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1 Introduction

In this paper we study the spherical convexity of quadratic functions on spher-
ical convex sets. This problem arises when one tries to make certain fixed point
theorems, surjectivity theorems, and existence theorems for complementarity
problems and variational inequalities more explicit (see [9–12]). Other results
on this subject can also be found in [14]. In particular, some existence theo-
rems could be reduced to optimizing a quadratic function on the intersection
of the sphere and a cone. Indeed, consider a closed convex cone K ⊆ Rn with
dual K∗. Let F : Rn → Rn be a continuous mapping such that G : Rn → Rn

defined by G(x) = ‖x‖2F (x/‖x‖2) and G(0) = 0 is differentiable at 0. De-
note by DG(0) the Jacobian matrix of G at 0. By [12, Corollary 8.1] and
[22, Theorem18], if min‖u‖=1,u∈K〈DG(0)u, u〉 > 0, then the nonlinear comple-
mentarity problem defined by K 3 x ⊥ F (x) ∈ K∗ has a solution. Thus, we
need to minimize a quadratic form on the intersection between a cone and the
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sphere. These sets are exactly the spherically convex sets; see [6]. Therefore,
this leads to minimizing quadratic functions on spherically convex sets. In
fact the optimization problem above reduces to the problem of calculating the
scalar derivative, introduced by S. Z. Németh in [18–20], along cones; see [22].
Similar minimizations of quadratic functions on spherically convex sets are
needed in the other settings; see [9–11]. Apart from the above, motivation of
this study is much wider. For instance, the quadratic constrained optimization
problem on the sphere

min{〈Qx, x〉 : x ∈ C}, C ⊆ Sn, (1)

for a symmetric matrix Q, is a minimal eigenvalue problem, that is, finding
the spectral norm of the matrix −Q (see, e.g., [27]). The problem (1) also con-
tains the trust region problem that appears in many nonlinear programming
algorithms as a sub-problem, see [3].

It is worth to point out that when a quadratic function is spherically con-
vex (see, for example, [6]), then the spherical local minimum is equal to the
global minimum. Furthermore, convex optimization problems posed on the
sphere, have a specific underlining algebraic structure that could be exploited
to greatly reduce the cost of obtaining the solutions; see [27,28,32,33]. There-
fore, it is natural to consider the problem of determining the spherically con-
vex quadratic functions on spherically convex sets. The goal of the paper is to
present conditions satisfied by quadratic functions which are spherically con-
vex on spherical convex sets. Besides, we present conditions characterizing the
spherical convexity of quadratic functions on spherically convex sets associated
to the Lorentz cones and the positive orthant cone.

The remainder of this paper is organized as follows. In Section 2, we recall
some notations and basic results used throughout the paper. In Section 3 we
present some general properties satisfied by quadratic functions which are
spherically convex. In Section 4 we present a condition characterizing the
spherical convexity of quadratic functions on the spherical convex set defined
by the positive orthant cone. In Section 5 we present a condition characterizing
the spherical convexity of quadratic functions on spherical convex sets defined
by Lorentz cone. We conclude this paper by making some final remarks in
Section 6.

2 Notations and basic results

In this section we present the notations and some auxiliary results used through-
out the paper. Let Rn be the n-dimensional Euclidean space with the canonical
inner product 〈·, ·〉, norm ‖ · ‖. Denote by Rn

+ the nonnegative orthant and by
Rn

++ the positive orthant. The notation x ⊥ y means that 〈x, y〉 = 0. Denote
by ei the i-th canonical unit vector in Rn. The unit sphere is denoted by

