6,905 research outputs found

    Speaker Recognition Based on Mutated Monarch Butterfly Optimization Configured Artificial Neural Network

    Get PDF
    Speaker recognition is the process of extracting speaker-specific details from voice waves to validate the features asserted by system users; in other words, it allows voice-controlled access to a range of services. The research initiates with extraction features from voice signals and employing those features in Artificial Neural Network (ANN) for speaker recognition. Increasing the number of hidden layers and their associated neurons reduces the training error and increases the computational process\u27s complexity. It is essential to have an optimal number of hidden layers and their corresponding, but attaining those optimal configurations through a manual or trial and the process takes time and makes the process more complex. This urges incorporating optimization approaches for finding optimal hidden layers and their corresponding neurons. The technique involve in configuring the ANN is Mutated Monarch Butterfly Optimization (MMBO). The proposed MMBO employed for configuring the ANN achieves the sensitivity of 97.5% in a real- time database that is superior to contest techniques

    Gender detection in children’s speech utterances for human-robot interaction

    Get PDF
    The human voice speech essentially includes paralinguistic information used in many real-time applications. Detecting the children’s gender is considered a challenging task compared to the adult’s gender. In this study, a system for human-robot interaction (HRI) is proposed to detect the gender in children’s speech utterances without depending on the text. The robot's perception includes three phases: Feature’s extraction phase where four formants are measured at each glottal pulse and then a median is calculated across these measurements. After that, three types of features are measured which are formant average (AF), formant dispersion (DF), and formant position (PF). Feature’s standardization phase where the measured feature dimensions are standardized using the z-score method. The semantic understanding phase is where the children’s gender is detected accurately using the logistic regression classifier. At the same time, the action of the robot is specified via a speech response using the text to speech (TTS) technique. Experiments are conducted on the Carnegie Mellon University (CMU) Kids dataset to measure the suggested system’s performance. In the suggested system, the overall accuracy is 98%. The results show a relatively clear improvement in terms of accuracy of up to 13% compared to related works that utilized the CMU Kids dataset

    USING DEEP LEARNING-BASED FRAMEWORK FOR CHILD SPEECH EMOTION RECOGNITION

    Get PDF
    Biological languages of the body through which human emotion can be detected abound including heart rate, facial expressions, movement of the eyelids and dilation of the eyes, body postures, skin conductance, and even the speech we make. Speech emotion recognition research started some three decades ago, and the popular Interspeech Emotion Challenge has helped to propagate this research area. However, most speech recognition research is focused on adults and there is very little research on child speech. This dissertation is a description of the development and evaluation of a child speech emotion recognition framework. The higher-level components of the framework are designed to sort and separate speech based on the speaker’s age, ensuring that focus is only on speeches made by children. The framework uses Baddeley’s Theory of Working Memory to model a Working Memory Recurrent Network that can process and recognize emotions from speech. Baddeley’s Theory of Working Memory offers one of the best explanations on how the human brain holds and manipulates temporary information which is very crucial in the development of neural networks that learns effectively. Experiments were designed and performed to provide answers to the research questions, evaluate the proposed framework, and benchmark the performance of the framework with other methods. Satisfactory results were obtained from the experiments and in many cases, our framework was able to outperform other popular approaches. This study has implications for various applications of child speech emotion recognition such as child abuse detection and child learning robots

    More is more in language learning:reconsidering the less-is-more hypothesis

    Get PDF
    The Less-is-More hypothesis was proposed to explain age-of-acquisition effects in first language (L1) acquisition and second language (L2) attainment. We scrutinize different renditions of the hypothesis by examining how learning outcomes are affected by (1) limited cognitive capacity, (2) reduced interference resulting from less prior knowledge, and (3) simplified language input. While there is little-to-no evidence of benefits of limited cognitive capacity, there is ample support for a More-is-More account linking enhanced capacity with better L1- and L2-learning outcomes, and reduced capacity with childhood language disorders. Instead, reduced prior knowledge (relative to adults) may afford children with greater flexibility in inductive inference; this contradicts the idea that children benefit from a more constrained hypothesis space. Finally, studies of childdirected speech (CDS) confirm benefits from less complex input at early stages, but also emphasize how greater lexical and syntactic complexity of the input confers benefits in L1-attainment

    Human neuromaturation, juvenile extreme energy liability, and adult cognition/cooperation

