1,068 research outputs found

    Advanced Fault-Tolerant Control of Induction-Motor Drives for EV/HEV Traction Applications: From Conventional to Modern and Intelligent Control Techniques

    No full text
    International audienceThis paper describes active fault-tolerant control systems for a high-performance induction-motor drive that propels an electrical vehicle (EV) or a hybrid one (HEV). The proposed systems adaptively reorganize themselves in the event of sensor loss or sensor recovery to sustain the best control performance, given the complement of remaining sensors. Moreover, the developed systems take into account the controller-transition smoothness, in terms of speed and torque transients. The two proposed fault-tolerant control strategies have been simulated on a 4-kW induction-motor drive, and speed and torque responses have been carried to evaluate the consistency and the performance of the proposed approaches. Simulation results, in terms of speed and torque responses, show the global effectiveness of the proposed approaches, particularly the one based on modern and intelligent control techniques in terms of speed and torque smoothness

    Research on Fault Analysis and Fault-Tolerant Control of EV/HEV Powertrain

    No full text
    International audienceThis paper presents research works in the topics of fault analysis and fault tolerant control of an electric vehicle powered by an inverter-fed induction motor drive and the usual sensors. The considered failures are mainly measurement error due to faulty sensors and power inverter malfunctions. When sensor failure occurs, both software and hardware redundancies have been investigated. Software redundancy has been evaluated in case of speed sensor failure. Hardware redundancy has been used in the case of power inverter failures with a fault-tolerant 4-leg topology. This topology exploits the induction motor neutral accessibility for fault-tolerant purposes. The proposed fault-tolerant approach brings a significant improvement compared to the phase-leg topology. This paper also presents the experimental validation of an efficient reconfiguration mechanism (transition strategy) at sensor fault occurrence

    A Fault-Tolerant Control Architecture for Induction Motor Drives in Automotive Applications

    No full text
    International audienceThis paper describes a fault-tolerant control system for a high-performance induction motor drive that propels an electrical vehicle (EV) or hybrid electric vehicle (HEV). In the proposed control scheme, the developed system takes into account the controller transition smoothness in the event of sensor failure. Moreover, due to the EV or HEV requirements for sensorless operations, a practical sensorless control scheme is developed and used within the proposed fault-tolerant control system. This requires the presence of an adaptive flux observer. The speed estimator is based on the approximation of the magnetic characteristic slope of the induction motor to the mutual inductance value. Simulation results, in terms of speed and torque responses, show the effectiveness of the proposed approach

    A Control Reconfiguration Strategy for Post-Sensor FTC in Induction Motor-Based EVs

    No full text
    International audienceThis paper deals with experimental validation of a reconfiguration strategy for sensor fault-tolerant control (FTC) in induction-motor-based electric vehicles (EVs). The proposed active FTC system is illustrated using two control techniques: indirect field-oriented control (IFOC) in the case of healthy sensors and speed control with slip regulation (SCSR) in the case of failed current sensors. The main objective behind the reconfiguration strategy is to achieve a short and smooth transition when switching from a controller using a healthy sensor to another sensorless controller in the case of a sensor failure. The proposed FTC approach performances are experimentally evaluated on a 7.5-kW induction motor drive

    A Fuzzy-Based Strategy to Improve Control Reconfiguration Performance of a Sensor Fault-Tolerant Induction Motor Propulsion

    No full text
    International audienceThis short paper deals with the transition performance improvement of a sensor fault-tolerant controller devoted to automotive applications. Indeed, improvements are brought over a previously developed technique that exhibit abrupt changes in the torque if a sensor fault is detected and after a transition from a control technique to another one [1]. The Fault-Tolerant Control (FTC) system firstly concerns the sliding mode control technique since better performances are obtained with an encoder to get the speed information. In the event of unavailability of the speed sensor, a sensorless fuzzy control technique is applied. In the proposed active fault-tolerant control approach a short and a smooth transition are achieved from the encoder-based control technique to the sensorless one using an appropriate fuzzy logic decision approach