S := {x ∈ Rn : ‖x‖ = 1} .
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The dual cone of a cone K ⊂ Rn is the cone K∗:={x ∈ Rn : 〈x, y〉≥0, ∀ y∈K}.
Any pointed closed convex cone with nonempty interior will be called proper
cone. K is called subdual if K ⊂ K∗, superdual if K∗ ⊂ K and self-dual if
K∗ = K. K is called strongly superdual if K∗ ⊂ int(K). The set of all m × n
matrices with real entries is denoted by Rm×n and Rn ≡ Rn×1. In Section 5
we will also use the identification Rn ≡ Rn−1 ×R, which makes the notations
much easier. The matrix In denotes the n× n identity matrix. If x ∈ Rn then
diag(x) will denote an n×n diagonal matrix with (i, i)-th entry equal to xi, for
i = 1, . . . , n. For a ∈ R and B ∈ R(n−1)×(n−1) we denote diag(a,B) ∈ Rn×n

the matrix defined by

diag(a,B) :=

[
a 0
0 B

]
.

Recall that a Z-matrix is a matrix with nonpositive off-diagonal elements. Let
K ⊂ Rn be a pointed closed convex cone with nonempty interior, the K-Z-
property of a matrix A ∈ Rn×n means that 〈Ax, y〉 ≤ 0, for any (x, y) ∈ C(K),
where C(K) := {(x, y) ∈ Rn × Rn : x ∈ K, y ∈ K∗, x ⊥ y}. The matrix
A ∈ Rn×n is said to have the K-Lyapunov-like property if A and −A have the
K-Z-property, and is said to be K-copositive if 〈Ax, x〉 ≥ 0 for all x ∈ K. If
K = Rn

+, then the K-Z-property of a matrix coincides with the matrix being a
Z-matrix and the K-Lyapunov-like property with the matrix being diagonal.

The intersection curve of a plane though the origin of Rn with the sphere
S is called a geodesic. A geodesic segment is said to be minimal if its arc
length is equal to the intrinsic distance between its end points, i.e., if `(γ) :=
arccos〈γ(a), γ(b)〉, where γ : [a, b] → S is a parametrization of the geodesic
segment. Through the paper we will use the same terminology for a geodesic
and its parameterization. The set C ⊆ S is said to be spherically convex if for
any x, y ∈ C all the minimal geodesic segments joining x to y are contained in
C. Let C ⊂ S be a spherically convex set and I ⊂ R an interval. The following
result is proved in [5].

Proposition 1 Let KC := {tp : p ∈ C, t ∈ [0,+∞)} be the cone generated
by the set C ⊂ Sn. The set C is spherically convex if and only if the associated
cone KC is convex and pointed.

A function f : C → R is said to be spherically convex (respectively, strictly
spherically convex) if for any minimal geodesic segment γ : I → C, the
composition f ◦ γ : I → R is convex (respectively, strictly convex) in the
usual sense. The next result is an immediate consequence of [6, Propositions 8
and 9].

Proposition 2 Let K ⊂ Rn be a proper cone, C = int(K) ∩ S and f : C → R
a differentiable function. Then, the following statements are equivalent:

(i) f is spherically convex;
(ii) 〈Df(x)−Df(y), x− y〉+ (〈x, y〉− 1) [〈Df(x), x〉+ 〈Df(y), y〉] ≥ 0, for all

x, y ∈ C;
(iii)

〈
D2f(y)x, x

〉
− 〈Df(y), y〉 ≥ 0, for all y ∈ C, x ∈ S with x ⊥ y.
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It is well known that if Q ∈ Rn×n is an orthogonal matrix, then Q defines a
linear orthogonal mapping, which is an isometry of the sphere. In the following
remark we state some important properties of the isometries of the sphere, for
that, given C ⊂ S and Q ∈ Rn×n, we define

QC := {Qx : x ∈ C}.

Remark 1 Let Q ∈ Rn×n be an orthogonal matrix, i.e., QT = Q−1, C1 and
C2 be spherically convex sets. Then C̃2 := QC2 is a spherically convex set.
Hence, if C̃2 ⊂ C̃1 and f : C̃1 → R is a spherically convex function, then
h := f ◦ Q : C2 → R is also a spherically convex function. In particular, if
C̃2 = C̃1 then, f : C̃1 → R is spherically convex if, only if, h := f ◦Q : C2 → R
is spherically convex.

