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Abstract

Nowadays, most ASR (automatic speech recognition) systems deployed in in-

dustry are closed-vocabulary systems, meaning we have a limited vocabulary

of words the system can recognize, and where pronunciations are provided to

the system. Words out of this vocabulary are called out-of-vocabulary (OOV)

words, for which either pronunciations or both spellings and pronunciations

are not known to the system. The basic motivations of developing strategies

to handle OOV words are: First, in the training phase, missing or wrong pro-

nunciations of words in training data results in poor acoustic models. Second,

in the test phase, words out of the vocabulary cannot be recognized at all,

and mis-recognition of OOV words may affect recognition performance of its

in-vocabulary neighbors as well. Therefore, this dissertation is dedicated to

exploring strategies of handling OOV words in closed-vocabulary ASR.

First, we investigate dealing with OOV words in ASR training data, by

introducing an acoustic-data driven pronunciation learning framework using

a likelihood-reduction based criterion for selecting pronunciation candidates

from multiple sources, i.e. standard grapheme-to-phoneme algorithms (G2P)

and phonetic decoding, in a greedy fashion. This framework effectively

expands a small hand-crafted pronunciation lexicon to cover OOV words, for
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which the learned pronunciations have higher quality than approaches using

G2P alone or using other baseline pruning criteria. Furthermore, applying the

proposed framework to generate alternative pronunciations for in-vocabulary

(IV) words improves both recognition performance on relevant words and

overall acoustic model performance.

Second, we investigate dealing with OOV words in ASR test data, i.e.

OOV detection and recovery. We first conduct a comparative study of a

hybrid lexical model (HLM) approach for OOV detection, and several baseline

approaches, with the conclusion that the HLM approach outperforms others

in both OOV detection and first pass OOV recovery performance. Next, we

introduce a grammar-decoding framework for efficient second pass OOV

recovery, showing that with properly designed schemes of estimating OOV

unigram probabilities, the framework significantly improves OOV recovery

and overall decoding performance compared to first pass decoding.

Finally we propose an open-vocabulary word-level recurrent neural net-

work language model (RNNLM) re-scoring framework, making it possible

to re-score lattices containing recovered OOVs using a single word-level

RNNLM, that was ignorant of OOVs when it was trained. Above all, the

whole OOV recovery pipeline shows the potential of a highly efficient open-

vocabulary word-level ASR decoding framework, tightly integrated into a

standard WFST decoding pipeline.

First Reader: Sanjeev Khudanpur

Second Reader: Daniel Povey
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Chapter 1

Introduction

An automatic speech recognition (ASR) system takes an audio stream as

input and turns it into a text transcription, which is a sequence of words. It

usually comprises of three major components: an acoustic model (AM), a

pronunciation lexicon, and a language model (LM). Here are some concepts

which are helpful to understand the roles of these components, especially the

lexicon:

• Phone: the smallest pre-defined discrete segment of sound in a stream

of speech, e.g. p, b, d, and t in the English words pad, pat, bad, and bat.

• Grapheme: In linguistics, a grapheme is the smallest unit of a writing

system of any given language. In English it’s a letter (a to z).

• Pronunciation: the phonetic transcription of a word, represented by a

sequence of phones1.

• Acoustic model: a statistical model which represents the relationship

1Pronunciation of a word could also be represented by larger sub-word units, like syllables.
In this work we only consider phones.
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between acoustic sounds of a language and the underlying sequence of

phones.

• Language model: a probability distribution over sequences of words

drawn from the vocabulary of a language, independent of the acoustics.

• Lexicon: a pronunciation dictionary (usually hand-crafted), which lists

the pronunciation(s) of each word (e.g. speech s p iy ch) in the

vocabulary. Each word could have more than one pronunciation variant.

The vocabulary covered by the lexicon is the same as the vocabulary

used in the language model. Sample lexicon entries are as follows:

...

speech s p iy ch

speechless s p iy ch l ih s

speed s p iy d

...

• Grapheme-to-Phoneme (G2P): the process of converting a letter string

(word) like "cake" into a phone string (pronunciation) like k ey k, based

on statistical modeling. The probabilistic relationships between words

and pronunciations are learned from an existing lexicon.

In a conventional hybrid ASR system, a lexicon with a fixed vocabulary is al-

ways used in the training/test phase (see Figure 1.1 and Figure ). This is called

closed-vocabulary ASR. i.e. only words within the vocabulary of the lexicon

can be recognized in test phase. Recent research progress on grapheme-based

end-to-end (E2E) models has shown that it’s possible to remove the need for a
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separate expert-curated pronunciation lexicon [3], enabling open-vocabulary

ASR. However the relative performance of grapheme-based ASR over con-

ventional phone-based ASR is highly language-dependent, i.e. for irregularly

spelled languages grapheme ASR may only work well when we have a large

amount of data. Taking English for an example: given large amount of train-

ing data (e.g. more than 10, 000 hours), graphemic systems performs better

than phonemic systems in terms of Word Error Rate (WER) as reported in

[3]. But given only hundreds of hours of data (e.g. in academic datasets like

Switchboard/WSJ/Librispeech), it has been consistently observed that using

a lexicon gives better performance[4, 5, 6]. Therefore, based on these obser-

vations, it is important to address the OOV problem for closed-vocabulary

hybrid ASR.

In the ideal case, in the training phase for closed-vocabulary ASR, a hand-

crafted lexicon should cover all words in speech transcripts being used to train

the acoustic model, i.e. we should know how to pronounce all words in the

acoustic training data. The reason is that, we align acoustic data to phoneme

sequences to get "alignments" which are training examples for the acoustic

phonetic models. Missing or wrong pronunciations of words in training data

results in poor alignments and contaminates the training examples, thereby

affecting acoustic modeling performance. In the test phase, the lexicon should

cover all the words in test data, so that the ASR at least has the potential to

recognize all the words being spoken.

However, in practice, in training phase, the pronunciation lexicon doesn’t

necessarily cover all the words in the transcripts, and are Out-of-Vocabulary
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Figure 1.1: ASR framework –training phase

Figure 1.2: ASR framework –test phase

(OOV) words, or the pronunciations provided by the expert lexicon don’t

agree well with the acoustics because of mismatched domain/accents. In the

test phase, there could also be lots of words that cannot be anticipated while

building the ASR system, and mis-recognition of these OOV words will affect

recognition performance of its in-vocabulary neighbors. Both of these are big

challenges for closed-vocabulary ASR, and this dissertation is dedicated to

investigating some novel strategies to tackle the OOV challenges.
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1.1 Problem Statement

Generally speaking, the OOV word problems in closed-vocabulary ASR fall

into two categories: Handling OOV words in training and test phases.

1.1.1 Handling OOV words in ASR training phase

In closed-vocabulary ASR, the quality of lexicon affects acoustic modeling

performance. However, building a large expert (hand-crafted) lexicon is ex-

pensive. Therefore, we are interested in how to expand a small expert lexicon

to cover pronunciations of OOV words, i.e. learning OOVs’ pronunciations

from their written forms and/or acoustics examples. And we call this problem

pronunciation learning. The main challenge here is: the quality of the learned

pronunciations is crucial to:

— The training of the acoustic model (learning the correct probabilistic

relationship between acoustics and phonemes)2.

— The capability to correctly recognize these words in test data.

1.1.2 Handling OOV words in ASR test phase

In closed-vocabulary ASR, OOV words in test data can’t be recognized, and

they affect the recognition performance of their surrounding in-vocabulary

(IV) words. In the following example, the phrase in reference text "as AIR-

COA", where AIRCOA is an OOV word, was wrongly recognized as "a circle"

2In some sense, the training-time problem should be better described as an Out-of-Lexicon
(OOL) problem, since we know the spelling of those words. But we’ll continue to call it an
OOV problem to remain consistent with extant literature

5



Figure 1.3: Dealing with OOVs in ASR training phase — lexicon learning

Figure 1.4: Dealing with OOVs in ASR test phase — OOV detection & recovery

in hypothesis text, i.e. even though only "AIRCOA" is OOV, its IV neighbor

"as" was wrongly recognized as "a".

Ref: ... associated inns known as AIRCOA ...

Hyp: ...associated inns known a circle...

Therefore, the problem here is OOV detection and recovery in hypothesis

text. In many cases, this issue is of particular interest, since many OOVs are

proper nouns, which could be very important for the downstream task.

Figure 1.3 summarizes the two problems in an intuitive way.

1.2 Contributions

This dissertation makes the following contribution to the body of knowledge

in OOV handling for ASR systems.
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1.2.1 Lexicon learning

• We propose a novel acoustic data-driven framework for pronunciation

learning. It uses a likelihood-based pruning criterion modeling con-

fusability between pronunciations in an efficient greedy framework for

pronunciation selection. The framework is computationally scalable

(no iterative lattice generation) and easy to parallelize (word level EM

procedure for pronunciation selection).

• We evaluate the proposed pronunciation learning framework in various

lexicon expansion experiments, and show that:

— Using acoustic information in pronunciation candidate generation

is important (compared to only using orthographic and lexicon

information).

— In terms of pronunciation candidate selection/pruning strategy,

the proposed framework performs better than G2P/pronunciation

probabilities (pp)/Bayesian information criterion (BIC) based crite-

ria, in both WER and lexicon size.

— Evaluation on individual words recognition performance reveals

that the performance gain brought by our method increases as we

have more training acoustic examples.

• We evaluate the proposed pronunciation learning framework in various

lexicon adaptation experiments, and show that:

— Adapting the pronunciation of of words to acoustic evidence helps
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with overall acoustic model (AM) training performance.

— It also improves recognition performance on individual words just

by re-decoding with the adapted lexicon.

1.2.2 OOV detection and recovery

• We show that our implementation of a hybrid lexical model (HLM) ap-

proach for OOV detection outperforms baselines (hybrid LM+classification,

single-phone) in both OOV detection and first pass OOV recovery.

• We investigate a Grammar-decoding framework for efficient second pass

decoding. We show that it significantly improves OOV recovery/overall

decoding performance compared to first pass decoding, while avoiding

re-compiling the whole decoding graph.

• We empirically investigate different schemes of estimating OOV LM

probabilities, with findings: Phonemic/Character LM scores give the

best performance; Incorporating empirical frequency helps when the

OOV rate is high.

• We propose an open-vocabulary word RNNLM re-scoring framework,

enabling N-best/lattice re-scoring on top of lattices containing recovered

OOVs with a single word RNNLM ignorant of OOVs when it was

trained. Experiments have shown that it improves both OOV recovery

and overall decoding performance v.s. decoding with N-gram LMs.

• We explore potential performance gain when given oracle OOV spellings,
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and show that HLM can bring further gain by learning OOV pronuncia-

tions from acoustic evidence.

• Using the whole proposed pipeline (HLM + grammar decoding + open-

vocab RNNLM rescoring), we show the potential of a highly efficient

open-vocabulary word-level ASR decoding framework, tightly inte-

grated into a standard WFST decoding pipeline.

1.3 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we first

discuss motivation and related work on acoustic data-driven lexicon learning

in Section 2.1. Then we discuss how we generate pronunciation candidates in

Section 2.2, and how we collect acoustic evidence from training data in Section

2.3. Then we introduce our likelihood-based pronunciation pruning strategy

and the greedy pruning framework in Section 2.4. Experimental results on

various ASR lexicon expansion and lexicon adaptation tasks, and analysis of

the number of acoustic examples versus performance of lexicon learning are

presented in Section 2.5. We conclude in Section 2.6.

In Chapter 3, we first discuss motivation and related work on OOV detec-

tion and recovery in Section 3.1. Then we revisit hybrid lexical model (HLM)

based OOV detection, candidate generation and first pass recovery, and intro-

duce our implementation in Section 3.2. Experimental results comparing of

the HLM approach for OOV detection and the IBM (hybrid LM + classifica-

tion) and single-phone-based OOV detection are also presented in Section 3.2.

Then, we introduce a grammar-decoding framework for efficient second pass

9



decoding, and an open-vocabulary word RNNLM re-scoring framework for

re-scoring lattices containing recovered OOVs in Section 3.3. We also discuss

different schemes of estimating OOV unigram probabilities there. In Section

3.3, we report experiments on Spanish, and read and conversational English

to study the performance of OOV recovery and overall decoding of first pass,

second pass (grammar) decoding and open-vocab RNNLM rescoring. We

summarize the results in Section 3.4.

In Chapter 4, we summarize all the developed components of this disserta-

tion and discuss potential directions for future work.

10



Chapter 2

Handling OOVs in Training Time

This chapter is about handling OOVs in training time, i.e. lexicon learning.

In the past few years there has been an growing interest in investigating

acoustic data-driven lexicon learning for ASR systems. "acoustic data-driven

lexicon learning" is a broad concept. Generally, in the ASR context1, it means

automatically obtaining pronunciations of words for which pronunciations

are not available or not good enough, but for which transcribed acoustic data

exists, from which we can learn pronunciations (hence "acoustic data-driven").

There are two goals we want to achieve by learning pronunciations from

acoustic data:

• When training an AM, the quality of alignments partially relies on

quality of pronunciations of words. So improving pronunciations will

improve performance of acoustic modeling.

• When decoding, the recognition performance of relevant words (with

1Acoustic data-driven lexicon learning has been investigated in more specific tasks like
name recognition [7] [8]. What we are interested in is the more general Large Vocabulary
Continuous Speech Recognition (LVCSR) setting.
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improved pronunciations) from test data will be improved.

The following are the specified statements of the two scenarios of lexicon

learning we are interested in:

Learning pronunciations of Out-of-Vocabulary (OOV) words with limited

lexicon resources. In order to develop ASR systems under limited lexicon

resources, one solution is to adopt a graphemic lexicon [9] [10] or acoustic unit

discovery methods [11] [12]2, which totally eliminate the expert efforts for

developing a phonetic pronunciation lexicon. In real applications, especially in

languages like English and Chinese, however, a more common scenario is that

we already have a phonetic inventory, and a small expert lexicon for a specific

language. Our work focuses on this case, i.e. given a small expert lexicon, we

want to derive pronunciations for Out-of-Vocabulary (OOV) words, for which

we know their spelling and have acoustic examples. We call this task "lexicon

expansion".

Adapting pronunciations of In-Vocabulary (IV) words given acoustic data

Suppose we have an expert (reference) lexicon following an existing conven-

tion (e.g. CMUDict), where some words have wrong pronunciations (e.g. FDA

: ‘f d a’ from the Cantab lexicon of Tedlium corpus), or pronunciations mis-

matched with the given acoustic data, because of acoustic variants like accents.

Letting a human find these words from the lexicon and correct their pronun-

ciations causes too much efforts. Given acoustic examples of these words,

2The main reason it hasn’t been widely used is that acoustic unit discovery doesn’t lead to
very good ASR performance
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we want to adopt lexicon learning process to learn better pronunciations of

these words. We call this task "lexicon adaptation". Proposed modification

of the reference lexicon will be presented in a format as an "lexicon edit" file,

allowing linguists to make modification on the pronunciations or change the

accept/reject decisions.

2.1 Motivation and existing methods

In the LVCSR setting, in order to develop ASR systems under limited lexicon

resources, one solution is to adopt a graphemic lexicon [9, 10] or acoustic

unit discovery methods [11, 12], which totally eliminate the expert efforts for

developing a phonetic pronunciation lexicon. In real applications, however,

a more common scenario is that we already have a phonetic inventory, and

a small expert lexicon for a specific language. Given a small expert lexicon,

the most straightforward way to generate pronunciation candidates for OOV

words is to train a Grapheme-to-Phoneme (G2P)[13] model using the seed lex-

icon and apply it on these OOV words [14, 15, 16]. But G2P cannot guarantee

giving satisfying pronunciation variants if the language is not very phonemic

(meaning words are not regularly spelled), like English. Also for proper nouns

and abbreviations G2P usually cannot give correct pronunciations, because

they are relatively rare in the G2P training examples, and their pronunciations

are usually inconsistent with linguistic rules. That is the reason why people

have found it helpful to utilize acoustic examples besides conventional G2P

methods, in order to improve lexicon learning. Given there are various kinds

of attempts in incorporating acoustic data into lexicon learning in different
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aspects, e.g. acoustic data can be used to generate pronunciation variants

or/and estimate weights of the G2P/human-generated pronunciation vari-

ants, our basic motivation is to investigate the role of acoustic data in existing

lexicon learning methods, and propose new ways to efficiently incorporate

acoustic data into lexicon learning.