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    A Self-Reconfigurable and Fault-Tolerant Induction Motor Control Architecture for Hybrid Electric Vehicles

    No full text
    International audienceThis paper describes an adaptive control system for an induction motor drive that propels a Hybrid Electrical Vehicle (HEV). It has been designed to comply with the major requirements of HEVs electric propulsion. The fault tolerant controller is based on a Field Oriented Control with 4 IP regulators, a speed sensor and two observers (Extended Kalman Filter (EKF) and an Adaptive Observer (AO)) to guarantee the best dynamic performances required by the application and also to improve the reliability in the event of sensor loss or sensor recovery. The tuning of the observers is based on extensive simulations, experimental results and optimization procedure within an open-loop type approach. The fault tolerant controller reorganization is based on a control decision block implemented with a Maximum Likelihood voting algorithm. The results of the control system show the effectiveness of the approach. Indeed experimental results of the EKF used in closed loop confirm the validity of the sensorless controller and the fault tolerant controller simulation results in the event of speed sensor loss and recovery are very promising even in case of stator resistance variation

    Open-phase fault operation on multiphase induction 3 motor drives

    Get PDF
    Hugo Guzman, Ignacio Gonzalez, Federico Barrero and Mario Durán (2015). Open-Phase Fault Operation on Multiphase Induction Motor Drives, Induction Motors - Applications, Control and Fault Diagnostics, Dr. Raul Gregor (Ed.), ISBN: 978-953-51-2207-4, InTech, DOI: 10.5772/60810. Available from: http://www.intechopen.com/books/induction-motors-applications-control-and-fault-diagnostics/open-phase-fault-operation-on-multiphase-induction-motor-drivesMultiphase machines have been recognized in the last few years like an attractive alternative to conventional three-phase ones. This is due to their usefulness in a niche of applications where the reduction in the total power per phase and, mainly, the high overall system reliability and the ability of using the multiphase machine in faulty conditions are required. Electric vehicle and railway traction, all-electric ships, more-electric aircraft or wind power generation systems are examples of up-to-date real applications using multiphase machines, most of them taking advantage of the ability of continuing the operation in faulty conditions. Between the available multiphase machines, symmetrical five-phase induction machines are probably one of the most frequently considered multiphase machines in recent research. However, other multiphase machines have also been used in the last few years due to the development of more powerful microprocessors. This chapter analyzes the behavior of generic n-phase machines (beingn any odd number higher than 3) in faulty operation (considering the most common faulty operation, i.e. the open phase fault). The obtained results will be then particularized to the 5-phase case, where some simulation and experimental results will be presented to show the behavior of the entire system in healthy and faulty conditions. The chapter will be organized as follows: First, the different faults in a multiphase machine are analyzed. Fault conditions are de tailed and explained, and the interest of a multiphase machine in the management of faults is stated. The effect of the open-phase fault operation in the machine model is then studied. A generic n-phase machine is considered, being n any odd number greater than three. The analysis is afterwards particularized to the 5-phase machine, where the open phase fault condition is managed using different control methods and the obtained results are compared. Finally, the conclusions are presented in the last section of the chapter

    Sensorless Control of IM Based on Stator-Voltage MRAS for Limp-Home EV Applications

    Get PDF

    Virtual-Sensor-Based Maximum-Likelihood Voting Approach for Fault-Tolerant Control of Electric Vehicle Powertrains

    No full text
    International audienceThis paper describes a sensor fault-tolerant control (FTC) for electric-vehicle (EV) powertrains. The proposed strategy deals with speed sensor failure detection and isolation within a reconfigurable induction-motor direct torque control (DTC) scheme. To increase the vehicle powertrain reliability regarding speed sensor failures, a maximum-likelihood voting (MLV) algorithm is adopted. It uses two virtual sensors [extended Kalman filter (EKF) and a Luenberger observer (LO)] and a speed sensor. Experiments on an induction-motor drive and simulations on an EV are carried out using a European urban and extraurban driving cycle to show that the proposed sensor FTC approach is effective and provides a simple configuration with high performance in terms of speed and torque responses
    corecore