We will show next a useful property of proper cones which will be used in the
Section 5.

Lemma 1 Let K ⊂ Rn be a proper cone. If x ∈ S and y ∈ K ∩ S such that
x ⊥ y, then x /∈ int(K∗) ∪ − int(K∗).

Proof If x ∈ int(K∗), then 〈x, y〉 > 0 and if x ∈ − int(K∗), then 〈x, y〉 < 0.
Hence, x ∈ S, y ∈ K ∩ S and x ⊥ y imply x /∈ int(K∗) ∪ − int(K∗).

Let C ⊆ D ⊆ Rn and A ∈ Rn×n. For a quadratic function f : C → R defined by
f(x) = 〈Ax, x〉, we will simply use the notation f for the function f̃ : D → R
defined by f̃(x) = 〈Ax, x〉.

3 Quadratic functions on spherical convex sets

In this section we present some general properties satisfied by quadratic func-
tions which are spherically convex.

Proposition 3 Let K ⊂ Rn be a proper cone, C = int(K)∩S and let f : C → R
be defined by f(x) = 〈Ax, x〉, where A ∈ Rn×n. Then, the following statements
are equivalent:

(i) The function f is spherically convex;
(ii) 〈Ax, x〉 − 〈Ay, y〉 ≥ 0, for all x ∈ S and y ∈ K ∩ S with x ⊥ y.

Proof To prove the equivalence of items (i) and (ii), note that C = int(K)∩S is
an open spherically convex set, Df(x) = 2Ax and D2f(x) = 2A, for all x ∈ C.
Then, from item (iii) of Proposition 2 we conclude that 〈Ax, x〉 ≥ 〈Ay, y〉, for
all x ∈ S and y ∈ C with x ⊥ y. Hence, by continuity this inequality extends
for all y ∈ K ∩ S with x ⊥ y.

Proposition 4 Let K ⊂ Rn be a proper cone, C = int(K)∩S and let f : C → R
be defined by f(x) = 〈Ax, x〉, where A = AT ∈ Rn×n. The following statements
are equivalent:
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(i) The function f is spherically convex;
(ii) 2 〈Ax, y〉 ≤ (〈Ax, x〉+ 〈Ay, y〉) 〈x, y〉, for all x, y ∈ K ∩ S.

As a consequence, if K is superdual and f is spherically convex, then A has
the K-Z-property.

Proof First note that, by taking f(x) = 〈Ax, x〉 the inequality in item (ii) of
Proposition 2 becomes 〈Ax−Ay, x− y〉+ (〈x, y〉 − 1) [〈Ax, x〉+ 〈Ay, y〉] ≥ 0,
for all x, y ∈ C. Considering that A = AT , some algebraic manipulations
show that 2 〈Ax, y〉 ≤ (〈Ax, x〉+ 〈Ay, y〉), for all x, y ∈ C, and by continuity
this inequality extends for all x, y ∈ K ∩ S. Terefore, the equivalence of items
(i) and (ii) follows from item (ii) of Proposition 2. For the second part, let
x ∈ K ∩ S and y ∈ K∗ ∩ S ⊂ K ∩ S with x ⊥ y. Since f is spherically convex
and x ⊥ y, the inequality in item (ii) implies 〈Ax, y〉 ≤ 0. Therefore, the result
follows from the definition of K-Z-property.

Proposition 5 Let K ⊂ Rn be a superdual proper cone, C = int(K) ∩ S and
f : C → R be defined by f(x) = 〈Ax, x〉, where A = AT ∈ Rn×n. If f is
spherically convex, then the following statements hold:

(i) If x, y ∈ (K ∪−K) ∩ S are such that x ⊥ y, then 〈Ax, x〉 = 〈Ay, y〉;
(ii) If x ∈ int(K) ∩ S and y ∈ K ∩ S are such that x ⊥ y, then Ax ⊥ y;

(iii) If x ∈ − int(K) ∩ S and y ∈ K ∩ S are such that x ⊥ y, then Ax ⊥ y.