Generally, there are two types of acoustic-data driven lexicon learning

approaches:

Modeling the acoustics and grapheme-to-phoneme relationship jointly In

these type of approaches, acoustics are incorporated into the training phase of

a grapheme-to-phoneme model [17] [7] and a seed lexicon is not needed,.e.g.

training a joint model of acoustics and grapheme-phoneme relationships

(phonemes are treated as hidden variables), by maximizing the joint/conditional

likelihood of the words and the acoustic examples [7]. This model could be

interpolated with a conventional G2P model trained using the seed lexicon

alone, or we can use this model to generate pronunciation variants for words

with acoustic examples, and we combine these word-pronunciation pairs with

the seed lexicon to train a conventional G2P model, or we can simply com-

bine pronunciations generated from this model with pronunciations given

by a conventional G2P model trained on a seed lexicon [17]. This type of

approaches is elegant in terms of modeling the acoustic and grapheme-to-

phoneme relationship jointly even without using a seed lexicon. They are

particularly suitable for recognition tasks for a specific domain, like name

recognition. In the general ASR setting, however, it’s potentially hard to train

such a model robustly, because of the data-sparsity issue (usually we only
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have a few acoustic examples in training data for each word).

Generating alternative pronunciations from a phonetic decoder With acous-

tic examples of words which are interested in, we can generate pronunciation

variants directly from the phonetic transcription obtained with a phonetic

decoder composed of an acoustic model and a phonemic language model.

These pronunciation variants could either be added into G2P training exam-

ples [15] [18] [19], or be combined them with the G2P generated pronunci-

ations [20]. After collecting pronunciation candidates from both G2P and

phonetic decoding, we could collect acoustic evidence for all pronunciation

candidates, based on which we then prune them based on some criterion

like pron-prob (pronunciation probabilities) [18] [14] [16] [15] [19], or, as pro-

posed in [20], it’s possible to decode acoustic training data iteratively to filter

pronunciation candidates.

Our method using candidates from both G2P and phonetic decoding,

falls into the second type of approaches. The aspect of the problem that we

focus on is candidate pruning (selection). That is, given a set of pronuncia-

tion candidates from G2P and phonetic decoding (and maybe some from a

manually created lexicon), which subset should we keep? Keeping all the

pronunciations is impractical because it would make decoding slow, and also

because too many pronunciations tend to hurt ASR performance, even when

pronunciation probabilities are used [21].

Previous work on candidate pruning has relied on estimated pronunciation

probabilities to determine which candidates should be cut [18, 14, 16, 15, 19].
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Figure 2.1: The proposed framework of acoustic-data driven lexicon learning.

The main defect with this is that for words with multiple pronunciations, it

tends to give us too many minor pronunciation variants (e.g. reflecting co-

articulation effects), which is undesirable for ASR. If we rely on pronunciation

probabilities alone it is hard to discard those types of variants while keeping

variants that come from different meanings of the word.

The core contribution of our work is a likelihood-based criterion applied

in a greedy framework for pronunciation candidates pruning, that naturally

keeps only pronunciaiton candidates that are "far apart". Figure 2.1 is an

overview of the proposed framework, which will be explained in detail in the

following sections.

16



2.2 Collecting pronunciation candidates from mul-
tiple sources

There are many ways to generate pronunciation variants using acoustic ex-

amples. The first option is to simply use a phonetic decoder to generate

pronunciation variants for words with acoustic examples, optionally combine

them with the seed lexicon and then train a G2P model with the combined

lexicon, and re-generate pronunciation candidates for all OOV words [19].

This eliminates the necessity of a seed lexicon and could help reduce the

noise effect at the boundary of phonetic-decoding generated pronunciations,

but may not produce appropriate pronunciations for foreign words whose

pronunciation rule is relatively rare, and the G2P model performance might be

sensitive to the quality of acoustic examples. A second option is to solely rely

on phonetic-decoding generated pronunciations, and only use G2P generated

pronunciations to produce alignment information (word boundaries) for gen-

erating pronunciations from phonetic-decoding. This ensures that the initial

pronunciation candidates agree highly with the acoustics, but ignores the

fact that phonetic-decoding generated pronunciations are much more noisy

than G2P generated ones. To balance the two options, we choose to combine

pronunciations from both G2P and phonetic-decoding (and the seed lexicon

for IV words), into a large candidate pool, on top of which we will collect

acoustic evidence for further selection.

In our framework, like [20], we first extend the seed lexicon to include OOV

words in the training data, using a G2P model trained on the seed lexicon,

and then train an acoustic model (AM) using the G2P-extended lexicon. Then
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we generate alignments for all training data, based on which we then train a

bi-gram phonemic language model (PLM). Using this PLM and the AM, we

construct a phonetic decoder and use it to generate phonetic transcription of

training data. For each individual word token in the transcript, we can align

it with a phone sequence using timing information from the alignments and

phonetic transcriptions. Then for each specific word w, we can compute the

relative frequency of each phone sequence being aligned to it, by normalizing

each phone sequence’s count by the most frequent phone sequence’s count.

Then we filter out those phone sequences whose relative frequency is too

low (e.g. smaller than 0.1) and keep the remaining ones as the alternative

pronunciations generated from phonetic decoding.

Then we combine these alternative pronunciation candidates with the

G2P-extended lexicon into a large lexicon (called combined lexicon). For each

word w from the combined lexicon, let B denote the set of pronunciation

candidates collected from multiple sources, and b denote one pronunciation

(baseform) candidate. The source of b (denoted as s(b)) could be one of the

three: G2P/phonetic-decoding/reference. In the next section we will specify

how we collect acoustic evidence for all pronunciation candidates in B.

2.3 Acoustic evidence collection

"Acoustic evidence collection" itself is a vague concept. In the context of

lexicon learning, it means collecting some statistics using acoustic data and

the combined lexicon we have, which could be used to evaluate the relative

"correctness" of all the pronunciation candidates for each word. Existing
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methods either collect acoustic evidence by counting from decoding results

of the acoustic training data [20], or counting from alignments [14, 22], or

from ASR lattices/N-best lists [16, 14]. We choose to collect acoustic evidence

from lattices, cause the statistics are represented in soft counts, which provide

richer information for pronunciation candidate selection.

First we introduce some notations. Let O = {O1,O2, ...,OM} denote

acoustic sequences; Mw denote the number of utterances in O which contain

the word w 3; Then we further define θwb as the pronunciation probability of a

pronunciation b for a word w (∑b∈B θwb = 1), and θw ≜ {θwb : b ∈ B} as the

pronunciation model for word w. We define τuwb ≜ p(Ou|w, b) as the data

likelihood given the pronunciation of w being b, which is determined by the

acoustic model4. This is the "acoustic evidence" we want to derive from lattice

statistics, which is needed by our pronunciation selection algorithm.

With the combined lexicon and an existing AM (the one we used for

phonetic decoding in the candidate collection phase), we generate lattices for

each training utterance. This lattice generation treats distinct pronunciations

of words as distinct symbols for the purposes of lattice determinization, unlike

our standard procedure described in [23]. This is achieved by putting both

phone symbols and word symbols as the input sequence on the FST prior to

lattice determinization. From the lattices, we can obtain per-utterance lattice

pronunciation-posterior statistics γuwb ≜ p(w, b|Ou).

3we assume that each word appears in each utterance’s transcript at most once. In practice,
if a word appears multiple times in an utterance, we divide the utterance into sub-utterances
where each one only contains one token of the word.

4To be more precise, p(Ou|w, b) actually stands for p(Ou|θw = b) since θw is the only
parameter here. And it’s the same for the posterior we’ll introduce later: p(θw = b|Ou) v.s.
p(w, b|Ou).
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When the lattices were generated, we assign uniform priors over all pro-

nunciation candidates of each word in the combined lexicon. By Bayes’ rule,

we can directly use the posterior statistics γuwb as the likelihoods τuwb
5. Be-

cause lattices are pruned, a posterior γuwb could be zero even if w actually

appears in a utterance u. So we always floor γuwb to a small positive scalar δ

(In practice it’s set between 10−7 and 10−5), so that we have τuwb ≥ δ, ∀u, w, b.

Based on γuwb, we can obtain another useful statistic, the average pro-

nunciation posterior γwb ≜ 1
Mw

∑u γuwb, where the summation ∑u is only

taken over those utterances where the word w actually appears. It provides

more information than the pronunciation probabilities estimated from the

alignments [18], since lattices represent many alternative pronunciations for

each acoustic example.

After the lattices were dumped, for each word, we prune away its pronun-

ciations whose average posterior γwb is too low (e.g. only keeping the top

10), construct a new combined lexicon, and then re-generate the lattices and

re-collect acoustic evidence in the same way. We found this pruning is always

helpful as it improves accuracy of posteriors.

2.4 Data-likelihood-reduction based greedy pronun-
ciation selection

The reason why we’re interested in pronunciation selection, i.e. why we don’t

just allow all the pronunciations into the lexicon and learn the pronunciation

5Strictly speaking, Bayes’ rule only gives us τuwb ∝ γuwb, i.e. τuwb can only be treated as
γuwb up to a constant, but the constant doesn’t affect the objective (2.5) we want to optimize.
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probabilities, is that, using a big un-pruned lexicon would allow the lexicon

to model variations due to co-articulation, accent variations, reduction and so

on. However, the accepted opinion in the ASR community is that this hurts

performance, and that it is better to allow the acoustic model (AM) and the

context-dependent phones to model these types of effects [21]. We will also

experimentally verify this argument.

Given we have acoustic examples of the words in concern from the training

transcripts, the most obvious approach to pronunciation selection, which is

adopted by most existing approaches, would be to estimate pronunciation

probabilities (pron-prob) from acoustic data by counting from alignments [22],

running EM using lattice statistics [14], .etc, and select pronunciations based

on these probabilities. The main defect of using pronunciation probabilities is

that for words with multiple pronunciations, it will tend to give us too many

minor pronunciation variants (e.g. reflecting co-articulation effects), which

can easily be modeled by each other, and too few pronunciations for totally

different variants of a word. Consider the word "us", where the original and

most common pronunciation is "uh s", and there are two alternatives present:

"ax s" (representing a reduction of the word), and "uw eh s", representing the

acronym "U.S.". We don’t want the pronunciation representing the reduction,

but we do want the acronym version. But in practice, the reduction gets a

higher pron-prob than the acronym.

To tackle this challenge, we develop a framework for pronunciation selec-

tion which incorporates the acoustic data likelihood estimated from lattices.

Basically, we formulate the pronunciation selection process as a greedy model
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selection procedure, with data-likelihood-reduction as the selection criterion,

taking advantage of side information such as the source of those pronuncia-

tions, e.g. to favor human/G2P-generated candidates over those that arise

from phonetic decoding. In the following section, we’ll first specify how to

compute the optimal data likelihood given a set of pronunciation candidates

using EM and propose a pronunciation selection criterion based on likelihood

reduction, and then use an illustrative example to compare the proposed

selection criterion against other criteria. At last we talk about some practical

issues in our algorithm, and summarize the whole iterative framework of

pronunciation selection. Note that even if we have an iterative framework

for pronunciation selection, we only need 1 or 2 rounds of lattice generation

where we collect the acoustic evidence, which is very efficient.

2.4.1 A pronunciation selection criterion based on per-utterance
likelihood reduction

Given a set of pronunciation candidates for a specific word w, and the condi-

tional likelihood τuwb (acoustic evidence) for each utterance Ou, we want to

maximize the total data likelihood over the pronunciation model θw
6:

L(θw) = ∑
u

log

(
∑
b

τuwbθwb

)
(2.1)

where the summation ∑u is only taken over utterances where the word w

actually appears. Since maximizing this objective doesn’t have a closed form

6When we optimize the pronunciation probabilities for a specific word, we consider the
pronunciation probabilities for other words as fixed.
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solution, like [16], we use EM which maximizes the following auxiliary func-

tion instead (n stands for the iteration index, λn
uwb ≜ p(w, b|Ou, θw

n) is the

pronunciation posterior computed at the nth iteration)

Q(θn+1
w , θn

w) = ∑
u

∑
b

λn
uwb log θn+1

wb (2.2)

Maximizing the above function with the constraint ∑b θn+1
wb = 1 gives the

M-step:

θn+1
wb ←

∑u λn
uwb

∑u ∑b λn
uwb

(2.3)

According to Bayes’ rule, we compute the updated posteriors λn+1
uwb as the

following:

λn+1
uwb ←

τuwbθn+1
wb

∑b τuwbθn+1
wb

(2.4)

which is the E-step. By running (2.3) and (2.4) iteratively until convergence,

we can find an optimal pronunciation model θ∗w, and evaluate the optimal

log-likelihood (2.5) L(θ∗w) (denoted as L∗ for simplicity).

In order to evaluate the importance of a specific pronunciation, say, b, we

remove b from the pronunciation candidate set B, re-initialize the pronuncia-

tion model θ
′
w on top of B\b , and run EM to optimize (2.5) with the model θ

′
w.

Writing the likelihood at convergence after removing b as L∗b , we can compute

the per-utterance likelihood reduction associated with the pronunciation b as:

∆Lb ≜
∆Lb
Mw

=
L∗ −L∗b

Mw
,

This metric reflects the contribution of each pronunciation to the total
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data likelihood. With this metric, we can iteratively remove least important

pronunciations in a greedy fashion, which is efficient. The pruning process is

terminated if the smallest ∆Lb among all pronunciation candidates is larger

than a user-specified threshold T. In summary, we look for an "optimal" subset

of pronunciations for a word w, in a greedy fashion, by removing the "least

important" pronunciation at each iteration, with the hope that the resulting

subset balances the number of pronunciation candidates and the total data

likelihood. The complete iterative framework is given in Section 2.4.5.

2.4.2 An illustrative example

Here we show an example to illustrate the advantage of pronunciation se-

lection based on the per-utterance log likelihood reduction ∆Lb over the

learned pronunciation probabilities θ∗w, in terms of dealing with confusability

of pronunciation variants.

In Table 2.1, we listed the pronunciation candidates, average pronunciation

posteriors, learned pronunciation probabilities, and the per-utterance log

likelihood reduction of two English words ‘machine’ and ‘us’ taken from the

TED-LIUM [1] training corpus. Note that the two pronunciations of ‘machine’

only differ in one vowel, while the two pronunciations of ‘us’ represent two

distinct meanings.

We want a selection criterion under which it’s possible to put a threshold

to rule out the reduction ‘M IH SH IY N’ (generated from phonetic-decoding)

in the ‘machine’ case, while keeping the acronym ‘Y UW EH S’ in the ‘us’

case. Looking at the average posteriors γwb and the learned pronunciation
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w ’machine’ ’us’
B [’M AH SH IY N’, ’M IH SH IY N’] [’AH S’, ’Y UW EH S’]

γwb [0.839, 0.161] [0.990, 0.010]
θ∗w [0.987, 0.013] [0.992, 0.008]

∆Lb [3.575, 0.004] [15.576, 0.034]

Table 2.1: The pronunciation candidate set B, average pronunciation posteriors
γwb, learned pronunciation probabilities θ∗w, and the per-utterance log likelihood
reduction∆Lb for two English words ’machine’ and ’us’ from TED-LIUM [1].

probabilities θ∗w, both of them give lower values for ’Y UW EH S’ than ’M IH

SH IY N’, and thereby cannot serve as the criterion we need. However, the

per-utterance log likelihood reduction ∆Lb of ‘AH S’ is much larger than ‘M

IH SH IY N’ (0.034 v.s. 0.004). Thus it’s possible to set a proper threshold on

∆Lb to keep ‘AH S’ and remove ‘M IH SH IY N’.

The underlying reason is that the confusability between pronunciations

is reflected in the sharpness of the per-utterance pronunciation posteriors

γuwb. In the ‘us’ case, the two pronunciation variants cannot easily model

each other, and therefore the posteriors are very sharp for most examples.