    Get PDF
    Human childhood and adolescence is the period in which adult cognitive competences (including those that create the unique cooperativeness of humans) are acquired. It is also a period when neural development puts a juvenile’s survival at risk due to the high vulnerability of their brain to energy shortage. The brain of a 4 year-old human uses ≈50% of its total energy expenditure (TEE) (cf. adult ≈12%). This brain expensiveness is due to (1) the brain making up ≈6% of a 4 year-old body compared to 2% in an adult, and (2) increased energy metabolism that is ≈100% greater in the gray matter of a child than in an adult (a result of the extra costs of synaptic neuromaturation). The high absolute number of neurons in the human brain requires as part of learning a prolonged neurodevelopment. This refines inter- and intraarea neural networks so they become structured with economical “small world” connectivity attributes (such as hub organization and high cross-brain differentiation/integration). Once acquired, this connectivity enables highly complex adult cognitive capacities. Humans evolved as hunter-gatherers. Contemporary hunter-gatherers (and it is also likely Middle Paleolithic ones) pool high energy foods in an egalitarian manner that reliably supported mothers and juveniles with high energy intake. This type of sharing unique to humans protects against energy shortage happening to the immature brain. This cooperation that protects neuromaturation arises from adults having the capacity to communicate and evaluate social reputation, cognitive skills that exist as a result of extended neuromaturation. Human biology is therefore characterized by a presently overlooked bioenergetic-cognition loop (called here the “HEBE ring”) by which extended neuromaturation creates the cooperative abilities in adults that support juveniles through the potentially vulnerable period of the neurodevelopment needed to become such adults

    The beauty of diversity in cognitive neuroscience: The case of sex-related effects in language production networks

    Get PDF
    Over the past few decades, several studies have focused on potential sex-related differences in the trajectories of language development and functioning. From a behavioral point of view, the available literature shows controversial results: differences between males and females in language production tasks may not always be detectable and, even when they are, are potentially biased by sociological and educational confounding factors. The problem regarding potential sex-related differences in language production has also been investigated at the neural level, again with controversial results. The current minireview focuses on studies assessing sex-related differences in the neural networks of language production. After providing a theoretical framework of language production, it is shown that the few available investigations have provided mixed results. The major reasons for discrepant findings are discussed with theoretical and methodological implications for future studies

    Different effects of adding white noise on cognitive performance of sub-, normal and super-attentive school children

    Get PDF
    Objectives: Noise often has detrimental effects on performance. However, because of the phenomenon of stochastic resonance (SR), auditory white noise (WN) can alter the "signal to noise'' ratio and improve performance. The Moderate Brain Arousal (MBA) model postulates different levels of internal "neural noise'' in individuals with different attentional capacities. This in turn determines the particular WN level most beneficial in each individual case-with one level of WN facilitating poor attenders but hindering super-attentive children. The objective of the present study is to find out if added WN affects cognitive performance differently in children that differ in attention ability. Methods: Participants were teacher-rated super-(N = 25); normal-(N = 29) and sub-attentive (N = 36) children (aged 8 to 10 years). Two non-executive function (EF) tasks (a verbal episodic recall task and a delayed verbal recognition task) and two EF tasks (a visuo-spatial working memory test and a Go-NoGo task) were performed under three WN levels. The non-WN condition was only used to control for potential differences in background noise in the group testing situations. Results: There were different effects of WN on performance in the three groups-adding moderate WN worsened the performance of super-attentive children for both task types and improved EF performance in sub-attentive children. The normal-attentive children's performance was unaffected by WN exposure. The shift from moderate to high levels of WN had little further effect on performance in any group. Significance: The predicted differential effect of WN on performance was confirmed. However, the failure to find evidence for an inverted U function challenges current theories. Alternative explanations are discussed. We propose that WN therapy should be further investigated as a possible non-pharmacological treatment for inattention

    Shared Neuroanatomical Substrates of Impaired Phonological Working Memory Across Reading Disability and Autism

    Get PDF
    Background Individuals with reading disability and individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading and social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. Methods White-matter structural connectivity via diffusion weighted imaging was examined in 64 children, age 5 to 17 years, with reading disability, ASD, or typical development, who were matched on age, gender, intelligence, and diffusion data quality. Results Children with reading disability and children with ASD exhibited reduced PWM compared with children with typical development. The two diagnostic groups showed altered white matter microstructure in the temporoparietal portion of the left arcuate fasciculus and in the occipitotemporal portion of the right inferior longitudinal fasciculus (ILF), as indexed by reduced fractional anisotropy and increased radial diffusivity. Moreover, the structural integrity of the right ILF was positively correlated with PWM ability in the two diagnostic groups but not in the typically developing group. Conclusions These findings suggest that impaired PWM is transdiagnostically associated with shared neuroanatomical abnormalities in ASD and reading disability. Microstructural characteristics in left arcuate fasciculus and right ILF may play important roles in the development of PWM. The right ILF may support a compensatory mechanism for children with impaired PWM
    • …
    corecore