Proof For proving item (i), we use the equivalence of items (i) and (ii) of
Proposition 3 to obtain that 〈Ax, x〉 ≥ 〈Ay, y〉 and 〈Ay, y〉 ≥ 〈Ax, x〉, for all
x, y ∈ (K ∪ −K) ∩ S, and the results follows. To prove item (ii), given x ∈
int(K)∩S and y ∈ K∩S such that x ⊥ y, define u = (1/(m2 +1))(mx−y) and
v = (1/(m2 + 1))(x+my), where m is a positive integer. Since x ∈ int(K)∩S,
if m is large enough, then (1/m)u ∈ K and therefore u ∈ K too. It is easy to
check that u, v ∈ K ∩ S such that u ⊥ v. By using item (i) twice, we conclude
that 〈mAx−Ay,mx− y〉 = 〈Ax+mAy, x+my〉, which after some algebraic
transformations, bearing in mind that A = AT , implies Ax ⊥ y. We can prove
item (iii) in a similar fashion.

Corollary 1 Let K ⊂ Rn be a strongly superdual proper cone, C = int(K)∩ S
and let f : C → R be defined by f(x) = 〈Ax, x〉, where A = AT ∈ Rn×n. If f
is spherically convex, then A is K-Lyapunov-like.

Proof Let x ∈ K ∩ S and y ∈ K∗ ∩ S ⊂ int(K) ∩ S with x ⊥ y. Then, item (ii)
of Proposition 5 implies Ax ⊥ y and the result follows from the definition of
the K-Lyapunov-like property.

Proposition 6 Let K ⊂ Rn be a superdual proper cone, C = int(K) ∩ S and
f : C → R be defined by f(x) = 〈Ax, x〉, where A = AT ∈ Rn×n. If A is
K-copositive and f is spherically convex, then A is positive semidefinite.

Proof Since A is K-copositive we have 〈Ax, x〉 ≥ 0 for all x ∈ (K∗∪−K∗)∩S ⊂
(K ∪ −K) ∩ S. Assume that x ∈ S \ (K∗ ∪ −K∗). We claim that, there exists
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y ∈ K∩S such that y ⊥ x. We proceed to prove the claim. Suppose that there
is no such y. Then, we must have that either 〈u, x〉 < 0 for all u ∈ K \ {0}, or
〈u, x〉 > 0 for all u ∈ K \ {0}. If there exist u ∈ K \ {0} with 〈u, x〉 < 0 and a
v ∈ K\{0} with 〈v, x〉 ≥ 0, then ψ(0) < 0 and ψ(1) ≥ 0, where the continuous
function ψ : R→ R is defined by ψ(t) = 〈(1− t)u+ tv, x〉. Hence, there is an
s ∈ [0, 1] such that ψ(s) = 0. By the convexity of K\{0} (K\{0} is spherically
convex because K is pointed), we conclude that (1 − s)u + sv ∈ K \ {0}. Let
w = (1 − s)u + sv and y = w/‖w‖. Clearly, y ∈ K ∩ S and y ⊥ x, which
contradicts our assumptions. If 〈u, x〉 < 0 for all u ∈ K \ {0}, then x ∈ −K∗,
which is a contradiction. If 〈u, x〉 > 0 for all u ∈ K \ {0}, then x ∈ K∗, which
is also a contradiction. Thus, the claim holds. Since f is convex, Proposition
3 implies that 〈Ax, x〉 ≥ 〈Ay, y〉. Since A is K-copositive, we have 〈Ay, y〉 ≥ 0
and hence 〈Ax, x〉 ≥ 0. Thus, 〈Ax, x〉 ≥ 0 for all x ∈ S. In conclusion, A is
positive semidefinite.