Thereby removing the minor pronunciation ‘Y UW EH S’ would result in a

greater reduction in the data likelihood. Thus, beyond reflecting the relative

frequency, the proposed criterion ∆Lb is capable of modeling the confusability

between pronunciation candidates, which is preferable from the Maximum

Likelihood point of view and therefore could help us to select an informative

set of pronunciations.
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2.4.3 Refining the pronunciation selection criterion ∆Lb

One difficulty of directly using ∆Lb in an iterative pronunciation selection

framework is that, we need to develop an interpretable threshold T in order

to decide when to stop removing pronunciations. However, we notice the

upper bound of ∆Lb can be achieved in an extreme case, where we remove an

absolutely dominating pronunciation p (meaning: the observed conditional

likelihoods satisfy: τuwp = 1, τuwb = δ, ∀b ̸= p ). Before removing p,

it’s obvious from (2.5) that the maximum L(θ∗w) = 0 can be reached with θ∗w

being a one-hot vector s.t. θwp = 1. After removing p, with the constraint

∑b∈B\p θ
′
wb = 1, the log-likelihood is a constant: L(θ′w) ≡ Mw log δ. Then we

have: ∆Lp = (0−Mw log δ)/Mw = − log δ. According to this, we scale this

upper bound by a scalar α between [0, 1] to get an interpretable threshold:

T = −α log δ , where α = 1 corresponds to the above extreme case, which

means, for a pronunciation to be not removed, it would have to be present with

probability 1 in 100% instances of the word, and α = 0 means we will never

remove any pronunciation candidates. In practice, it’s set between 0.005 and

0.2. We also make α dependent on the source s(b) of the pronunciation, which

enables us to use a more conservative threshold for selecting pronunciations

from a source where the candidates’ quality is lower in general, like phonetic-

decoding (pd), e.g. by setting αg2p = 0.02, αpd = 0.01. So, we define the “score"

of a pronunciation candidate as “how far away" its ∆Lb is to the corresponding

threshold, i.e.:

qb ≜ ∆Lb − Ts(b) =
∆Lb

Mw + βs(b)
+ αs(b) log δ
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In our framework we iteratively prune the pronunciation with the lowest

score and terminate pruning when all pronunciation have positive scores.

Note that the count Mw is smoothed with a source-dependent scalar βs(b)

(5-15 in practice). The purpose is to keep the score from being to high when

Mw is small, so that in general we select fewer pronunciations if we only have

a few acoustic examples of a word.

2.4.4 An alternative selection criterion: Bayesian information
criterion (BIC)

In statistics, the Bayesian information criterion (BIC) is a popular criterion for

model selection among a finite set of models, where the model with the lowest

BIC score is preferred. In our case, the BIC of a pronunciation model θw is

BIC(θw) = log(Mw)|Bw| − 2L(θw) (2.5)

If we want to use BIC to select one pronunciation candidate to remove from

the set Bw, one naturally would choose the one results in the largest BIC

reduction. So we can re-define the "quality score" qb as the BIC change caused

by removing this pronunciation:

qBIC
b ≜ (log(Mw)(|Bw| − 1)− 2L∗b)− (log(Mw)|Bw| − 2L∗) (2.6)

= 2∆Lb − log(Mw) (2.7)

Note that it’s similar as the previously proposed quality score (adjusted likeli-

hood reduction) qb, in a sense that they all have a positive term of the likeli-

hood reduction ∆Lb, though the scale is different. Similarly as the proposed
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greedy framework where we in each iteration we remove the pronunciation

associated with the lowest qb, we can just replace qb with qBIC
b , and we can still

use the same stopping condition: terminate pruning when all pronunciation

have positive scores, i.e. we can never reach a lower BIC by further remov-

ing any pronunciation. Note that the greedy framework cannot guarantee

an globally optimal subset. For efficiency, it always makes sense to adopt a

greed framework in case the candidate set is large. The drawback is that with

the BIC criterion it’s not straightforward to meaningfully incorporate prior

information of the pronunciation quality of a specific source (G2P or PD).

2.4.5 Summary: an iterative framework

The proposed pronunciation selection algorithm, which iteratively prunes

pronunciations from the initial candidate set B, is summarized as Algorithm 1

(Bt stands for the selected subset of pronunciation candidates at iteration

t). As mentioned in the last section, if we replace qb with qBIC
b , we get a

similar greedy pronunciation pruning framework, which seeks a subset of

pronunciations on top of which observed acoustic data have the locally lowest

BIC score. This framework serves as a reasonable baseline. In the experiments

part, we will compare the proposed framework with this baseline.

2.5 Experiments

We design two tasks to evaluate the performance of the proposed lexicon learn-

ing framework respectively, on estimating pronunciations for OOV words

(lexicon expansion) and correcting/adapting pronunciations for in-vocabulary
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Algorithm 1 Greedy pronunciation selection

set t = 0, B0 = B.
While true:

Initialize θw uniformly on Bt.
Run EM on Bt to get θ∗w and the optimal log-likelihood L∗.
For b in Bt:

Initialize θ
′
w on Bt\b and run EM to get the optimal log-likelihood

L∗b .
Compute ∆Lb = L∗ −L∗b
Compute qb =

∆Lb
Mw+βs(b)

+ αs(b) log δ

If min
b∈Bt

qb ≥ 0:

Output Bt as the optimal pronunciation subset.
Break.

Else:
b̂ = argminb∈Bt qb:

Bt+1 = Bt\b̂
t = t + 1

(IV) words (lexicon adaptation) given acoustic data.

2.5.1 Lexicon expansion

2.5.1.1 WER performance analysis

In order to evaluate the performance of the proposed lexicon learning frame-

work, a small seed lexicon is built by randomly sampling a small portion (5%)

of words from the vocabulary of the expert lexicon of each task. With the seed

lexicon, we train a G2P model using Sequitur [13] and apply it to all OOV

(w.r.t the seed lexicon) words in the vocabulary of the expert lexicon, to get

the "G2P-extended" lexicons.7 A baseline system called G2P-ext is built using

7In this chapter we focus on lexicon learning for alphabetic languages. Thereby a G2P
model trained with a small seed lexicon is able to generate pronunciations for most words in
the expert lexicon.
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a G2P-extended lexicon with the optimal number of variants per-word tuned

on dev data, and another baseline system called G2P-1best is built using a

G2P-extended lexicon where we only take the top G2P pronunciation for each

word. With this G2P model and acoustic training data for each task, we can

build a learned lexicon using the proposed framework, and then train an ASR

system called “Lex-learn". Besides, we have an ASR system trained using the

full expert lexicon as the “Oracle" system. Note that the training recipes of

three ASR systems (G2P-ext, G2P-1best, Oracle, and Lex-learn) for each task

only differ in the lexicons (with the same vocabulary). All experiments were

done with Kaldi [24].

Table 2.2: ASR Performance on Librispeech (WER on the test-clean set (tuned on
WER of LF-MMI systems on dev-clean, without 4-gram LM rescoring) with different
lexicon conditions (the average # pronunciations per word for in-vocab words from
training transcripts, are shown in parentheses). The vocab of the full expert lexicon (a
subset of CMUDict) has 200K words.

WER
Oracle
(1.08)

G2P-ext
(5.05)

G2P-1best
(1)

Lex-learn
(1.42)

SAT 11.32 % 13.11 % 14.57 % 11.53 %
LF-MMI 6.44 % 6.76 % 7.15 % 6.64 %

We first conduct experiments on the Librispeech-460 task [25]. For each

lexicon condition, we use the 460h training data subset to build speaker-

adaptive trained GMM (SAT) models (the same AM training recipe as the "SAT

460" from [25]), on top of which we then train sub-sampled time-delay neural

networks (TDNNs) [26] with the lattice-free MMI (LF-MMI) [27] criterion. The

WERs are shown in Table 2.2. It can be seen that the learned lexicon performs

better than G2P-extended lexicons, and is close to the oracle lexicon. And
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the LF-MMI systems are much more robust to the lexicon quality than SAT

systems, i.e. the G2P-extended and learned lexicons perform closer to the

expert lexicon. The learned lexicon closes 88% (SAT)/ 36%(LF-MMI) of the

WER gap between the G2P-ext system and the oracle system. Also, looking at

the average number of pronunciations per word, the learned lexicon (1.42) is

much more compact than the G2P-extended lexicon (5.05), and is very close to

the G2P-1best lexicon (1), though it performs much better than the G2P-1best

lexicon by a large gap: 20.9% (SAT) / 7.1%(LF-MMI) relatively in WER.

Table 2.3: ASR Performance of lexicon learning for lexicon extension on Babel (WER
of SAT systems on the Dev10h set).

Language
(vocab. size)

WER
Oracle G2P-

ext
Lex-learn

Bengali (24.3K) 63.2% 64.4% 64.0%
Pashto (17.6K) 57.7% 59.6% 59.0%
Turkish (38.3K) 57.0% 57.9% 57.6%
Tagalog (21.1K) 55.4% 57.6% 57.0%

The proposed lexicon learning framework is also investigated in Babel

ASR tasks, where we have much less acoustic training data available. We

build SAT systems for Bengali, Pashto, Turkish and Tagalog, which are trained

on an IARPA-provided full language pack (FullLP) containing 80 hours of

transcribed speech for each language. The WERs were measured on IARPA-

provided 10 hours of transcribed speech as the development set8. From the

8
Bengali, IARPA-babel103b-v0.4b;
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results shown in Table 2.3 we can see that, lexicon learning brings 0.3%− 0.6%

absolute WER improvements over the G2P-extended lexicon. For languages

like Turkish, where we have a relatively larger expert lexicon, the 5% seed

lexicon contains enough words so that the G2P-ext system already performs

close to the Oracle system, and thereby the absolute improvements brought

by lexicon learning is relatively smaller.

2.5.1.2 Individual word recognition performance analysis

The performance comparison in WERs has given us an idea about the ben-

efits of utilizing acoustic information in lexicon learning. To have a deeper

understanding about the benefit, we will design experiments to answer the

following questions:

• Does the performance gain come from better recognizing words whose

pronunciations were touched (learned) by our method?

• For a specific word seen in training data, Does more acoustic examples

in training data result in larger performance gain in test?

Our assumption is that on words seen in training data, the proposed algorithm

would bring a larger performance improvement over a pure G2P-based lexicon

expansion method, and the more frequent they occur in training data, the

larger improvement we will get.

Pashto, IARPA-babel104b-v0.4bY;
Turkish, IARPA-babel105b-v0.4;
Tagalog, IARPA-babel106b-v0.2g.
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2.5.1.2.1 Evaluation metric Here we propose a simple metric which mea-

sures the recognition performance on a specific set of tokens from test data,

based on LVCSR results:

• Using timing information from the CTM from decoding and the CTM

obtained with reference transcriptions, we can align the ASR hypothesis

with the reference on token level.

• Then we compute the overlap between each reference token and each

hypothesis token.

• For each reference token, we pick the hypothesis token which has the

maximum overlap with it (could be none).

• Mark one reference token as a "miss", if the max-overlapping hypothesis

token is not the reference token.

• On a set of tokens, we define Token Miss Rate (TMR) as:

Token Miss Rate =
# Missed Tokens

# Tokens
× 100% (2.8)

Then we apply the proposed metric to the best ASR outputs of the Oracle/G2P-

nbest/Lex-learn systems shown before in the Librispeech-460 task (Table 2.2).

The test-clean dataset contains 63.9K tokens in total, and 52K of them are seen

at least once in training transcripts. So we measure the token miss rate of each

system on set of tokens seen/unseen in training data, and also on the whole

set.

We present both absolute and relative (to the Oracle system) token miss

rates on test in Table. 2.4. It could be seen that, on the "Seen" partition,
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lexicon learning considerably lowers the token miss rate, reducing the relative

degradation (compared with Oracle) from 15.9% to 3.7%, which is about 6

times larger than the overall improvement which is from 3.3% to 1.1%. This

confirms our earlier assumption. The relative performance change on the

"Unseen" partition is not statistically significant, because the absolute miss

rates are already very high. This implies it’s still hard to recognize words

unseen in training transcripts.

We realize that, out of the 52 tokens in test data which are seen in training

data also, 49.6K of them have their pronunciations touched by our method,

and of course for all words unseen in training data have their pronunciation

untouched by our method. To better support our assumption, we split the all

tokens in test data by the "touched"/"untouched" (by our method) criterion,

and we want to check whether most improvements really come from the

"touched" words, proving the effectiveness of our lexicon learning method.

It can be seen Table. 2.5 that, the overall relative improvement of lex-learn

over G2P, which is 2.1, indeed comes from the improvement on words of the

"touched" condition, which is 11.3. And the tendency is very similar as Table.

2.4, verifying that doing analysis on the "seen/unseen" partitions, which is

generally easier to conduct, is informative enough.

Similar results on dev data (seen/unseen partitions) are presented in Table

2.6. The relative gains are more significant, since the lexicon parameters were

tuned on dev data.

Next, for a specific token, we want to investigate the relationship between
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Table 2.4: Individual word recognition performance on Librispeech based on best
Nnet ASR outputs on test-clean, for words seen/unseen in training transcripts.

Token set
(size)

Token Miss Rate (%)
Oracle G2P-nbest Lex-learn

Seen (52K) 6.2 7.2 6.4
Unseen (11.9K) 98.2 98.1 98.6
Total (63.9K) 23.4 24.1 23.6

Token set
(size)

Token Miss Rate (relative % to Oracle)
G2P-nbest Lex-learn Improvement

Seen (53.8K) +15.9 +3.7 12.2
Unseen (11.6K) -0.12 +0.38 -0.4
Total (65.5K) +3.3 +1.1 2.2

Table 2.5: Individual word recognition performance on Librispeech based on
best Nnet ASR outputs on dev-clean, for words whose pronunciations were
touched/untouched by our method.

Condition #. words
by type

#. words
by token

Token Miss Rate (%)
Oracle G2P-nbest Lex-learn Impr.

Touched 7.4K 49.6K 6.1 7.1 6.3 11.3
Untouched9 0.6K 14.2K 83.3 83.2 83.7 -0.6
Overall 8.0K 63.9K 23.4 24.1 23.6 2.1

the recognition performance in test data and the amount of its acoustic exam-

ples in training data, answering the second question:"For a specific word seen

in training data, Does more acoustic examples in training data result in larger

performance gain in test?" We focus on all the 52K tokens seen in training data,

break down this token set into several bins according to their word frequency

in training transcripts, and show the relative performance degradation of the

baseline and our method, and compute the performance improvement. It

can be seen from Table. 2.7 that there is a positive correlation between the

frequency and the performance improvement, i.e. the more acoustic example

we have in training data, the larger relative performance gain we can get, in
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Table 2.6: Individual word recognition performance on Librispeech based on best
Nnet ASR outputs on dev-clean, for words seen/unseen in training transcripts.

Token set
(size)

Token Miss Rate (%)
Oracle G2P-

nbest
Lex-learn

Seen (53.8K) 5.9 6.9 6.0
Unseen (11.6K) 98.3 98.1 98.5
Total (65.5K) 22.3 23.1 22.5

Token set
(size)

Token Miss Rate (relative % to Oracle)
G2P-
nbest

Lex-learn Improvement

Seen (52K) +18.2 +2.7 15.5
Unseen (11.9K) -0.2 +0.3 -0.5
Total (63.9K) +3.8 +0.8 3.0

terms of recognizing this word in test data.

Table 2.7: Individual word recognition performance on Librispeech based on best
Nnet ASR outputs, for words with different frequencies in training transcripts

Frequency in

(training data)

#. words
by type

#. words
by token

Token Miss Rate (%)
Oracle G2P-nbest Lex-learn Impr.

[0, 5) 0.5K 0.6K 26.1 28.4 27.9 1.8
[5, 20) 1.2K 1.4K 14.0 15.1 14.1 6.5
[20, 100) 2.7K 4.2K 7.9 8.8 8.2 6.8
[100, ∞) 3.0K 43.4K 5.4 6.4 5.6 12.7

2.5.1.3 Investigating different pronunciation generation and selection ap-
proaches

In this part we plan to investigate how pronunciations derived from acoustics

and acoustic-evidence based pronunciation selection methods, including our

proposed method, affect the lexicon learning performance. In Table. 2.8, we

compare the proposed framework with various baseline lexicon expansion
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approaches, on the Librispeech-460 task (WER of SAT systems).

2.5.1.3.1 Evaluation metrics There are two evaluation metrics. The first

one is WER (4th column) on test data, which reflects the overall quality of the

expanded lexicon. The second one is the average number of pronunciations

per word in the expanded lexicon (3rd column), which reflects the lexicon size.

A smaller lexicon size means we’ll have a smaller decoding graph in test time,

which implies faster decoding.

2.5.1.3.2 Evaluation conditions and baseline methods In terms of seed

lexicon, in order to make the performance gap between different systems more

noticeable, we take a smaller seed lexicon containing only 1%(2K) randomly

sampled words from the same expert lexicon as before.

