150 research outputs found

    Acoustic data-driven lexicon learning based on a greedy pronunciation selection framework

    Full text link
    Speech recognition systems for irregularly-spelled languages like English normally require hand-written pronunciations. In this paper, we describe a system for automatically obtaining pronunciations of words for which pronunciations are not available, but for which transcribed data exists. Our method integrates information from the letter sequence and from the acoustic evidence. The novel aspect of the problem that we address is the problem of how to prune entries from such a lexicon (since, empirically, lexicons with too many entries do not tend to be good for ASR performance). Experiments on various ASR tasks show that, with the proposed framework, starting with an initial lexicon of several thousand words, we are able to learn a lexicon which performs close to a full expert lexicon in terms of WER performance on test data, and is better than lexicons built using G2P alone or with a pruning criterion based on pronunciation probability

    On the Choice of Modeling Unit for Sequence-to-Sequence Speech Recognition

    Full text link
    In conventional speech recognition, phoneme-based models outperform grapheme-based models for non-phonetic languages such as English. The performance gap between the two typically reduces as the amount of training data is increased. In this work, we examine the impact of the choice of modeling unit for attention-based encoder-decoder models. We conduct experiments on the LibriSpeech 100hr, 460hr, and 960hr tasks, using various target units (phoneme, grapheme, and word-piece); across all tasks, we find that grapheme or word-piece models consistently outperform phoneme-based models, even though they are evaluated without a lexicon or an external language model. We also investigate model complementarity: we find that we can improve WERs by up to 9% relative by rescoring N-best lists generated from a strong word-piece based baseline with either the phoneme or the grapheme model. Rescoring an N-best list generated by the phonemic system, however, provides limited improvements. Further analysis shows that the word-piece-based models produce more diverse N-best hypotheses, and thus lower oracle WERs, than phonemic models.Comment: To appear in the proceedings of INTERSPEECH 201

    A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments

    Full text link
    Most speech and language technologies are trained with massive amounts of speech and text information. However, most of the world languages do not have such resources or stable orthography. Systems constructed under these almost zero resource conditions are not only promising for speech technology but also for computational language documentation. The goal of computational language documentation is to help field linguists to (semi-)automatically analyze and annotate audio recordings of endangered and unwritten languages. Example tasks are automatic phoneme discovery or lexicon discovery from the speech signal. This paper presents a speech corpus collected during a realistic language documentation process. It is made up of 5k speech utterances in Mboshi (Bantu C25) aligned to French text translations. Speech transcriptions are also made available: they correspond to a non-standard graphemic form close to the language phonology. We present how the data was collected, cleaned and processed and we illustrate its use through a zero-resource task: spoken term discovery. The dataset is made available to the community for reproducible computational language documentation experiments and their evaluation.Comment: accepted to LREC 201

    Strategies for Handling Out-of-Vocabulary Words in Automatic Speech Recognition

    Get PDF
    Nowadays, most ASR (automatic speech recognition) systems deployed in industry are closed-vocabulary systems, meaning we have a limited vocabulary of words the system can recognize, and where pronunciations are provided to the system. Words out of this vocabulary are called out-of-vocabulary (OOV) words, for which either pronunciations or both spellings and pronunciations are not known to the system. The basic motivations of developing strategies to handle OOV words are: First, in the training phase, missing or wrong pronunciations of words in training data results in poor acoustic models. Second, in the test phase, words out of the vocabulary cannot be recognized at all, and mis-recognition of OOV words may affect recognition performance of its in-vocabulary neighbors as well. Therefore, this dissertation is dedicated to exploring strategies of handling OOV words in closed-vocabulary ASR. First, we investigate dealing with OOV words in ASR training data, by introducing an acoustic-data driven pronunciation learning framework using a likelihood-reduction based criterion for selecting pronunciation candidates from multiple sources, i.e. standard grapheme-to-phoneme algorithms (G2P) and phonetic decoding, in a greedy fashion. This framework effectively expands a small hand-crafted pronunciation lexicon to cover OOV words, for which the learned pronunciations have higher quality than approaches using G2P alone or using other baseline pruning criteria. Furthermore, applying the proposed framework to generate alternative pronunciations for in-vocabulary (IV) words improves both recognition performance on relevant words and overall acoustic model performance. Second, we investigate dealing with OOV words in ASR test data, i.e. OOV detection and recovery. We first conduct a comparative study of a hybrid lexical model (HLM) approach for OOV detection, and several baseline approaches, with the conclusion that the HLM approach outperforms others in both OOV detection and first pass OOV recovery performance. Next, we introduce a grammar-decoding framework for efficient second pass OOV recovery, showing that with properly designed schemes of estimating OOV unigram probabilities, the framework significantly improves OOV recovery and overall decoding performance compared to first pass decoding. Finally we propose an open-vocabulary word-level recurrent neural network language model (RNNLM) re-scoring framework, making it possible to re-score lattices containing recovered OOVs using a single word-level RNNLM, that was ignorant of OOVs when it was trained. Above all, the whole OOV recovery pipeline shows the potential of a highly efficient open-vocabulary word-level ASR decoding framework, tightly integrated into a standard WFST decoding pipeline

    Phonetic input, phonological categories and orthographic representations: a psycholinguistic perspective on why language education needs oral corpora―The case of French-Japanese interphonology development ―