By using arguments similar to the ones used in the proof of Proposition 6 we
can also prove the following result.

Proposition 7 Let K ⊂ Rn be a subdual proper cone, C = int(K) ∩ S and
f : C → R be defined by f(x) = 〈Ax, x〉, where A = AT ∈ Rn×n. If A is
K∗-copositive and f is spherically convex, then A is positive semidefinite.

4 Quadratic functions on spherical positive orthant

In this section we present a condition characterizing the spherical convexity
of quadratic functions on the spherical convex set associated to the positive
orthant cone.

Theorem 1 Let C = S ∩ Rn
++ and f : C → R be defined by f(x) = 〈Ax, x〉,

where A = AT ∈ Rn×n. Then, f is spherically convex if and only if there exists
λ ∈ R such that A = λIn. In this case, f is a constant function.

Proof Assume that there exists λ ∈ R such that A = λIn. In this case,
f(x) = λ, for all x ∈ C. Since any constant function is spherically convex
this implication is proved. For the converse statement, we suppose that f is
spherically convex. From the equivalence of items (i) and (ii) of Proposition 3
we have

〈Ax, x〉 ≥ 〈Ay, y〉, (2)

for any y ∈ Rn
+ and any x ⊥ y with x, y ∈ S. First take x = ei and y = ej .

Then, (2) implies that ajj ≥ aii. Hence, by swapping i and j, we conclude that
aii = λ for any i, where λ ∈ R is a constant. Next take y = (1/

√
2)(ei+ej) and

x = (1/
√

2)(ei − ej). This leads to aij ≤ 0, for any i, j. Hence, A = B + λIn,
where B is a Z-matrix with zero diagonal. It is easy to see that inequality (2)
is equivalent to

〈Bx, x〉 ≥ 〈By, y〉, (3)
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for any y ∈ Rn
+ and any x ⊥ y with x, y ∈ S. Let i, j be arbitrary but different

and k different from both i and j. Let y = ek and x = (1/
√

2)(ei + ej). Then,
(3) implies that aij = bij ≥ 0. Together with aij ≤ 0 this gives aij = bij = 0.
Hence A = λIn and therefore f(x) = λ, for any x ∈ C, and the proof is
concluded.

5 Quadratic functions on Lorentz spherical convex sets

In this section we present a condition characterizing the spherical convexity of
quadratic functions on spherical convex sets associated to the Lorentz cones.
We begin with the following definition: Let L ⊂ Rn be the Lorentz cone defined
by

L :=

{
x ∈ Rn : x1 ≥

√
x22 + · · ·+ x2n

}
. (4)

Lemma 2 Let L be the Lorentz cone, x := (x1, x̃) and y := (y1, ỹ) in S. Then
the following statements hold:

(i) y ∈ −L ∪ L if and only if y21 ≥ 1/2. Moreover, y21 ≥ 1/2 if and only if
‖ỹ‖2 ≤ 1/2;

(ii) y ∈ − int(L) ∪ int(L) if and only if y21 > 1/2. Moreover, y21 > 1/2 if and
only if ‖ỹ‖2 < 1/2;

(iii) x /∈ − int(L) ∪ int(L) if and only if x21 ≤ 1/2. Moreover, x21 ≤ 1/2 if, and
only if, ‖x̃‖2 ≥ 1/2;

(iv) If y ∈ −L ∪ L and x ⊥ y then x /∈ − int(L) ∩ int(L). Moreover, x /∈
− int(L) ∩ int(L) if, and only if x21 ≤ 1/2. Furthermore, x21 ≤ 1/2 if and
only if ‖x̃‖2 ≥ 1/2.

Proof Items (i)-(iii) follow easily from the definitions of S and L. Item (iv)
follows from Lemma 1 and item (iii).