In terms of pronunciation candidate pool (1st column), we compare G2P

over G2P+PD (which means we put candidates from phonetic decoding (PD)

together with G2P generated candidates before candidate pruning).

In terms of candidate pruning criterion (2nd column), "G2P-score", as de-

scribed before, is a baseline built with a G2P-extended lexicon, taking n-best

candidates ranked by the G2P-score (with n tuned on dev data). "pp" means

pronunciation-probability-based pruning on G2P candidates". Basically we

first align acoustic training data with a large G2P-extended lexicon containing

all G2P generated candidates (up to 10 candidates per word, and we can

optionally add phonetic-decoding (PD) generated pronunciation candidates),

and then use max-normalized pronunciation probabilities [18] to prune those

candidates for each OOV word, with a tuned threshold (0.4). "BIC” means we
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use the same pronunciation candidate pool as pp, but using the Bayesian in-

formation criterion (BIC), as described before, as the pruning (model selection)

method. The last system "likelihood-reduction" is the proposed framework

(i.e. the "Lex-learn" systems listed before). For fair comparison, under different

lexicon conditions, the acoustic models were re-trained on top of the same

acoustic model (the one used in the G2P-score based pruning baseline system).

Results are presented in Table. 2.8.

2.5.1.3.3 Observation First, it can be seen that even if we only use G2P

based pronunciation candidates, acoustics-based pronunciation pruning could

still help a lot in WER (from 13.72% to 13.06%) and also in reducing the relative

lexicon size (from 6.57 to 3.77), compared with a G2P score based selection

criterion with a tuned threshold. This confirms the finding from earlier papers

like [18] [14]. Second, in terms of candidate generation, it can be seen that

adding PD candidates to the candidate pool is crucial to the lexicon quality

(0.82% WER gain), which implies the importance of using acoustic information

in the candidate generation stage. Furthermore, in terms of candidate pruning,

comparing with the pronunciation probability (pp)-based pruning criterion,

the proposed pronunciation selection method solely brings 0.18% WER gain

(from 12.24% to 12.06%) and lowers the number of pronunciations per word

from 5.43 to 1.59, meaning it results in a smaller lexicon. Also, notice that

the proposed method is also better than pronunciation-pruning with BIC, in

terms of both lexicon size (average number of pronunciations per word) and

WER performance. This confirms that the proposed pronunciation selection

framework enables us to achieve better ASR performance with a much more
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compact lexicon compared with other acoustic data-driven pronunciation

selection methods (pp/BIC-based).

Table 2.8: ASR performance (WER of SAT systems on the test-clean set, without LM
rescoring) comparison on Librispeech, with different lexicon expansion approaches.

Lexicon condition WERPronunciation
candidates

Pruning
criterion

#pronunciations
per word (avg.)

G2P G2P-score 6.57 13.72 %
G2P pp 3.77 13.06 %

G2P+PD pp 5.43 12.24 %
G2P+PD BIC 4.2 12.46 %
G2P+PD likelihood-reduction 1.59 12.06 %

2.5.2 Experiments: lexicon adaptation

We have just shown results on learning pronunciations for OOV words, i.e.

lexicon expansion. Here we want to investigate how the proposed method

works for learning pronunciations of IV words, introducing a new task –

lexicon adaptation. Basically, we aim at automatically fixing pronunciations of

IV words from an expert (reference) lexicon, which are wrong or significantly

mismatch with acoustic data, e.g. FDA : ‘f d a’ from the Cantab lexicon

(Tedlium).

Here is the procedures of applying the proposed lexicon learning frame-

work for lexicon adapation:

• Generate G2P+PD candidates for words from the reference lexicon, and

put them together with reference candidates into a "combined" lexicon.
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Figure 2.2: One example entry in the lexicon-edit file which presents the lexicon
adaptation results.

• Apply our pronunciation pruning framework, with hyper-parameters

set to reflect our prior preference to reference candidates (in most cases

we want to prune G2P/PD candidates more aggressively than reference

candidates, since most reference candidates are correct).

• Present the results in an human-editable "lexicon-edit" file (Figure 2.2).

• Optionally, we can apply inspection/refinements by linguists to lexicon-

edit file10, then it can be applied to the reference lexicon to produce the

adapted lexicon.

2.5.2.1 Experimental setup

We test the lexicon adaptation recipe on Tedlium[1] (English TED Talk) corpus.

It contains 118 hours of training data and 4 hours of development and test

data. The reference lexicon contains 152K words, where 57% words come

from CMUDict, and the left come from Festival Speech Synthesis System11,

meaning those pronunciations are not human-annotated and are therefore

error-prone.

10The size of the edit file is well controlled: e.g. If we are confident about most reference
pronunciations, by setting hyper-parameters properly, most words’ learned pronunciation are
just the original reference candidates, and these words won’t appear appear in the edit-file at
all. So, e.g. we only propose pronunciation changes to several thousands words for a linguist
to review.

11http://www.cstr.ed.ac.uk/projects/festival/
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We first train a baseline AM (TDNN-LSTM[28]) using the reference lexicon.

Then we generate the automatically adapted lexicon using the proposed

framework (without human refinements). The edit-file contains 5.6K words,

4.7K of them have their reference pronunciations given by CMUDict, meaning

our method suggests changes to lots of pronunciations given by the CMUDict

based on acoustic evidence.

2.5.2.2 Evaluation conditions

We basically have two goals to achieve with lexicon adaptation:

• Improve recognition performance on individual words directly, just by

re-decoding with the adapted lexicon.

• Improve general AM performance by re-training AM with adapted

lexicon.

In order to investigate how lexicon adaptation helps to the above goals,

we design the following evaluation conditions:

• baseline: Decode with the reference lexicon & baseline AM.

• re-decode: Re-decode with adapted lexicon & baseline AM.

• re-train: Re-train AM with adapted lexicon and then decode.

Also, we evaluate ASR performance on both word level (TMR, which is Token

Miss Rate. See Eq. (2.8)) and utterance level (WER), in order to understand

the effect of lexicon adaptation in depth.
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2.5.2.3 Evaluation results — word level

To understand where does the performance improvement come from, we split

the Tedlium dev and test data into two subsets: Out of the 45K tokens in

dev + test test in total, 3.7K (1.1K by type) have their pronunciation adapted,

and we call this subset of Ta. The left 41.3K tokens (4.2K by type, 99% seen in

training) constitute Tb. We then compute TMR on Ta and Tb separately.

It can be seen that even if we test on the merged dev+ test set, the size of Ta

is still small (3.7K). Thanks to the newer version of TED-LIUM data (version-3

[29]), we can now test our method on a much larger dataset. Basically, we

take all version-3 training data not present in version-2 training data (which

was used to train the acoustic models) to make a new test set called test.large.

This subset contains 162 hours of data, which is much larger than the 4 hours

dev+test data we have. The evaluation scheme is the same as before: Out of

the 1536K tokens in the test.large set in total, 126K have their pronunciation

adapted. Again we call it Ta, and the left 1410K as Tb, and compute TMR on

Ta and Tb separately.

Condition Token Miss Rate (%)
Ta Tb

baseline 7.99 9.74
re-decode 7.67 9.78
re-train 7.61 9.45

Table 2.9: Token Miss Rate on all tokens from Tedlium test+dev sets, whose pronun-
ciations are adapted (Ta) during training by our method or not (Tb).

From Table. 2.9 we can see the results. On Ta where we adapted pronun-

ciations, 4% relative TMR improvement is achieved simply by re-decoding
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Condition Token Miss Rate (%)
Ta Tb

baseline 9.45 32.3
re-decode 9.19 32.3
re-train 8.98 32.3

Table 2.10: Token Miss Rate on all tokens from Tedlium test.large set, whose pronun-
ciations are adapted (Ta) during training by our method or not (Tb).

with the adapted lexicon, proving adapting pronunciations directly helps

recognize individual words. Re-training gives similar results. The trend in

Table. 2.10 is similar, with re-decoding giving around 3% improvement over

baseline. But re-training gives around 0.2% absolute improvement further,

implying re-training the AM with the adapted lexicon helps with overall AM

performance.

On Tb where words don’t have their pronunciations adapted, re-decoding

doesn’t give improvements as expected, but re-training gives some improve-

ments in Table. 2.9, though in Table. 2.10 it’s not giving improvement.

Here are some example tokens which were missed in the baseline, but

correctly recognized in the "re-train" condition:

Token Pronunciation
reference learned

schizophrenic SH IH Z AH F R EH N IH K S K IH T S AH F R EH N IH K

harry HH EH R IY HH AE R IY

ipcc IH P K AY P IY S IY S IY

Table 2.11: Example tokens missed in the baseline, but correctly recognized in the
"re-train" condition

In Table. 2.11, we can clearly see why lexicon adaptation helps on rec-

ognizing particular words. We intended to select examples reflecting three
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different scenarios. It can be seen that, lexicon adaptation helps correct the

wrong syllable "SH IH Z" in the first example. The second examples reflects

adaptation of word harry from British accent to US accent, and the third

example shows it corrected the pronunciation of an acronym "IPCC".

2.5.2.4 Evaluation results — utterance level

Similarly as word level evaluation, we separate test utterances into two subsets

according to whether the utterance contains words whose pronunciations are

adapted or not (from Ta). Here are the statistics:

For the dev+ test set, out of the 1662 utterance in total, 1333 of them contain

at least one token in Ta. We call this subset Ua
12. And the left 329 utterances

constitute subset Ub. And we compute WER on Ua and Ub separately in Table.

2.12.

Likewise, for test.large set: out of the 97.7K utterance in test.large in total,

65.6K of them contain at least one token in Ta. We call this susbet Ua
13. And

the left 32.1K utterances constitute subset Ub. We also compute WER on Ua

and Ub separately, in Table. 2.13.

Condition WER (%)
Ua Ub

baseline 8.86 11.4
re-decode 8.85 11.4
re-train 8.72 10.7

Table 2.12: WERs on all tokens from Tedlium dev + test set, on two subsets Ua
(containing at least one word from Ta) and Ub (otherwise).

12On average, each utterance in Ua contain 2.8 tokens from Ta
13On average, each utterance in Ua contain 1.9 tokens from Ta
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Condition WER (%)
Ua Ub

baseline 15.1 16.4
re-decode 15.1 16.5
re-train 14.9 16.2

Table 2.13: WERs on all tokens from Tedlium test.large set, on two subsets Ua
(containing at least one word from Ta) and Ub (otherwise).

From Table. 2.12 and Table. 2.13, we can see that, as the average num. of

tokens with changed pronunciations (2.8 in dev + test and 1.9 in test.large) is

small, we’re not able to see improvement on the overall WER be re-decoding

on Ua. But we indeed get improvements on both Ua and Ub by re-training

the AM on both dev + test and test.large, which confirms the adapting the

pronunciations to acoustic evidence helps with overall AM performance (rang-

ing from 1% to 6%). Note that in terms of statistical significance of WERs,

results on test.large is much more believable, where we have 0.2 absolute WER

improvements on both Ua and Ub consistently over dev + test and test.large.

2.6 Summary

In this chapter, we described an acoustic-data driven lexicon learning frame-

work using a likelihood-based criterion for selecting pronunciation candidates

from multiple sources, i.e. G2P and phonetic decoding. With the proposed

criterion, the pronunciation candidates are pruned iteratively in a greedy

way, based on the acoustic data likelihood reduction caused by removing
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each candidate. This approach enables us to construct a compact yet infor-

mative lexicon for both generating pronunciations for OOVs (lexicon expan-

sion) or improving/adapting pronunciations for IVs (lexicon adaptation).

Experiments on various ASR lexicon expansion tasks show that, with the

proposed framework, starting with a small expert lexicon (containing 0.88K

to10K words), we are able to learn a lexicon for OOV words which performs

closer to a full expert lexicon in terms of WER performance on test data, than

lexicons built using G2P alone, with a pruning criterion based on pronun-

ciation probabilities, or BIC. Individual word recognition experiments have

confirmed the WER improvements indeed come from improved recognition

performance of words whose pronunciations are learned by the proposed

method. Also we have shown there’s a positive correlation between word the

number of acoustic examples and performance of lexicon learning. Experi-

ments on lexicon adaptation task shows that for adapting the pronunciations

of IV words in a reference lexicon to acoustic evidence helps improve both

recognition performance on individual words just by re-decoding with the

adapted lexicon, and overall AM performance by re-training AM with the

adapted lexicon.
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Chapter 3

Handling OOVs in Test Time

In the previous chapter, we focused on using acoustic data to improve estima-

tion of OOV words’ pronunciations in AM training data. This helps us better

utilize the AM training data at hand, and thereby improving ASR performance

during test time. In this chapter, we’ll focus on dealing with OOVs in ASR test

condition, i.e. how to detect and recover spellings of OOV words in test data,

given we have neither a word’s spelling nor its pronunciation in the lexicon.

The vocabulary of human speech of a particular language is intrinsically

infinite. As a language evolves, there are always new words occurring. There-

fore it’s not possible to cover all words in a language by a closed vocabulary,

and in closed-vocabulary ASR, OOV words in test utterances can’t be recog-

nized. And the recognizer will output an acoustically similar in-vocabulary

(IV) word as the substitution. It mostly won’t help with human readability,

since there’s no guarantee of acoustic/semantic similarity between the sub-

stitution and the original OOV word. Also, the occurrence of OOVs affects

recognition of their surrounding IV words. This is one of the biggest chal-

lenges in ASR and related applications like spoken term detection/keyword
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search. In many cases, the OOV issue is of particular interest, when OOVs are

proper nouns like human/place names, which could be important keywords

given a certain context. Different from the keyword search task, in ASR, we

don’t have OOVs’ spelling known in advance, making the problem more

challenging. So, research into OOV detection and recovery for ASR has been

of particular interest in the ASR community, which is the main focus of this

chapter.

Besides, OOV retrieval/keyword search is another important related task.

It’s generally less challenging than OOV recovery, in a sense that we know

the spelling (and even acoustic examples) of the OOV we want to retrieve

from test speech in advance, and we need to retrieve the location of such

instances from speech. In contrast, in OOV recovery we don’t know either

the pronunciation or spelling of the OOV in test speech, while we want to

recover it’s spelling as accurate as possible. So it’s fair to say progress in OOV

recovery research, which is a harder task, could benefit OOV retrieval as well.

The goal here is to build a OOV detection & recovery pipeline that could be

easily integrated to a standard WFST decoding and RNNLM re-scoring frame-

work, with both OOV recovery and overall decoding performance improved

by enabling OOV LM probability estimation, efficient 2nd pass decoding,

and open-vocabulary word RNNLM re-scoring. Also we aim to minimize

additional computational overhead, making it a practical framework for word-

based open-vocabulary ASR decoding.
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3.1 Motivation and existing methods

3.1.1 OOV modeling and detection

In terms of OOV detection, there are generally two families of approaches

being well investigated. The first family models OOVs implicitly with sub-

word units.

3.1.1.1 Modeling OOV implicitly

There are two types of approaches within this family:

• Detects OOVs by finding inconsistency between sub-word (e.g. phone)

and word recognition results [30, 31, 32]. This type of approach is very

intuitive. The rationale is that when there’s an OOV, the word recognizer

will have to "guess" and approximate the OOV with an IV word, so that

phone posterior distribution is relatively flat (because of confusion about

predicted phones), and disagrees with the phone posterior distribution

from the phone recognizer at the same region. While at region of IVs, the

phone posterior distribution is relatively sharp, implying certainty about

predicted phones, and it agrees with the phone posterior distribution

from the phone recognizer. The disadvantage of this approach is that

two separate passes of decoding are always needed.

• Build a hybrid language model combining word and sub-word (e.g.

word pieces/fragments) units [33, 34, 35, 36, 37, 2, 38, 39, 40]. For ex-

ample, one can train an LM on texts where low frequency words are

replaced by word pieces/phones [38, 2], thereby combining both word
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and sub-word level LM information into a single hybrid LM. Then

during decoding, at the OOV regions, word pieces will have higher

posteriors in the confusion network/lattices.

There’s also some work combining the above two types of approaches, e.g.

[41]. For most methods in this family, a classifier is built to detect OOVs. One

can either design rich features extracted from lattices/confusion networks,

e.g. fragment posterior, word entropy [36, 37, 2], or directly feed into "raw"

features like phone posteriors into a neural network [32]. The disadvantage of

this family of approach is that, labeled data is usually required for building the

OOV classifier, and also implicit OOV modeling makes it not straightforward

to conduct downstream processing like OOV recovery.