    Get PDF
    In this paper, we try to show that oral corpora can be used in L2 education to help learners improve their oral skills. More specifically, we concentrate on the role of oral corpora data as phonetic input for L2 phonology learning. After a brief presentation of the growing number of experiments devoted to what has been called ‘Fine Phonetic Detail' in speech processing studies, we examine a series of work that report a positive effect of high-variability stimuli training for Japanese learners of English on the perception and production of the /r/-/l/ distinction. We point out the importance of the role of the orthographic factor in L2 speech perception and learning, which we illustrate in the case of Japanese learners of French and the French liquid /r/ and /l/. Finally, we briefly present the PFC (Phonologie du Français Contemporain) corpus and its pedagogical exploitation in the PFC-EF (Enseignement du Français) project as a source of phonetic input for oral French learning

    LOW RESOURCE HIGH ACCURACY KEYWORD SPOTTING

    Get PDF
    Keyword spotting (KWS) is a task to automatically detect keywords of interest in continuous speech, which has been an active research topic for over 40 years. Recently there is a rising demand for KWS techniques in resource constrained conditions. For example, as for the year of 2016, USC Shoah Foundation covers audio-visual testimonies from survivors and other witnesses of the Holocaust in 63 countries and 39 languages, and providing search capability for those testimonies requires substantial KWS technologies in low language resource conditions, as for most languages, resources for developing KWS systems are not as rich as that for English. Despite the fact that KWS has been in the literature for a long time, KWS techniques in resource constrained conditions have not been researched extensively. In this dissertation, we improve KWS performance in two low resource conditions: low language resource condition where language specific data is inadequate, and low computation resource condition where KWS runs on computation constrained devices. For low language resource KWS, we focus on applications for speech data mining, where large vocabulary continuous speech recognition (LVCSR)-based KWS techniques are widely used. Keyword spotting for those applications are also known as keyword search (KWS) or spoken term detection (STD). A key issue for this type of KWS technique is the out-of-vocabulary (OOV) keyword problem. LVCSR-based KWS can only search for words that are defined in the LVCSR's lexicon, which is typically very small in a low language resource condition. To alleviate the OOV keyword problem, we propose a technique named "proxy keyword search" that enables us to search for OOV keywords with regular LVCSR-based KWS systems. We also develop a technique that expands LVCSR's lexicon automatically by adding hallucinated words, which increases keyword coverage and therefore improves KWS performance. Finally we explore the possibility of building LVCSR-based KWS systems with limited lexicon, or even without an expert pronunciation lexicon. For low computation resource KWS, we focus on wake-word applications, which usually run on computation constrained devices such as mobile phones or tablets. We first develop a deep neural network (DNN)-based keyword spotter, which is lightweight and accurate enough that we are able to run it on devices continuously. This keyword spotter typically requires a pre-defined keyword, such as "Okay Google". We then propose a long short-term memory (LSTM)-based feature extractor for query-by-example KWS, which enables the users to define their own keywords

    Grapheme-based Automatic Speech Recognition using Probabilistic Lexical Modeling

    Get PDF
    Automatic speech recognition (ASR) systems incorporate expert knowledge of language or the linguistic expertise through the use of phone pronunciation lexicon (or dictionary) where each word is associated with a sequence of phones. The creation of phone pronunciation lexicon for a new language or domain is costly as it requires linguistic expertise, and includes time and money. In this thesis, we focus on effective building of ASR systems in the absence of linguistic expertise for a new domain or language. Particularly, we consider graphemes as alternate subword units for speech recognition. In a grapheme lexicon, pronunciation of a word is derived from its orthography. However, modeling graphemes for speech recognition is a challenging task for two reasons. Firstly, grapheme-to-phoneme (G2P) relationship can be ambiguous as languages continue to evolve after their spelling has been standardized. Secondly, as elucidated in this thesis, typically ASR systems directly model the relationship between graphemes and acoustic features; and the acoustic features depict the envelope of speech, which is related to phones. In this thesis, a grapheme-based ASR approach is proposed where the modeling of the relationship between graphemes and acoustic features is factored through a latent variable into two models, namely, acoustic model and lexical model. In the acoustic model the relationship between latent variables and acoustic features is modeled, while in the lexical model a probabilistic relationship between latent variables and graphemes is modeled. We refer to the proposed approach as probabilistic lexical modeling based ASR. In the thesis we show that the latent variables can be phones or multilingual phones or clustered context-dependent subword units; and an acoustic model can be trained on domain-independent or language-independent resources. The lexical model is trained on transcribed speech data from the target domain or language. In doing so, the parameters of the lexical model capture a probabilistic relationship between graphemes and phones. In the proposed grapheme-based ASR approach, lexicon learning is implicitly integrated as a phase in ASR system training as opposed to the conventional approach where first phone pronunciation lexicon is developed and then a phone-based ASR system is trained. The potential and the efficacy of the proposed approach is demonstrated through experiments and comparisons with other standard approaches on ASR for resource rich languages, nonnative and accented speech, under-resourced languages, and minority languages. The studies revealed that the proposed framework is particularly suitable when the task is challenged by the lack of both linguistic expertise and transcribed data. Furthermore, our investigations also showed that standard ASR approaches in which the lexical model is deterministic are more suitable for phones than graphemes, while probabilistic lexical model based ASR approach is suitable for both. Finally, we show that the captured grapheme-to-phoneme relationship can be exploited to perform acoustic data-driven G2P conversion

    Expanding the Lexicon

    Get PDF
    The book series is dedicated to the study of the multifaceted dynamics of wordplay as an interface phenomenon. The contributions aim to bring together approaches from various disciplines and present case studies on different communicative settings, including everyday language and literary communication, and thus offer fresh perspectives on wordplay in the context of linguistic innovation, language contact, and speaker-hearer-interaction
    • 

    corecore