Remark 2 Let Q̃ ∈ R(n−1)×(n−1) be orthogonal. Then, Q = diag(1, Q̃) is also
ortogonal and QL = L. Hence, from Remark 1 we conclude that f : L∩S→ R
is spherically convex if, and only if, g := f ◦ Q = L ∩ S → R is spherically
convex.

Theorem 2 Let C = int(L) ∩ S and f : C → R be defined by f(x) = 〈Ax, x〉,
where A = AT ∈ Rn×n. Then f is spherically convex if and only if there exist
a, λ ∈ R with λ ≥ a such that A = diag(a, λIn−1).

Proof Assume that f is spherically convex. Let x, y ∈ L ∩ S with x ⊥ y be
defined by

x =
1√
2
e1 +

1√
2
ei, y =

1√
2
e1 − 1√

2
ei, i ∈ {2, . . . , n}.

Hence the item (i) of Proposition 5 implies that 〈Ax, x〉 = 〈Ay, y〉. Hence, after
computing these inner products, we obtain

1

2
(a11 + a1i) +

1

2
(ai1 + aii) =

1

2
(a11 − a1i)−

1

2
(ai1 − aii), i ∈ {2, . . . , n}.
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Since A is a symmetric matrix, the last equality implies that a1i = 0, for
all i ∈ {2, . . . , n}. Thus, by letting a = a11, we have A = diag(a, Ã) with
Ã ∈ R(n−1)×(n−1) a symmetric matrix. Let Q̃ ∈ R(n−1)×(n−1) be an or-
thogonal matrix such that Q̃T ÃQ̃ = Λ, where Λ = diag(λ2, . . . , λn) and λi
is an eigenvalue of Ã, for all i ∈ {2, . . . , n}. Thus, Remark 2 implies that
f : L ∩ S→ R is spherically convex if, and only if, g(x) = 〈diag(a11, Λ)x, x〉 is
spherically convex. On the other hand, using Proposition 3 we conclude that
g(x) = 〈diag(a11, Λ)x, x〉 is spherically convex if and only if

h(x) = 〈[diag(a11, Λ)− a11In]x, x〉 = 〈[Λ− a11In−1]x̃, x̃〉,

where x := (x1, x̃) ∈ R × Rn−1, is spherically convex. Since h is spherically
convex, from Proposition 3 we have

h(x)− h(y) = 〈[Λ− a11In−1]x̃, x̃〉 − 〈[Λ− a11In−1]ỹ, ỹ〉 ≥ 0, (5)

for all points x = (x1, x̃) ∈ S, y = (y1, ỹ) ∈ L ∩ S with x ⊥ y. If we assume
that λ2 = . . . = λn, we have Λ = λIn−1 and then A = diag(a, λIn−1), where
a := a11 and λ := λ2 = · · · = λn. Thus (5) becomes [λ−a11][‖x̃‖2−‖ỹ‖2] ≥ 0.
Bearing in mind that L = L∗, Lemma 2 implies ‖x̃‖2 − ‖ỹ‖2 ≥ 0, and then
we have from the previous two inequalities that a = a11 ≤ λ. Therefore, for
concluding the proof of this implication it remains to prove that a11 ≤ λ2 =
. . . = λn. Without loss of generality we can assume that n ≥ 3. Let x ∈ S and
y ∈ L ∩ S with x ⊥ y be defined by

x = −
(

1√
2

cos θ

)
e1 +

(
1

2
cos θ − 1√

2
sin θ

)
ei +

(
1

2
cos θ +

1√
2

sin θ

)
ej ,

(6)

y =
1√
2
e1 +

1

2
ei +

1

2
ej , (7)

where θ ∈ (0, π). From (6) and (7), it is straightforward to check that x ∈ S,
y ∈ L ∩ S and x ⊥ y. Hence, (5) becomes(

1

4
sin2 θ − 1√

2
cos θ sin θ

)
λi +

(
1

4
sin2 θ +

1√
2

cos θ sin θ

)
λj ≥ 0,

or, after dividing by sin θ 6= 0, that(
1

4
sin θ − 1√

2
cos θ

)
λi +

(
1

4
sin θ +

1√
2

cos θ

)
λj ≥ 0.

