harmonic map-germs with j3N not A -equivalent to (x,0). When j3N is A -
equivalent to (x,0), we have the following.

Proposition 6.6. Suppose that jkN is A (k)-equivalent to (x,0), for k ≥ 5. Then the singularity
of N does not admit an Ae-versal deformation by germs of harmonic maps.

Proof. Consider a finitely A -determined germ h(x,y) = (x,h2(x,y)) with jkh2 ≡ 0. Then, since
jk−1( ∂h2

∂x ) ≡ 0 and jk−1( ∂h2
∂y ) ≡ 0, the space E (2,2)/LeA · h contains the real vector space V

of dimension k(k− 1)/2 generated by (0,xiy j), with 0 ≤ i ≤ k− 1, 1 ≤ j ≤ k− 1 and i+ j ≤
k− 1. The k-jet of a deformation of a harmonic map N ∼A h by harmonic maps is of the
form Ñ = N + (0,∑k

j=1 Re(b j,1 + ib j,2)(x+ iy) j). For Ñ to be an Ae-versal deformation, the
polynomials ∂ Ñ

∂b j,1
and ∂ Ñ

∂b j,2
, 1≤ j≤ k−1 must generate V . For this to be possible, we must have

2(k−1)≥ k(k−1)/2, that is, (k−1)(k−4)≤ 0, which holds if and only if 1≤ k ≤ 4. �

We turn now to the rank zero map-germs.

Proposition 6.7. (i) The singularity Il,m
2,2 cannot be represented by a germ of a harmonic map.

(ii) The singularities Il
2,2 can be represented by a germ of a harmonic map. Furthermore,

there are Ae-versal deformations of these singularities by harmonic maps.

Proof. (i) We have j2N = (a2,1(x2− y2)− 2a2,2xy,b2,1(x2− y2)− 2b2,2xy), so the A -orbits in
the 2-jets space are (x2− y2,xy),(0,xy),(0,0) which proves the claim in (i) as the 2-jet of the
singularity Il,m

2,2 is A -equivalent to (x2,y2).
(ii) A simple calculation shows that the harmonic map N = (x2− y2 +Re(x+ iy)2l+1),xy)

is in the A -orbit of Il
2,2 and admits the following Ae-versal deformation N +(∑l−1

j=1 Re(λi(x+
iy)2i+1),0) by germs of harmonic maps. �

Remark 6.8. (1) Not all rank 0 singularities of harmonic map-germs (i.e., branch points) can be
Ae-versally deformed by harmonic maps. For instance, following the calculation in the proof
of Proposition 6.6(ii), one can show that harmonic maps of the form (xy + h.o.t,Re((ak,1 +

iak,2)(x+ iy)k)+h.o.t) do not admit Ae-versal deformations by harmonic maps if k ≥ 7.
(2) The singular set cannot be an isolated point when rank(dN)p = 1 (Theorem 6.1). But it

can when rank(dN)p = 0 (this is the case, for instance, for the Il
2,2-singularity).
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