3.1.1.2 Modeling OOV explicitly

This family of approaches was first proposed in [42], while success on a limited

domain (weather information) was reported. Then more recently, [43, 44]

proved this approach works well for OOV detection in the LVCSR setting.

Basically, the goal is to build a filler model/generic word model, with a special

structure, to "absorb" OOVs during decoding. The generic word model is

usually a sub-word language model, e.g. a bi-gram phonemic language model

[42, 43], or graphone (grapheme-phoneme pair) language model (i.e. a G2P

model) [45], built to model the OOV pronunciations. It’s combined with the

pronunciation lexicon, as a hybrid lexical model (HLM), and the generic word

model is tagged by the OOV symbol <unk>. Correspondingly, the language

model is also open vocabulary, in a sense that the OOV symbol <unk> occurs
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as a separate unigram.

A variant of this approach is to embed the sub-word language model

into the word language model rather than the lexicon, resulting in a hybrid

language model [46, 43]. The advantage is that we can use modeling units

larger than phone, e.g. phone multi-grams (variable length sequences of

phones) in the sub-word language model. In this case, extra entries mapping

the sub-word units to phones need to be added in the lexicon. So it’s still

a hybrid lexical model, modeling the pronunciation of both words and sub-

words. Besides, rather than incorporating the sub-word LM into word LM in

a hierarchical manner, another option is to built the mixed sub-word + word

LM in a flat manner [47, 48]. And this approach can be further combined with

the hybrid lexical modeling approach (to be more specific, a graphone LM) to

produce a hierarchical [49] language model. Compared with training a sub-

word LM from in-vocabulary words (the HLM approach), the data preparation

on training LMs on hybrid text data and dealing with word boundaries are

more complicated. However this idea is very similar to word-piece (e.g. byte-

pair encoding (BPE)) based modeling approaches [50], which are becoming

popular recently for both MT and ASR, mostly in an end-to-end setting.

With the hybrid lexical model and open-vocab/hybrid language model,

the decoding graph will be a hybrid decoding graph capable of producing

both IV words and OOV (<unk>) tokens with their phonetic transcriptions

(pronunciation) retrieved from the generic word model. During decoding,

the recognizer is free to go through either in-vocabulary words or the generic

word model, whichever maximizes the total likelihood of a full lattice path.
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Where and how likely <unk> tokens occur in lattices, is decided by the sub-

word language model, the unigram probability of <unk> in the word language

model, and acoustic observations. For simplicity we will name this family of

approaches as the HLM approach.

There are several advantages of modeling OOVs explicitly. First, for OOV

detection, a separate recognizer / decoding pass is no longer needed. Neither

will we need to build a classifier to detect OOVs. Therefore it could better fit

into the standard decoding framework ignorant of the OOV issue. In terms

of OOV recovery, as we model OOVs explicitly as a separate lexical unit (the

<unk> token), OOV candidates will occur in lattices/confusion networks as

separate tokens, with their pronunciations produced by the generic word

model, aligned with the word boundary. This makes it straightforward to

recover the spelling of OOVs, which is important to down-streaming applica-

tions like OOV recovery/retrieval. So in our work, we will follow this idea

(with different implementation details, which we will specify). However, to

our best knowledge, there has been no serious research done with compari-

son between this HLM-based OOV detection approach, and the "implicitly

modeling OOV" approach, which will be one of the contributions in this

dissertation.

3.1.2 OOV recovery

In terms of OOV recovery, as we can find the pronunciation of predicted <unk>

tokens from lattices/one-best hypothesis, the most straightforward method for

recovering OOVs is to apply a P2G model on the phone sequences to obtain
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the spelling of OOV candidates, which has been proved to be successful

in OOV recovery in an LVCSR setting [46, 44]. Therefore we adopted this

approach in our work.

As there are many challenges in recovering OOVs, e.g. phone sequences

aligned to <unk> are noisy so that multiple tokens of the same OOV word are

recognized as different phone sequences, especially the word boundaries are

hard to be aligned accurately,.etc.

Therefore, focuses along two directions have been proposed to improve

this situation:

3.1.2.1 Clustering OOV candidates

Along one direction, various similarity scoring and clustering techniques

have been proposed. It’s shown in [39, 48, 51] that clustering frequent OOVs

with linguistic/acoustic features and context information of OOV candidates

from the one-best hypothesis helps with OOV recovery performance, and

also other tasks like Query-by-Example (QbE). More recently, [44] proposed

retrieving and then clustering OOV instances as phone lattices from word

lattices, by pair-wise FST composition. This type of approaches is supposed

to be able to deal with slightly different acoustic instances of the same OOV

more robustly, though computationally expensive, because of the nature of

FST operations. Also, this direction assumes that there are lots of recurring

OOVs, so it’s always applicable and worthwhile to cluster the detected OOV

instances. However in our work we focus on infrequent/rare OOVs, that’s

why we won’t pursue this direction. In our understanding, if some OOVs are
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very frequent, it’ll be worthwhile to get human efforts to identify such case

and add the word in concern into lexicon.

3.1.2.2 Estimating OOV LM probabilities

Along the other direction, there’re attempts to improve OOV recognition per-

formance by extending LM during test time to better estimate LM probabilities

of OOVs. [52, 53, 54] investigated estimation of OOV LM probabilities where

OOVs are the predicted words, or prediction of IV words’ probabilities with

OOVs in the history, in both n-gram LM and RNNLM. The methodology is,

given the ground-truth spelling of the OOVs, they could estimate the LM

probabilities of OOVs by looking at the occurrence statistics from extra corpus

containing these OOVs, or use similarity-based approaches1 to estimate them

from probabilities of IV words. These methods tried to incorporate capability

of dealing with OOVs into the LM in test time, without having to change the

architecture or re-train the LMs. However all these efforts assume we already

have access to some extra corpus containing these OOVs, meaning we know

the ground-truth spelling of them. In such cases, a better baseline should be

LM adaptation-based approaches like [55], which is not investigated in those

works. LM adaptation-based approaches should be investigated in such cases,

since it’s found in [53] that using extra corpus to learn the LM behavior of

OOVs is more effective than using the behavior of similar IVs. Though in our

research, in most places we assume no access to extra corpus containing these

1They have shown that using similar (e.g. closest in the word embedding space) IV words’
LM probabilities to estimate OOV LM probabilities gives no WER improvement than treating
all OOVs equiprobable. The reason is probably that, there’s no guarantee that an OOV,
especially for rare name entities, could always find a reliable set of IV neighbors. Therefore
it’s hard to guarantee estimating LM probabilities based on the IV neighbors is robust.
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OOVs, we overall follow this direction. The reasons is that, not like clustering

OOV candidates, estimating LM probabilities for recovered OOV candidates is

a must. Also this is a relatively new problem, especially for dealing with OOVs

in word-level RNNLMs. Note that recently [56] proposed a method for end-

to-end ASR decoding with RNNLMs at both the character and word level2.

Similar as the hierarchy n-gram LM approach, during decoding, hypotheses

are first scored with the character RNNLM until hitting a word boundary,

then a word RNNLM will be used for re-scoring IV words, while the character

RNNLM provide scores for OOV words. Our work adopts the similar idea of

estimating OOV LM probabilities by a phone-level/character-level LM. While

instead of combining two RNNLMs at decoding time, which is computation-

ally expensive, after collecting OOV candidates from 1st pass decoding, we

aim at extending the vocabulary and architecture of the word RNNLM, in

order to enable re-scoring hypothesis containing OOVs efficiently, still with a

single word-level RNNLM, avoiding extra computational overhead.

3.1.2.3 Dynamic vocabulary expansion within the WFST decoding frame-
work

In OOV recovery, after estimating the LM probabilities of OOV candidates and

expanding the lexicon to cover the OOV candidates, a second pass decoding is

needed, which provably improves both overall decoding decoding results and

OOV recovery results. However, within the WFST decoding framework [57]

for conventional hybrid ASR, a closed-vocabulary is pre-determined when

2Although using a character LM alone solves the OOV problem in the end-to-end ASR
setting, it’s generally believed that character LM under-performs relative to word LMs for
languages with a small character vocabulary like English [56].
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building the decoding graph. Re-building the decoding graph with the new

language model and lexicon is too expensive at run-time 3. Therefore, methods

which allow us to dynamically expand the vocabulary in an efficient way,

without re-building the whole decoding graph, is highly favored. Generally,

with the WFST decoding framework, there are two types of approaches to

deal with this problem: The first type approaches compile the decoding graph

on-the-fly with context dependency and look-ahead, or conduct vocabulary

expansion and language model biasing on-the-fly [59, 60, 61, 62, 63]. The

second type of approaches try to compile decoding graphs corresponding

to different LM/lexicons separately, and then stitch pre-compiled graphs

together dynamically. Compared with the fist type of approaches, it’s simpler

to implement and generally much faster, because we avoid re-compiling

the whole decoding graph at run-time, especially in cases where most of

the decoding graph is static, and only small parts in the lexicon/LM FSTs

need to be changed. In order to make the computational complexity under

control, some constraints on the context is usually needed. In this work we

use the "Grammar Decoder" from Kaldi4, which belongs to the second type of

approaches and works with left-biphone models. With the grammar decoding

framework, we’ll be able to extend the LM and lexicon to include recovered

OOV candidates from 1st pass decoding in an efficient way for 2nd pass

decoding, with minimum computational overhead.

3Except when we apply some strong constraints on the phonetic context, e.g. context-
independent phones [58], which makes it possible to simply inject the extra grammar FST
representing OOVs/personal contacts into the decoding graph at reserved locations.

4The grammar decoder is developed by Daniel Povey. No published paper is available yet.
Please refer to http://kaldi-asr.org/doc/grammar.html for details
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3.2 Hybrid lexical model based OOV detection and
candidate generation

In this section, we will review the hybrid lexical modeling (HLM) approach

and introduce our implementation. Then we will review one typical method

[2] of the "implicitly modeling OOV" approach. We then compare it with the

HLM approach in OOV detection and recovery performance, as well as their

impact to overall decoding performance, all under an LVCSR setting. Besides,

we’ll also compare with a trivial baseline approach of dealing with OOVs

conventionally used in word based ASR, i.e. using a single (garbage) phone

to model the pronunciation of an OOV in lexicon.

3.2.1 Hybrid lexical modeling

In modern ASR, Weighted Finite-State Transducer (WFST) [57] based decod-

ing is the most widely used framework for ASR decoding. In WFST decoding

framework, decoding is performed on a search space constrained by a decod-

ing graph as an WFST, composed of acoustic model (AM), language model

(LM), and lexicon all as FSTs. To be more specific, in Kaldi [23], the decoding

graph is a composition of

H ◦ C ◦ L ◦ G (3.1)

where H is an FST containing the HMM definitions. Its output symbols

represent context-dependent phones: its input symbols are acoustic modeling
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units (transition-ids); C is an FST representing the context-dependency: its

input symbols represent context-dependent phones and its output symbols are

phones; L is an FST representing the pronunciation lexicon: Its input symbols

are phones and its output symbols are words; G is an FSA representing the

language model. Therefore, a path through the decoding graph represents a

mapping from a string of acoustic modeling units to a string of words. And

the weights on the path encodes scores from HMM transition probabilities

and LM, while the HMM emission probabilities will be given by the acoustic

model during decoding.

In lexicon, conventionally, we use a single (garbage) phone to model the

pronunciation of OOV. This results in a lexicon FST as shown in Figure3.1 for

example (In the figure, each loop represents one lexicon entry. The outputs of

each loop is a word and the input is its pronunciation. The loop at the bottom

represents the single-phone pronunciation <oov> of the OOV token <unk>).

Although simple, this approach cannot give good acoustic representation of

OOVs, and usually gives poor OOV detection performance (which will be

verified in experiments). Also OOV recovery won’t be possible.

Following [42, 44, 43], we use the hybrid lexical model (HLM) approach

to deal with OOV pronunciations in the lexicon. The first step is to first

train a sub-word (here we use phone as the sub-word unit) language model,

representing a probabilistic distribution over all possible phone sequences, on

the phoneme sequences of all pronunciation entries from the lexicon (where all

word-position-dependency has been removed). In order to keep the phonemic

language model (PLM) compact, we limit the transitions to seen bi-grams
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Figure 3.1: A lexicon as a Finite-State-Transducer (FST), with a single-phone OOV
model.

Figure 3.2: A simple phonetic LM represented as an Finite-State-Transducer (FST))

of phonemes. Then, we compile this PLM into an FSA (See Figure 3.2 for

example).

However, there are two undesirable properties of this FST. 1. This FSA

can accept/generate phoneme sequences with any length. But apparently a

single phone doesn’t make sense to model the pronunciation of an OOV, and

allowing this will cause trouble when we decoding using the hybrid lexical
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Figure 3.3: An FST accepting only phoneme sequences whose length is at least 2,
and adding word-position-independent markers to phonemes

model5. 2. The PLM was trained on word-position-independent phonemes

to keep PLM small, while we need word-position-dependent phonemes to

represent OOV pronunciations. We solve this by composing the PLM FSA

with a separate phoneme-sequence-constraint FST encoding 1. the constraint

of minimum length (e.g. 2) of the generated sequence; 2. mapping from word-

position-independent phonemes to word-position-dependent phonemes. An

example is given in Figure 3.3, where the phoneme set composes of only

three phonemes "a", "b", "c", the allowed minimum phoneme sequence length

is 2, and Kaldi’s word-position-dependency markers are used, where "B"

stands for "at the beginning of a word", "I" stands for "inside a word", and

"E" means "at the end of a word". It can be seen that by composing PLM

FSA with this constraint FST, the final PLM FST is guaranteed to generate

word-position-dependent phones, with length being at least 2.

Therefore we have created an PLM-FST representing a phonemic language

model suitable for modeling OOV pronunciations. Then we can insert this

PLM-FST to the L.fst (the lexicon fst), i.e. replacing the pronunciation of the

5To be more specific, the consequence of allowing the PLM to generate single phone
pronunciations is that, lattices from decoding will contain a lot of <unk>’s with a single phone
pronunciation, which is wrong.
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Figure 3.4: Embed the phonetic LM into the lexicon with the fstreplace operation.

<unk> word with a PLM (See Figure 3.4). And this is the so-called Hybrid

Lexical Model (HLM). Here we use OpenFST’s fstreplace operation, which

perfectly fits this application. It performs the dynamic replacement of an

arc in one FST with another FST. Here we replaced the arc representing the

single-phone OOV lexicon entry, with the PLM-FST.

To summarize, similar as what’s stated in [43] and [42], the decoding graph

can be represented as the following FST operations:

H ◦ C ◦ (L ∪ (Gp ◦ Cp)) ◦ G (3.2)

where H, C and G are the same as in Eq. (3.1), Gp stands for PLM FSA, and

Cp stands for the phoneme-sequence-constraint FST, which is major difference

between our implementation and previous approaches, besides using the

efficient fstreplace operation for building HLM.
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Then we adopt this hybrid decoding graph in the standard ASR decoding

pipeline. After decoding OOV occurrences will occur as <unk> tokens in the

lattice, with their predicted pronunciations occurring as the one-best path of

local phone lattices in the word lattice. After applying P2G (i.e. applying

a G2P model inversely) to the generated OOV pronunciations, these phone

sequences are mapped to character sequences, giving the recovered spelling

of OOV candidates. We’ll specify in the next part.

3.2.2 First pass decoding for OOV detection

During decoding, the entrance into the phoneme sub-graphs can be controlled

by the unigram probability of <unk> in the N-gram language model, and we

name it more intuitively as OOV cost (Coov). This cost can be used to balance

the contribution of the OOV phonemic grammar to the overall score of the

utterance. To be more specific, when decoding with the hybrid decoding

graph, boosting Coov helps encourage hypothesis paths to go through the

phoneme sub-graph modeling OOVs, and vice-versa. In the lattice generated

from decoding, besides acoustic score, the score of a specific instance of OOV

candidate is determined both by Coov (the language model score of OOV) and

the probability of the best phoneme path given by the phoneme sub-graph

(the pronunciation score of OOV). In the proposed pipeline, we adjust Coov

according to the estimated OOV rate in validation data. Also we should limit

the <unk> history by removing any N-grams where <unk> is the second-to-

last word, and remove back-off probability from the lines where <unk> is the
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predicted word6. Then the next step is to compile the decoding graph (HCLG)

with the AM, LM FST, and hybrid lexical model (HLM). After building the

HCLG decoding graph with HLM, phoneme sub-graphs, which model the

OOV pronunciations, occur in the decoding graph.