Letting θ goes to 0 in the inequality above, we obtain λj ≥ λi. Hence, by
swapping i and j in (6) and (7) we can also prove that λi ≥ λj , and then
λi = λj , for all i, j 6= 1. Therefore, λ2 = . . . = λn which concludes the
implication. Conversely, assume that A = diag(a, λIn−1) and λ ≥ a. Then
f(x) = 〈[diag(a, λIn−1]x, x〉 and Proposition 3 implies that f is spherically
convex if, and only if,

h(x) = 〈[diag(a, λIn−1)− aIn]x, x〉 = 〈[λ− a]In−1x̃, x̃〉,
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where x := (x1, x̃) ∈ R × Rn−1, is spherically convex. Take x = (x1, x̃) ∈ S
and y = (y1, ỹ) ∈ L ∩ S with x ⊥ y. Thus, from Lemma 1 and (4) we have
‖x̃‖2 ≥ ‖ỹ‖2. Hence considering that a ≤ λ we conclude that

〈[λ− a]In−1x̃, x̃〉 − 〈[λ− a]In−1ỹ, ỹ〉 = [λ− a][‖x̃‖2 − ‖ỹ‖2] ≥ 0.

Therefore, Proposition 3 implies that h is spherically convex and then f is also
spherically convex.

Remark 3 Assume that f in Theorem 2 is spherically convex in L ∩ S. Hence
there exist a, λ ∈ R with λ ≥ a such that A = diag(a, λIn−1) and then
f(x) = ax21 + λ‖x̃‖2 = λ− (λ− a)x21, where x := (x1, x̃) ∈ L ∩ S. Hence, it is
clear that the minimum of f on L ∩ S is obtained when x1 is maximal, that
is, when x1 = 1, which happens exactly when x = e1. Similarly, the maximum
of f on L ∩ S is obtained when x1 is minimal, that is, when x1 = 1/

√
2 (see

item (i) of Lemma 2), which happens exactly when ‖x̃‖ = x1 = 1/
√

2. Hence,
argmin{f(x) : x ∈ L ∩ S} = e1, min{f(x) : x ∈ L ∩ S} = a, argmax{f(x) :

x ∈ L ∩ S} =
{

1√
2
(1, x̃) ∈ R× Rn−1 : ‖x̃‖ = 1

}
and max{f(x) : x ∈ L ∩ S} =

(a+ λ)/2.

Remark 4 If λ > a then Theorem 2 implies that f(x) = 〈diag(a, λIn−1)x, x〉
is spherically convex. However, in this case diag(a, λ, . . . , λ) does not have the
L-Lyapunov-like property. Hence, Corollary 1 is not true if we only require
that the cone is superdual proper. Indeed, the Lorentz cone L is self-dual
proper, i.e., L∗ = L and consequently is superdual proper. Moreover, letting
x, y ∈ L ∩ S with x ⊥ y be defined by

x =
1√
2
e1 +

1√
2
ei, y =

1√
2
e1 − 1√

2
ei, i ∈ {2, . . . , n},

we have 〈diag(a, λIn−1)x, y〉 = (a − λ)/2 < 0. Therefore, diag(a, λIn−1) does
not have the L-Lyapunov-like property, and the strong superduality of the
cone is necessary in Corollary 1.

6 Final remarks

This paper is a continuation of [5,6], where we studied some basic intrinsic
properties of spherically convex functions on spherically convex sets of the
sphere. We expect that the results of this paper can aid in the understanding
of the behaviour of spherically convex functions on spherically convex sets of
the sphere. In the future we will also study spherically quasiconvex functions
[21] (see also [15] for the definition of quasiconvex functions) on spherically
convex sets of the sphere.
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