1,700 research outputs found

    Stein Estimation for Spherically Symmetric Distributions: Recent Developments

    Full text link
    This paper reviews advances in Stein-type shrinkage estimation for spherically symmetric distributions. Some emphasis is placed on developing intuition as to why shrinkage should work in location problems whether the underlying population is normal or not. Considerable attention is devoted to generalizing the "Stein lemma" which underlies much of the theoretical development of improved minimax estimation for spherically symmetric distributions. A main focus is on distributional robustness results in cases where a residual vector is available to estimate an unknown scale parameter, and, in particular, in finding estimators which are simultaneously generalized Bayes and minimax over large classes of spherically symmetric distributions. Some attention is also given to the problem of estimating a location vector restricted to lie in a polyhedral cone.Comment: Published in at http://dx.doi.org/10.1214/10-STS323 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Minimax Current Density Coil Design

    Full text link
    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements with uniform current, cylindrical elements with sinusoidal current and conic section elements with sinusoidal-uniform current) were used with this approach to illustrate its generality.Comment: 24 pages, 6 figures, 2 tables. To appear in Journal of Physics D: Applied Physic

    Testing the isotropy of high energy cosmic rays using spherical needlets

    Full text link
    For many decades, ultrahigh energy charged particles of unknown origin that can be observed from the ground have been a puzzle for particle physicists and astrophysicists. As an attempt to discriminate among several possible production scenarios, astrophysicists try to test the statistical isotropy of the directions of arrival of these cosmic rays. At the highest energies, they are supposed to point toward their sources with good accuracy. However, the observations are so rare that testing the distribution of such samples of directional data on the sphere is nontrivial. In this paper, we choose a nonparametric framework that makes weak hypotheses on the alternative distributions and allows in turn to detect various and possibly unexpected forms of anisotropy. We explore two particular procedures. Both are derived from fitting the empirical distribution with wavelet expansions of densities. We use the wavelet frame introduced by [SIAM J. Math. Anal. 38 (2006b) 574-594 (electronic)], the so-called needlets. The expansions are truncated at scale indices no larger than some J⋆{J^{\star}}, and the LpL^p distances between those estimates and the null density are computed. One family of tests (called Multiple) is based on the idea of testing the distance from the null for each choice of J=1,…,J⋆J=1,\ldots,{J^{\star}}, whereas the so-called PlugIn approach is based on the single full J⋆{J^{\star}} expansion, but with thresholded wavelet coefficients. We describe the practical implementation of these two procedures and compare them to other methods in the literature. As alternatives to isotropy, we consider both very simple toy models and more realistic nonisotropic models based on Physics-inspired simulations. The Monte Carlo study shows good performance of the Multiple test, even at moderate sample size, for a wide sample of alternative hypotheses and for different choices of the parameter J⋆{J^{\star}}. On the 69 most energetic events published by the Pierre Auger Collaboration, the needlet-based procedures suggest statistical evidence for anisotropy. Using several values for the parameters of the methods, our procedures yield pp-values below 1%, but with uncontrolled multiplicity issues. The flexibility of this method and the possibility to modify it to take into account a large variety of extensions of the problem make it an interesting option for future investigation of the origin of ultrahigh energy cosmic rays.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS619 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Robust designs for series estimation

    Get PDF
    We discuss optimal design problems for a popular method of series estimation in regression problems. Commonly used design criteria are based on the generalized variance of the estimates of the coefficients in a truncated series expansion and do not take possible bias into account. We present a general perspective of constructing robust and e±cient designs for series estimators which is based on the integrated mean squared error criterion. A minimax approach is used to derive designs which are robust with respect to deviations caused by the bias and the possibility of heteroscedasticity. A special case results from the imposition of an unbiasedness constraint; the resulting unbiased designs are particularly simple, and easily implemented. Our results are illustrated by constructing robust designs for series estimation with spherical harmonic descriptors, Zernike polynomials and Chebyshev polynomials. --Chebyshev polynomials,direct estimation,minimax designs,robust designs,series estimation,spherical harmonic descriptors,unbiased design,Zernike polynomials

    On the spherical convexity of quadratic functions

    Get PDF
    In this paper we study the spherical convexity of quadratic functions on spherically convex sets. In particular, conditions characterizing the spherical convexity of quadratic functions on spherical convex sets associated to the positive orthants and Lorentz cones are given

    Matched Filtering of Numerical Relativity Templates of Spinning Binary Black Holes

    Full text link
    Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test-beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole-binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole-spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary spin and inclination for the axial case considered here

    Fast Color Space Transformations Using Minimax Approximations

    Full text link
    Color space transformations are frequently used in image processing, graphics, and visualization applications. In many cases, these transformations are complex nonlinear functions, which prohibits their use in time-critical applications. In this paper, we present a new approach called Minimax Approximations for Color-space Transformations (MACT).We demonstrate MACT on three commonly used color space transformations. Extensive experiments on a large and diverse image set and comparisons with well-known multidimensional lookup table interpolation methods show that MACT achieves an excellent balance among four criteria: ease of implementation, memory usage, accuracy, and computational speed
    • …
    corecore