3.2.3 OOV candidates generation

We align arcs in the lattices with word boundaries, and collect all <unk> arcs

with their pronunciations. This way we obtained all phonetic candidates of

OOVs. Furthermore, we can get all word candidates by applying a P2G model

(trained on the lexicon before decoding) to the pronunciations. There are

several aspects that could affect OOV candidates generation:

• Lattice-determinization When we dump lattices, we have several choices

in terms of determinizing the lattices which affects how many OOV

pronunciation candidates we have per instance. If we determinize at

the (word+phone) level but not at the word level (–word-determinize-

lattice=true and –determinize-lattice=false in Kaldi’s terminology), then

for each <unk> instance in the word lattice, a phone lattice is left there,

and thereby the lattice retains multiple pronunciation variants. With

this, we will be able to do some more advanced post-processing like

picking these phone lattices and clustering/merging them [44]. The sec-

ond option is to determinize at both (word+phone) level and at the word

level (–word-determinize-lattice=true and –determinize-lattice=true in
6This is important to guarantee there won’t be too many <unk> arcs in the G.fst. Oth-

erwise, the final HCLG composition may blow-up, since we use a phonemic LM to model
pronunciation of <unk> in L.fst, meaning there’ll be too many local phone graphs embedded
in the word graph if there are many <unk> arcs in G.fst
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Kali’s terminology). By doing this we always take the one best path of

a local phone lattice representing an <unk> instance, so that for each

<unk> instance we have a unique pronunciation left. We experimented

with both options, and decided to take the second one in our pipeline.

Reasons are:

– Not determinizing at word level could cause a blowup in the fol-

lowing lattice word alignment procedure, and we’ve found doing

this causes slight overall WER performance (considering tuning).

– Even if we determinize at both word level and word+phone level,

we can still obtain <unk> arcs with similar locations but different

pronunciations. The reason is that these arcs belong to different

<unk> instances, i.e. these <unk> arcs belong to different word

sequences in the lattice.

• P2G: When applying P2G, we have noticed that taking more variants

besides the top variant doesn’t help WER performance or OOV recovery

performance (from one-best hypothesis). For search-related applications

(e.g. OOV keyword search), which is not the focus of this dissertation,

taking more variants are usually helpful. [64].

3.2.4 A baseline approach of implicitly modeling OOV: the
IBM Hybrid LM + classification method

In this section, we introduce one OOV detection method from the family of

"implicitly modeling OOV" approaches involving a hybrid LM and a dis-

criminative classifier [2], which we’ll compare with our HLM-based OOV
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Figure 3.5: Confusion network example (from [2])

detection method in the experiments. Basically, this method decode with a

hybrid language model containing both words and fragments (word-pieces).

The fragments, as filler models, are variable length phone sequences that are

introduced to implicitly modeling OOVs by absorbing them.

After obtaining first pass decoding results on development data as con-

fusion networks (see Table 3.5), for each bin, we extract the following three

features:

Fragment Posterior = ∑
f∈tj

p( f |tj) (3.3)

Entropy = − ∑
w∈tj

p(w|tj) log p(w|tj) (3.4)

Max. Posterior = max
w∈tj

p(w|tj) (3.5)

to train a maximum entropy (MaxEnt) classifier, with three categories:

OOV, in-vocabulary error (WErr), and in-vocabulary correctly decoded word

(WCorr). Training labels are obtained by aligning the hypothesis with the

reference text on development data. The rationale is that: An OOV word does
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not match well with IV words, so that it’s more likely to have higher posterior

of fragments; Also, there is likely to be more confusion in the bin containing

an OOV, so that entropy is higher and maximum posterior is supposed to

be smaller. During evaluation, OOV detection is conducted by decoding test

data, generating confusion networks and then applying the classifier to each

bin to give predictions.

3.2.5 First pass OOV recovery

For each recovered OOV candidate, we assign a unique ID and add it to the

word list. Then we replace the word ID of all <unk> arcs by the ID of OOV

candidate recovered from applying P2G to its pronunciation. When collecting

the <unk> arcs, we indexed each arc by its starting state + ending state. This

information is carried along when we map the pronunciation on the arc to a

recovered OOV candidate, so that when want to insert back recovered OOVs

into lattices, we can easily retrieve a specific arc from lattice and replace its

word-ID by the recovered OOVs’ ID. On top of this lattice, we can optionally

do re-scoring with a large N-gram LM with OOV candidates inserted. Or we

can just take the one-best hypothesis from the lattice as decoding result, which

contains recovered OOVs.

3.2.6 Experiments

3.2.6.1 Experimental setup

We use Switchboard conversational speech recognition task as the test bed. We

use the original 300h training data with the 303K lexicon covering all words

66



in training data, to train an AM (TDNN-LSTM [28]) and an n-gram LM. Here

is the information of two test sets:

Test set # utts. # Tokens # utts.
w/ OOVs # OOVs

Eval2000 (3.8h) 4.5K 40K 282 347
RT03 (6.2h) 8.4K 71K 356 455

For our HLM approach, we train the phonemic language model on the

303K lexicon, compile hybrid decoding graph, and decode. To evaluate perfor-

mance, we align the hypothesis with reference text (Basically, for each word

from reference text, we align it with the max-overlapped word in hypothesis

text, and regard "<unk>" in hypothesis as positive predictions), and then OOV

detection results were reported by measuring precision, recall, false alarm

rate, and F1:

Recall =
# OOVs detected

# OOVs in reference
× 100%

False Alarm Rate =
# OOVs reported - # OOVs detected

# IVs in reference
× 100%

Precision =
# OOVs detected
# OOVs reported

× 100%

F1 =
2× Precision× Recall

Precision + Recall

After mapping the <unk> tokens to recovered OOVs by P2G, we can also

compute the character error rates (CER) on the OOV tokens to evaluate the

1st pass OOV recovery results:

CER =
#Substitution + #Deletion + #Insertion errors

# Characters in all ref. tokens
× 100% (3.6)
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For the baseline IBM method, we first train a tri-gram phonemic LM using

the lexicon, and then sample 1 million fragments from a tri-gram phonemic

LM, putting them into both the lexicon and word LM to build a hybrid LM,

and we adopt the probabilities of phone sequences assigned by the phonemic

LM as the unigram probabilities in the LM [64]. Then we decode development

utterances to generate confusion networks, and train the MaxEnt classifier.

Then we decode test data and apply the classifier to get predictions on each

token. After aligning the hypothesis with reference text we report the same

OOV detection metrics as we did for the HLM approach. Note that we can

also compute the character error rates (CER) on the OOV tokens to get an

idea of how the hybrid LM approach perform in OOV recovery, since each

OOV token will be aligned with either an IV word or a fragment. Results on

Eval2000 were produced by a MaxEnt classifier trained on RT03’s utterances,

and vice versa.

We also test with the trivial method of modeling OOVs with a single phone

in the lexicon, with the same OOV detection metrics. OOV CERs are not

reported since it’s not possible to recover OOVs with this approach.

3.2.6.2 Experimental results

3.2.6.2.1 OOV detection OOV detection results as ROC curves are shown

in Table 3.6 and Table 3.7. For the Hybrid Lexical Modeling (HLM) approach

and the single-phone OOV modeling approach, we sweep through Coov (uni-

gram probability of <unk>) to get ROC curves.

For the IBM method, we sweep through the score threshold of the MaxEnt
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Figure 3.6: OOV detection results on eval2000

classifier to get the ROC curves. We also tune the fraction of unigram prob-

ability mass allocated to fragments in hybrid LM, e.g. "IBM-0.1" means the

unigram probability mass allocated to fragments is 0.1.

It can be seen that on both data sets, as expected, increasing the fragment

fraction in LM results in better OOV detection performance for the baseline

IBM method (higher ROC curve). And the HLM approach out-performs the

baseline IBM method, which is interesting since this implies a dynamic OOV

filler model, which generates OOV hypothesis dynamically, is better than

a classifier-based approach using word-pieces as statically-generated OOV

fillers, which requires labeled training data. Besides, the trivial single-phone

approach does a bad job of detecting OOVs, as expected.
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Figure 3.7: OOV detection results on RT03

3.2.6.2.2 First pass OOV recovery Here we report first pass OOV recovery

results measured on the setup with the highest F1 score for the HLM and

baseline IBM approaches. Then we measure the CER between each ref. and

hyp. token on all reference OOV tokens with True Positive detection. Because

of the nature of acoustic variants, it’s usually hard to recover OOVs’ spelling

exactly. However approximately recovered OOVs still help improve human

readability. So, as for performance measurement, we are going to use CER as

the major metric. For experiments in the next section where we focus on OOV

recovery, we’ll also report WER on OOVs.

Table 3.1: OOV recovery performance on Eval2000

Max. detection F1 # True Pos. CER (%)
IBM method 0.326 151 49.8

hybrid lexical model (HLM) 0.355 119 32.7
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Table 3.2: 1st pass OOV recovery performance on RT03

Max. detection F1 # True Pos. CER (%)
IBM method 0.266 128 54.7

hybrid lexical model (HLM) 0.319 151 40.0

From results reported in Table 3.1 and 3.2, it can be seen that overall, the

HLM approach performs better than the IBM baseline, on both F1 score and

CER on true positive tokens, probably because of the bigger freedom of mod-

eling OOV spellings with a phonemic language model in the HLM approach,

than using a fixed set of word fragments in the IBM approach. Remember

that, the IBM approach is based on hybrid language models, with millions of

word fragments sampled from a phonemic language model inserted to the

word LM. Therefore, it can be seen that both HLM and the IBM approaches

model OOVs with sampled paths from a phonemic language model. The

only major difference is that, HLM generates samples in an online fashion

during decoding, and the IBM approach generate a large pool of samples

(fragments) before decoding, and look for the "closest match" for OOVs en-

countered during decoding. Therefore it’s understandable that the former

gives better recovery performance.

Note that the CERs here are measured on different sets of tokens (with true

positive detection) making the comparison not fair. The reason why we did

this is because OOV detection is the focus of this section. In the next section

where we focus on OOV recovery, we’ll use a different metric called OOV

CER, measuring CER on the same set of reference OOV tokens.
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3.2.6.2.3 Overall decoding performance Here we investigate the impact

of different OOV detection approaches on the overall decoding performance.

This is important since we never want to sacrifice recognition performance

on IV words while trying to detect/recognize OOVs. Results are shown in

Table 3.3 and Table 3.4. Again we also include the single-phone baselines.

"single-phone-default" means we use the default OOV LM unigram probabil-

ity estimated from the LM training text (2.3× e−6), which is exactly the default

swbd recipe, which has zero OOV recall. "single-phone-tuned" means the

OOV unigram probability is tuned to optimize F1 score for OOV detection.

Table 3.3: Word error analysis on Eval2000

Sub. Del. Ins. Overall Err.
single-phone-default 10.0 3.5 2.2 15.6
single-phone-tuned 9.6 4.2 1.9 15.7

IBM method 10.0 4.0 1.7 15.7
hybrid lexical model (HLM) 10.0 3.6 2.0 15.6

Table 3.4: Word error analysis on RT03

Sub. Del. Ins. Overall Err.
single-phone-default 11.6 4.9 2.2 18.7
single-phone-tuned 11.2 5.7 2.0 18.9

IBM method 11.5 5.4 1.7 18.7
hybrid lexical model (HLM) 11.6 5.1 2.1 18.7

It can be seen that, compared with the baseline (single-phone-default),

neither approach degrades the overall performance much, and the HLM

approach matches the baseline performance on both test sets. But both IBM

and HLM methods consistently give more deletions errors. To figure out the

reason, we show some examples here:

in hickory→ inhekery
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so good to hug her→ soakatoger

over heals→ overhealed

randy is→ brandy’s

We can see that the reason is that many IV words were eaten up by OOV

false alarms. This motivates us to put more efforts on better OOV recovery,

improving recovery accuracy and discouraging false alarms like these.

3.3 OOV recovery with grammar decoding and open
vocabulary RNNLM re-scoring

As described in the last section, we adopted a Hybrid Lexical Model (HLM)

+ Phoneme-to-Grapheme (P2G) OOV detection pipeline to detect potential

OOVs, and generate their candidate forms. Also we demonstrated initial

results of OOV recovery from first pass decoding. In this section, we’ll focus

on improving OOV recovery accuracy and discouraging false alarms, by

better estimating OOV LM probabilities, efficient second pass decoding and

open-vocabulary RNNLM re-scoring.

3.3.1 Efficient second pass OOV recovery with dynamic vo-
cabulary

There are mainly two factors that motivate us for a second pass OOV recovery,

based on observation from the first pass decoding results:

• Calibrating OOVs’ weight

Before the first pass decoding, we adjusted the unigram probability of
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<unk> (Coov, for which we have shown impact on overall decoding and

OOV detection results.) in the language model to be close to or a bit

larger than the OOV rate estimated on development data. However,

it’s quite possible that the empirical OOV rate (see Eq. (3.7)) estimated

from first pass decoding results, could disagree with the estimated OOV

rate which helped us to decide <unk>’s unigram probability in first

pass decoding. Second pass decoding enables us to calibrate the OOV

preference by taking the "evidential" test OOV rate into consideration,

e.g. if we find the empirical OOV rate in the test utterances is higher

than expected, we can boost weight of the OOV grammar during 2nd

pass decoding, and thereby re-generate lattices better accounting for

OOVs.

• Calibrating OOVs’ LM score estimation

As shown in the end of last section’s experiments, lots of recognition

errors on IV words are caused by OOV false alarms. Also, if there’s an

OOV in the reference, the OOV candidate in hypothesis could get stuck

with nearby tokens to cause errors like the following example (the red

word is OOV):

– Reference: has trabajado en una oficina

1st pass recovery: hastrabajado en una oficina

So the goal here is to design a proper unigram distribution of OOV

candidates, to discourage OOV false alarms or bad OOV candidates like

"hastrabajado".
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The Grammar decoder frameworks enables us to use dynamically created

grammar (LM)s and graphs that we want to compile quickly in test time, i.e. at

run-time we may want to add extra words like a contact list to the lexicon. The

framework is specifically designed for applications with a compelling need to

pre-compile the HCLG.fst for various sub-parts and have them dynamically

stitched together (typically to avoid recompiling large graphs at run-time).

OOV recovery is a perfectly suitable application here. For the OOV recovery

scenario, when we build the arpa LM used in 1st pass decoding into G.fst,

we replace <unk> with a nonterminal symbol, e.g. #nonterm:oov, as a "place-

holder" for the OOV grammar, i.e. OOV candidates obtained from 1st-pass

decoding with HLM and P2G. In 2nd pass decoding, rather than inserting

the OOV grammar into the original LM and building the big decoding graph

again, which takes much time and could potentially blow-up in memory, we

only need to build the OOV grammar into FST and then into HCLG (which

is fast): H ◦ C ◦ Loov ◦ Goov, with H representing the AM, C representing the

context dependency, Loov representing the lexicon of recovered OOVs, and

Goov presenting the OOV grammar. At decoding time, the grammar decoder

will dynamically stitch the small HCLG together with the original HCLG

(with a place-holder reserved for the small one).

Sometimes we need to re-score lattices from the first pass decoding with a

bigger N-gram LM. In this case, we need to recover the composite LM used in

grammar decoding7, i.e. by inserting the OOV grammar FST into the original

7This didn’t exist since we avoided building the composite LM and decoding graph by
grammar decoding. However for re-scoring purpose, we need to build the single composite
LM equivalent to the two LMs used in grammar decoding.
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LM FST8. Then we can subtract old LM scores from the lattices using this

composite LM FST, and re-score the lattices using the second pass LM (also

augmented with the extra OOV grammar, by extending the ARPA file or

extending the LM FST again with fstreplace.)

Assigning a proper unigram distribution over the OOV grammar is super

important, and is the main goal of second pass decoding. On one hand, we

have a second chance to calibrate the overall OOV "preference", by adjusting

the amount of probability mass allocated to OOV grammar (called P(OOV)),

which contains all recovered OOV candidates. The way we formulate P(OOV)

is, we first estimate the empirical OOV rate Roov from the lattices statistics of

1st pass decoding (over the whole test set). Basically, by collecting word IDs

from all lattice arcs in test data, Roov is estimated as:

Roov =
#. < unk > arcs f rom lattices

#. all arcs f rom lattice
(3.7)

Then we scale the OOV rate by a scalar α to get the desired probability

mass of OOV grammar for second pass grammar decoding:

P(OOV) = αRoov = α× #. < unk > arcs f rom lattices
#. all arcs f rom lattice

(3.8)

By setting α = 1, it means we want the unigram probability mass of

the OOV grammar to equal the empirical OOV rate from 1st pass decoding.

Adjusting α will directly affect the OOV recovery results and overall decoding

results. We’ll explore this experimentally in the next section.

8Here we use OpenFST’s fstreplace operation to replace the <unk> arc with the OOV
grammar FST, and use fstdeterminizestar to determinize it.
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On the other hand, given a fixed probability mass assigned to OOV gram-

mar, we could use different approaches to estimate the unigram distribution.

The overall goal is to boost OOV candidates which "make sense", and dis-

courage OOVs which are likely garbage, e.g. a 20-character-long word for

English. It’s tricky to achieve this goal, since we don’t know the ground

truth in advance. However we have some prior knowledge, e.g. in first pass

decoding, the pronunciation scores of each OOV candidate in lattices come

from a phonemic language model (PLM). So PLM score is a natural choice.

Suppose the formula we use to assign unigram distribution for OOV grammar

is F (w) (where w is an OOV candidate), we consider the following options:

• Phonemic Language Model scores: This is the most natural option as

we mentioned, used in the 1st pass decoding. When generating the

lattices during 1st pass decoding, the PLM score of each <unk> arc was

implicitly encoded in the AM score as the pronunciation probability.

• Character Language Model scores: Instead of looking at the PLM scores,

we can train a character LM on IV words. For some irregularly spelled

languages, or languages whose grapheme set is much larger than its

phoneme set, this is more informative than PLM. Furthermore, as we

are not directly using the character LM to generate character lattices, we

can use a stronger neural LM. In our experiments, an character level

RNNLM (CharRnnlm) is used.

• Uniform distribution: We just assign a constant probability to all OOV

candidates. This is potentially a bad option, which will be investigated

as a baseline.
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• Empirical frequency: For each OOV candidate, we can use the empirical

frequency of its pronunciation, meaning the number of <unk> arcs with

a particular pronunciation found in lattices, normalized by the total

number of <unk> arcs.

• P2G scores: When applying P2G to the phone sequence to get the recov-

ered OOV word, we usually take the top P2G candidate, and thereby we

can explore using the P2G score given by the joint-sequence G2P model

on this candidate as the unigram LM score also.

Note that we have chosen not to estimate unigram probabilities with LM

probabilities of similar IVs, or even estimating bi-gram probabilities like what

was pursued in [52, 53, 54], since we don’t have the ground-truth spelling of

the OOV candidates, and the OOVs are infrequent, so that it’s hard to collect

contextual statistics to robustly estimate higher order LM probabilities for

OOVs. Some evidence will be provided in our experiments. Basically, among

all candidate options of F (w), only "empirical frequency" is based on "global"

statistics of OOVs. All the others are based on features from a particular OOV

candidate’s spelling or pronunciation. And in our experiments, we’ll show

that "empirical frequency" itself works not well, though it helps sometimes,

when composed (by interpolation or multiplication) with phone/character

LM scores. We’ll investigate this in detail in the next section.

Suppose the set of all recovered OOV candidates is L, for each OOV

candidate w, we have determined to use function F (w) to assign the uni-

gram probability. Assuming we have normalized F (w) over L to satisfy the

summing-up-to-one constraint, we need to further scale them by a scalar β
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to get the unigram probabilities we’ll assign to these OOV candidates in the

OOV grammar:

U(w) = βF (w). (3.9)

The reason is that we don’t want to re-scale the unigram probabilities of

the in-vocab words in the LM (since they are consolidated into G.fst), and we

want to make sure the "relative" probability mass taken by the OOV grammar

is P(OOV) as specified by the user. It’s not an problem that after adding OOV

candidates, all unigram probabilities don’t sum up to one, since this can be

compensated during scoring time by adjusting the LM weight. In short, we

need β to satisfy:

P(OOV) =
∑w′∈LU(w)

1 + ∑w′∈LU(w)
=

β

1 + β
(3.10)

where the 1 in the denominator means the original unigram probability

mass of all in-vocabulary words is 1 9. This gives:

β =
P(OOV)

1− P(OOV)
(3.11)

9To be more precise, this should be 1 minus the unigram probability of <unk> in LM. But
in practice the unigram probability of <unk> is set to be close to zero. Even if it’s not close to
zero, this effect can be compensated by adjusting α. So we ignore this to keep the equation
simple.
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3.3.2 Word-level RNNLM rescoring with dynamic vocabulary
expansion

The lattices generated with grammar-decoder contains words outside the

vocabulary used when training the RNNLM. In order to re-score lattices with

RNNLM, we need to expand the vocab of RNNLM first, so that it could as-

sign reasonable scores to lattice paths/nbest-lists containing OOV candidates.

However word RNNLM usually operates on a closed vocabulary. Here we

specify two factors in Kaldi-RNNLM’s design that enables inference on OOVs,

resulting in open-vocabulary word RNNLM rescoring.

• Embedding factorization and sparse feature representation with sub-

word features Suppose the training vocabulary size is N, and the em-

bedding dimension is M, in terms of the word embedding, there are

generally two options for word feature representation. One option is to

simply use 1-of-N (one-hot) encoding of the words [65], and this results

in an N ×M dense matrix WN×M as the word embedding, which is also

a trainable weight matrix as part of the input layer in the neural network.

The other option is to use a sparse feature representation of each word.

Kaldi-RNNLM follows the second option. Two types of features are

used. On word level, three features are used: word-identity as one-hot

presentation (only for frequent words); unigram probability of the word

(in log space); word length. In order to better represent rare or OOV

words, sub-word level features are used. Basically we extract character

n-grams of a word, e.g. given a word (e.g., nice), we break it into a com-

bination of character n-grams (e.g </s> n, </s> ni, nic, ice, ce <s>, e <s>),
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and use bag-of-word (BOW) representation of the character n-grams

as sub-word features. Suppose we have K features, (we always have

K > N since sub-word features are used), then feature representation of

all N words is encoded into a sparse matrix FN×K (each row is a sparse

vector representing features for a word). This matrix is fixed and not

trainable. And the word embedding WN×M can be factorized as

WN×M = FN×KYK×M (3.12)

where YK×M is a dense matrix representing the feature level (or say, sub-

word level) embedding matrix, jointly trainable with the neural network.

We call this "feature embedding", or sub-word embedding. We can see

in the word embedding WN×M, each row is a word-level embedding

vector, obtained by summing over embedding vectors corresponding to

each feature.

• Input and output embedding typing In a conventional RNNLM setting,

the vocabulary is usually pre-defined during training, and the vocabu-

lary cannot be changed once determined, since the output embedding

matrix is fixed. In Kaldi-RNNLM [66], input and output embedding

(weight matrices) are shared in the neural network. This weight tying

architecture was proposed in [67], which has shown that tying embed-

ding significantly reduces the number of parameters, and also reduces

perplexity on both the validation set and the test set, indicating less over-

fitting as a result of reduction in the number of parameters. Though not

proposed in the original paper, we realized that this architecture is a
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good solution for the OOV problem in RNNLM rescoring, in a sense that

it’ll be very flexible to extend the vocabulary at test time. To be more

specific:

Because of incorporating sub-word information in the feature presentation,

and the embedding-tying network architecture, Kaldi-RNNLM framework is

capable of dealing with OOVs. Given L OOV candidates recovered from first

pass decoding, we go through the following procedures:

• Extract sub-word features of recovered OOVs, and augment the original

feature matrix: FN×K → F
′
(N+L)×K.

• Replace both the input and output word embeddings in the RNNLM by

the augmented word embedding matrix10:

W
′
(N+L)×M = F

′
(N+L)×KYK×M (3.13)

Note that this will make the output probabilities of the RNNLM not sum

up to one, and Kaldi-RNNLM supports optionally adding a normaliza-

tion step to the RNNLM outputs during inference, so that they sum up

to one exactly.

• Augment N-gram LM FST (G.fst): During Grammar decoding, we built

the OOV grammar into HCLG level and then dynamically stitched with

the original HCLG when decoding. During RNNLM lattice re-scoring,

we need to provide an LM FST composed of the original N-gram LM

10(Note that the trained feature embedding YK×M is not changed)
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Figure 3.8: Dynamic vocabulary expansion for a word-level RNNLM

with OOV grammar embedded 11, in order to subtract N-gram LM scores

from lattices. It’s done by using OpenFST’s fstreplace to replace all

<unk> arcs in the original N-gram LM FST 12 by the OOV grammar FST,

followed by fstdeterminizestar to determinize the final FST.

The whole process is also presented in Figrue. 3.8. Then we can apply

the RNNLM with expanded-vocabulary and the augmented G.fst, on n-best

lists/lattice paths containing those L OOV candidates for rescoring, as we

normally do.

11Compiling HCLG with this LM and then decode, would give the same results as Grammar
decoding in theory, though much slower.

12There won’t be many, since we have limited <unk> histories when compiling the original
N-gram LM into FST
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3.3.3 Experiments

3.3.3.1 Evaluation metrics

As for performance metric, since we aim at both improving OOV recovery

accuracy and discouraging false alarms, i.e. we care a lot about the overall de-

coding performance besides OOV recovery performance, we will comprehen-

sively measure WER and CER on both OOVs and whole decoding hypothesis.

When measuring OOV WER and CER, we first align all reference tokens with

max-overlapped hypothesis tokens as we did for OOV detection experiments,

and then compute WER and CER (Eq.(3.6)) of all ref/hyp token pairs. The

OOV WER is defined simply as one minus OOV recognition accuracy, which

is the number of exactly recovered OOV tokens divided by the total number

of OOV tokens. This metric should look pretty bad in most places, since re-

covering OOVs exactly is a very hard task. For most experiments, the baseline

is obtained by decoding with the same limited vocabulary, N-gram LM and

RNNLM, but without any OOV recovery/vocabulary expansion procedure

applied.

3.3.3.2 Experiments on Spanish

We first evaluate the proposed OOV recovery pipeline on Spanish. The reason

is that Spanish is a regularly spelled language, with almost rule-based G2P.

It creates a easier test condition for evaluating our OOV recovery method,

ruling out the potential errors from the P2G process. In the next session we’ll

evaluate on more challenging conditions: read/conversational English.
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We use the Heroico (LDC2006S37) dataset for evaluation13. The Heroico

training set (11hrs) was recorded at Heroico Colegio Militar (HEROICO),

containing read speech and free-response answer speech. Devtest is of the

same condition with training set, but with read speech only. Test sets (native

and nonnative) are recorded at USMA (US military academy), by native &

nonnative speakers non-seen in training/devtest datasets. Also the test sets

from USMA were collected with different microphones (head-mounted and

throat microphones). Most of the content of read speech of the Devtest and

Test sets all come from the same pool of 724 distinct sentences, all of which

are short, simple sentences used in typical language learning scenarios. That’s

why the dataset statistics in Table 3.5 show that three tests have identical

statistics of OOV rate, number of word types, and OOV type rate. Basically,

the three test sets only differ in speaker identities / dialects and acoustic

conditions. This is a good test-bed for OOV recovery algorithm to see how

speaker identities / dialects and acoustic conditions affect its performance.

The acoustic model is a 11-layer TDNN-F [68] model trained with LF-MMI

[27] on context-dependent phoneme units, trained on 11 hours of acoustic

training data. The language models are a 3-gram model trained on transcripts,

and a 3 layer TDNN-LSTM RNNLM trained on the same data14. For the

lexicon, We randomly sampled 45K infrequent words (with count <= 10 in

training data) to remove from the 91K reference lexicon from the Heroico

recipe, so that the resulted lexicon size is about 46K (one pronunciation for

each word). Then we trained a G2P model using this lexicon. The number
13Kaldi recipe used can be found at

https://github.com/kaldi-asr/kaldi/tree/master/egs/heroico/s5
14AM and LM recipes can be found at https://github.com/kaldi-asr/kaldi/tree/master/egs/heroico/s5
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of tokens and OOV rate w.r.t the sampled lexicon of three test sets (Devtest,

Native, Nonnative) are as the following:

Table 3.5: Basic statistics of Heroico test sets, w.r.t the sampled vocabulary.

Test set #. Tokens (K) OOV rate (%) #. Word Types
OOV Type
Rate (%)

Devtest (1.04h) 7650 20.6 473 33
Native (1.05h) 7498 20.6 473 33

Nonnative (1.21h) 9215 20.6 473 33

3.3.3.2.1 Overview of 2nd pass recovery and open-vocab RNNLM rescor-

ing’s impact on OOV recovery performance First, we want to conduct

some initial investigation on how much gain we have from the proposed

2nd pass Grammar-decoding v.s. 1st pass OOV recovery already investigated

in the last section. For both cases (with 1st pass recovery only or with 2nd

pass recovery), we conduct open-vocab RNNLM re-scoring (both lattice and

n-best re-scoring), in order to independently verify whether it helps. For 2nd

pass recovery we use PLM and CharRnnlm (character RNNLM) to estimate

unigram probabilities of OOV candidates. They are the two most basic op-

tions, and we’ll explore more options later on. We evaluate OOV/Overall

WER/CER on three test sets("Devtest", "Native", "Nonnative"). So there are in

total 12 tables:
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Figure 3.9: Overview of 1st & 2nd pass OOV recovery’s impact on overall WER, on
"Devtest" subset

Figure 3.10: Overview of 1st & 2nd pass OOV recovery’s impact on overall WER, on
"Native" subset

Figure 3.11: Overview of 1st & 2nd pass OOV recovery’s impact on overall WER, on
"Nonnative" subset
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Figure 3.12: Overview of 1st & 2nd pass OOV recovery’s impact on overall CER, on
"Devtest" subset

Figure 3.13: Overview of 1st & 2nd pass OOV recovery’s impact on overall CER, on
"Native" subset

Figure 3.14: Overview of 1st & 2nd pass OOV recovery’s impact on overall CER, on
"Nonnative" subset
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Figure 3.15: Overview of 1st & 2nd pass OOV recovery’s impact on OOV WER, on
"Devtest" subset

Figure 3.16: Overview of 1st & 2nd pass OOV recovery’s impact on OOV WER, on
"Native" subset

Figure 3.17: Overview of 1st & 2nd pass OOV recovery’s impact on OOV WER, on
"Nonnative" subset
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Figure 3.18: Overview of 1st & 2nd pass OOV recovery’s impact on OOV CER, on
"Devtest" subset

Figure 3.19: Overview of 1st & 2nd pass OOV recovery’s impact on OOV CER, on
"Native" subset

Figure 3.20: Overview of 1st & 2nd pass OOV recovery’s impact on OOV CER, on
"Nonnative" subset
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First, looking at the Figure 3.9 to Figure 3.14, we can see in all cases 1st

pass OOV recovery improves both overall WER and CER considerably over

the baseline (just decoding & re-scoring with the original small vocab) with-

out surprise, and 2nd pass OOV recovery bring nice improvements further.

In detail, we have the following observations (with emphasis on 2nd pass

recovery):

• For 2nd pass recovery, a proper strategy of estimating unigram prob-

abilities of OOV candidates seem to be important. It can be seen that

CharRnnlm consistently out-performs PLM, regardless of datasets, 1st

or 2nd pass decoding, overall or OOV WER or CER.

• Regarding overall WER improvements brought by 2nd pass recovery

(with CharRnnlm) over 1st pass recovery, on the easier domains ("De-

vtest" which contains all read speech, and "Native"), 2nd pass recovery

brings around 11− 13% (N-gram LM) and 13− 18% (RNNLM) relative

improvements. On the harder domain ("Nonnative"), the improvements

are 6% (N-gram LM) and 9% (RNNLM). The trend on overall CERs is

similar. This basically implies that 2nd pass decoding and open-vocab

RNNLM re-scoring both independently help. And the gains on easier

domains are consistently larger. The main reason should be, with an

easier acoustic condition, the phonemic decoding results are generally

better, which is to be confirmed from OOV WER/CER results.

• Regarding OOV WER improvements brought by 2nd pass recovery (with

CharRnnlm) over 1st pass recovery, on the easier domains, 2nd pass
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recovery brings around 18− 24% (N-gram LM) and 21− 26% (RNNLM)

rel. improvements. On the harder domain, the rel. improvements are

13% (N-gram LM) and 20% (RNNLM). The trend on overall CERs is

similar, though the relative gains are larger overall: On easier domains,

2nd pass recovery brings around 27− 28% (N-gram LM) and 28− 34%

(RNNLM) relative improvements. On the harder domain, the relative

improvements are 16% (N-gram LM) and 25% (RNNLM).

This basically implies that 2nd pass grammar decoding and open-vocab

RNNLM re-scoring both independently help with both OOV and overall

recognition performance. And the gains on easier domains are consistently

larger. The main reason should be, with a easier acoustic condition, the

phonemic decoding results are generally better, which can be confirmed from

the consistent trend in OOV WER/CER results.

To help better understand how does 2nd pass decoding helps, we show

some example utterances where we have lower error rates after 2nd pass

decoding. The red words in reference texts are OOVs:

• Reference: has trabajado en una oficina

1st pass: hastrabajado en una oficina

2nd pass: hasta trabajado en una oficina

• Reference: te gustaría trabajar en un banco

1st pass: tegustaría trabajar en un banco

2nd pass: te gustaría trabajar en un banco
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• Reference: el tren llegará retrasado

1st pass: el tren llegar a retrasado

2nd pass: el tren llegará retrasado

It can be seen that, in the first example, OOV "trabajado" is stuck with its

neighbor "has" in the 1st pass decoding hypothesis, and in the 2nd example,

two OOVs "te" and "gustaría" are stuck together in the 1st pass decoding

hypothesis. In the third example, OOV "llegará" is mis-recognized as two

words in the 1st pass decoding hypothesis. These cases all got improved in

the 2nd pass decoding hypothesis (though "has" in the first example is still

mis-recognized). These examples more intuitively illustrates that 2nd pass

decoding with calibrated OOV unigram distribution improves recognition of

OOVs and surrounding words.

3.3.3.2.2 Improving 2nd pass OOV recovery performance Earlier we men-

tioned that the reason why we need a 2nd pass decoding for OOV recovery

is to get more freedom to calibrate the OOV cost and OOV distribution, by

adopting different estimation schemes of OOV candidates’ LM probabilities.

Here we explore them in experiments.

Effect of different strategies of OOV unigram probability estimation

We explore different options of formula F (w) for OOV unigram probability

estimation in 2nd pass decoding. Results (only showing OOV CERs, which

is the most relevant metrics here) are shown in Table 3.21-Table 3.23. "PLM"

stands for using phonemic LM scores; "CharRnnlm" means using character

RNNLM scores; "Const" means using a uniform distribution; "Empr" means
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Figure 3.21: Impact of different estimation schemes of OOV unigram probabilities
(in 2nd pass OOV recovery) on OOV CER, on "Devtest" subset

Figure 3.22: Impact of different estimation schemes of OOV unigram probabilities
(in 2nd pass OOV recovery) on OOV CER, on "Native" subset

using empirical frequency of OOV candidates based on first pass lattice-

statistics. "P2G" means using log-probability of the one-best sequence of

grapheme-phonemes when converting OOV candidates from their phonemic

form to graphemic form.
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Figure 3.23: Impact of different estimation schemes of OOV unigram probabilities
(in 2nd pass OOV recovery) on OOV CER, on "Nonnative" subset
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From the above results, we can see that, the "Const", "Empr." and "P2G"

options are considerably worse than "PLM" and "CharRnnlm". This agrees

with both our expectation and also related literature using character RNNLM

to estimate LM probabilities for OOVs in the end-to-end ASR framework

[56]. The reason why using uniform probabilities ("Const") is bad is easily

understandable (not differentiating good and bad OOV candidates at all).

The reason why using empirical frequency ("Empr.") is also bad is harder to

understand. Our theory is that, since we only sampled low frequency words

as ground-truth OOVs, the empirical frequency is too noisy to be a robust

estimator of OOV unigram probabilities. Also, most importantly, for the three

options "Const", "Empr." and "P2G", we have observed that neither of them is

not able to assign low scores to long and incorrect OOV candidates, resulting

in lots of insertion errors (This can be seen from the fact that, on "Nonnative"

subset, OOV CER for those three estimators are all above 100%.).

Among the two best options we care the most, the reason why "Char-

Rnnlm" is consistently better than "PLM" is that, since Spanish is a regularly

spelled language, the information provided by phone sequences and character

sequences are basically the same, so that the only advantage of "CharRnnlm"

should be the stronger modeling power of RNNLM over an N-gram LM. Note

that in all cases, open-vocab RNNLM re-scoring preserves the advantages of

"PLM" and "CharRnnlm" options.

Effect of incorporating empirical frequency into OOV unigram proba-

bility estimation

Although using empirical frequency alone cannot robustly estimate OOV
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unigram probabilities, we find it useful when we couple it with another es-

timator. In this part, we explore ways of combining the empirical frequency

with the CharRnnlm probabilities, again showing results on OOV CERs only

(Table 3.24 - Table 3.26). "CharLM-intp-0.1-Empr." means interpolating the

CharLM probabilities (with weight 1-0.1=0.9) with the empirical frequency

(with weight 0.1) in the log domain. "CharLM-mul.-Empr" means we simply

multiply the two terms and then re-normalize all probabilities to form a distri-

bution. From the results it seems interpolation sometimes helps, compared

with using CharLM probs alone. However multiplying them is always the

best strategy. The possible reason is that simply multiplication results in a

sharper distribution with higher variance, and therefore better discrimination

between good and bad candidates. In all following experiments, whenever we

try this type of composite estimator, we’ll adopt the multiplication strategy.
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Figure 3.24: Impact of different strategies of incorporating empirical frequency into
unigram distributions of OOV candidates (in 2nd pass OOV recovery) on OOV CER,
on "Devtest" subset

Figure 3.25: Impact of different strategies of incorporating empirical frequency into
unigram distributions of OOV candidates (in 2nd pass OOV recovery) on OOV CER,
on "Native" subset
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Figure 3.26: Impact of different strategies of incorporating empirical frequency into
unigram distributions of OOV candidates (in 2nd pass OOV recovery) on OOV CER,
on "Nonnative" subset
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Effect of adjusting α, the boosting parameter of OOV grammar in 2nd

pass decoding

Next we explore the impact of α (See Eq. (3.8)) which determines the desired

probability mass of OOV grammar, on both overall/OOV WER/CERs. We fix

the OOV unigram probability estimator at the best one ("CharLM-mul.-Empr"),

and vary α from 1 to 5:
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Figure 3.27: Impact of OOV boosting factor (alpha) on overall WER, on "Devtest"
subset

Figure 3.28: Impact of OOV boosting factor (alpha) on overall WER, on "Native"
subset

Figure 3.29: Impact of OOV boosting factor (alpha) on overall WER, on "Nonnative"
subset
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Figure 3.30: Impact of OOV boosting factor (alpha) on overall CER, on "Devtest"
subset

Figure 3.31: Impact of OOV boosting factor (alpha) on overall CER, on "Native"
subset

Figure 3.32: Impact of OOV boosting factor (alpha) on overall CER, on "Nonnative"
subset
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Figure 3.33: Impact of OOV boosting factor (alpha) on OOV WER, on "Devtest"
subset

Figure 3.34: Impact of OOV boosting factor (alpha) on OOV WER, on "Native" subset

Figure 3.35: Impact of OOV boosting factor (alpha) on OOV WER, on "Nonnative"
subset
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Figure 3.36: Impact of OOV boosting factor (alpha) on OOV CER, on "Devtest" subset

Figure 3.37: Impact of OOV boosting factor (alpha) on OOV CER, on "Native" subset

Figure 3.38: Impact of OOV boosting factor (alpha) on OOV CER, on "Nonnative"
subset
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We can see that, as we increase α, as expected, both OOV WER and OOV

CER keep improving, over all test sets. However, it’s not the case for overall

WER and CER: For overall WER, increasing α from 1 to 3 helps everywhere, but

further increasing it causes degradation. Especially, α = 5 causes significantly

bad overall WER and CER on the harder "Nonnative" test set. We found

the reason is that, for "Nonnative" subset, when increasing the OOV prior,

substitution errors cause by mis-recognizing an IV word as an OOV word

increase much more than "Native" subset. This can be intuitively understood

by the fact that, if a nonnative speaker talks to you, because of the accent, you

will have more trouble to tell whether a spoken word is OOV or not. This

means we need to adjust α very carefully on a validation set with matched

acoustic condition in order to balance OOV recovery and overall decoding

performance.

3.3.3.3 Experiments on English read speech

From Spanish experiments above, we have verified the effectiveness of 2nd

pass decoding and explored various strategies for performance improvement

for it. Therefore we’ll do 2nd pass decoding by default in following experi-

ments. For English experiments in this section, we’ll pick several variables

we care the most about to experiment with: using PLM or CharRnnlm to

estimate OOV unigram probabilities (incorporating empirical frequency or

not); open-vocab RNNLM rescoring. Then we’ll compare the OOV recovery

pipeline (of the best 2nd pass recovery setup), with the baseline of decoding

with limited vocabulary with OOV recovery.

105



The acoustic model is a 10-layer TDNN-LSTM [28] model trained with

LF-MMI [27] on context-dependent phoneme units, trained on all 960 hours

of acoustic training data. The language models are a 4-gram model trained on

audio books [25], and a 3-layer TDNN-LSTM RNNLM trained on the same

data15. For the lexicon, we randomly removed 95% infrequent words (with

count <= 100 in all training data) words from the 200K reference lexicon, so

that the resulted lexicon size is about 10K (11.4K entries). Then we train a G2P

model using this lexicon. The number of tokens and OOV rate of four test sets

(dev-clean, dev-other, test-clean, test-other) w.r.t the sampled lexicon are as

the following:

Table 3.6: Basic statistics of Librispeech test sets, w.r.t the sampled vocabulary.

Test set #. Tokens (K) OOV rate (%) #. Word Types (K)
OOV Type
Rate (%)

dev-clean (5.4h) 54.4 9 8.3 45.2
dev-other (5.1h) 51 8.2 7.4 42
test-clean (5.4) 52.6 9 8.1 44.5
test-other (5.3) 52.3 8.5 7.6 43.1

3.3.3.3.1 Effect of different strategies of OOV unigram probability esti-

mation The following figures are OOV recovery (with 2nd pass decoding)

results (Overall/OOV WER/CERs) with four different estimation schemes

of OOV unigram probabilities (PLM/CharRnnlm with/without multiplying

with empirical frequency). We show results on test-clean and test-other test

sets.

15AM and LM recipes can be found at:
https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5
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Figure 3.39: Impact of different estimation schemes of OOV unigram probabilities
on overall WER, on "Test-clean" subset

Figure 3.40: Impact of different estimation schemes of OOV unigram probabilities
on overall WER, on "Test-other" subset
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Figure 3.41: Impact of different estimation schemes of OOV unigram probabilities
on overall CER, on "Test-clean" subset

Figure 3.42: Impact of different estimation schemes of OOV unigram probabilities
on overall CER, on "Test-other" subset
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Figure 3.43: Impact of different estimation schemes of OOV unigram probabilities
on OOV WER, on "Test-clean" subset

Figure 3.44: Impact of different estimation schemes of OOV unigram probabilities
on OOV WER, on "Test-other" subset
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Figure 3.45: Impact of different estimation schemes of OOV unigram probabilities
on OOV CER, on "Test-clean" subset

Figure 3.46: Impact of different estimation schemes of OOV unigram probabilities
on OOV CER, on "Test-other" subset
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From results above, we have the following observations:

• Different from Spanish, the strategy of estimating unigram probabili-

ties of OOV candidates seems not to make a big difference. It can be

seen that, over three metrics: overall WER/CER and OOV WER on

two test sets, PLM mostly rivals CharRNNLM. On OOV CER, PLM

noticeably outperforms CharRnnlm, but only by around relative 5%,

which is smaller than the gap 20% in Spanish. The reason should be,

as English is a irregularly spelled language, there are generally more

errors after recovering OOV spellings with P2G from their pronuncia-

tions. Therefore, estimating OOV unigram probabilities with character

LM probabilities in the spelling domain has less advantage over using

N-gram PLM scores in the pronunciation domain, even with a character

RNNLM. This is actually not bad, since in practice using N-gram PLM

scores is much more convenient than training a character RNNLM, as

the PLM is just obtained from the preparation process of the first pass

hybrid decoding.

• It can be seen that over all four metrics and two test sets, incorporat-

ing empirical frequency into the OOV unigram probability estimation

scheme is a bad idea. Though not much, it consistently degrades results

for both PLM and CharRnnlm, not like consistently helping in the Span-

ish case. This can be understood from the fact that the OOV rates on

Librispeech experiments are below 10 (see Table 3.5), much lower than

20% in the Spanish experiments. Therefore the empirical frequency of

OOV candidates might be too noisy to be helpful. In practice, we can
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determine using this strategy or not by looking at empirical OOV rates

on a development set.

3.3.3.3.2 Comparing the best OOV recovery setup with baseline Then,

we compare the best OOV recovery setup (with PLM, without incorporating

empirical frequency) with the baseline of decoding with the limited vocabulary

without OOV recovery. We show results on overall WER/CER and OOV CER.

OOV WER is not meaningful since the baseline cannot recognize any OOV.

Results are shown in Table 3.7 - Table 3.9.

Table 3.7: Overall WERs on four test sets of Librispeech, with the best 2nd pass
recovery setup.

dev-clean Baseline OOV recovery
n-gram 14.75 9.86

rnnlm-lats 13.6 8.42
rnnlm-nbest 13.48 8.37

dev-other Baseline OOV recovery
n-gram 19.53 17.41

rnnlm-lats 17.12 14.28
rnnlm-nbest 17.23 14.46

test-clean Baseline OOV recovery
n-gram 15.16 10.08

rnnlm-lats 13.97 8.54
rnnlm-nbest 13.92 8.46

test-other Baseline OOV recovery
n-gram 19.9 17.43

rnnlm-lats 17.35 14.46
rnnlm-nbest 17.56 14.66
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Table 3.8: Overall CERs on four test sets of Librispeech, with the best 2nd pass
recovery setup.

dev-clean Baseline OOV recovery
n-gram 7.58 3.89

rnnlm-lats 7.41 3.34
rnnlm-nbest 7.35 3.31

dev-other Baseline OOV recovery
n-gram 11.24 8.51

rnnlm-lats 10.5 7.08
rnnlm-nbest 10.45 7.17

test-clean Baseline OOV recovery
n-gram 7.48 3.8

rnnlm-lats 7.3 3.28
rnnlm-nbest 7.26 3.25

test-other Baseline OOV recovery
n-gram 11.02 8.47

rnnlm-lats 10.13 7.04
rnnlm-nbest 10.13 7.11

Table 3.9: OOV CERs on four test sets of Librispeech, with the best 2nd pass recovery
setup.

dev-clean Baseline OOV recovery
n-gram 50.88 18.89

rnnlm-lats 51.81 18.8
rnnlm-nbest 52.62 18.63

dev-other Baseline OOV recovery
n-gram 54.93 28.65

rnnlm-lats 54.5 27.78
rnnlm-nbest 54.38 27.66

test-clean Baseline OOV recovery
n-gram 50.35 17.78

rnnlm-lats 49.49 17.47
rnnlm-nbest 49.4 17.67

test-other Baseline OOV recovery
n-gram 53.62 30.01

rnnlm-lats 54.35 28.39
rnnlm-nbest 54.66 28.8
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From the above results, we can see that, with N-gram LM, on the easier

domains (dev-clean and test-clean), we have around 30% relative improvment

in overall WER, around 50% relative improvement in overall CER, and around

60% relative improvement in OOV CER. On the harder domains (dev-other

and test-other16), we have around 20% relative improvment in overall WER,

around 30% relative improvement in overall CER, and around 50% relative

improvement in OOV CER, which are generally less than the improvement

we have in the easier domains.

In most cases, RNNLM rescoring gives more improvements for the "OOV

recovery" column than the "Baseline" column, meaning the relative improve-

ments brought by OOV recovery becomes larger after RNNLM rescoring, on

all metrics. This further reaffirms that the proposed open-vocab RNNLM

rescoring is capable of helping improve both OOV and overall recognition

performance.

3.3.3.3.3 Experiments with the full-vocabulary condition Previously we’ve

shown the effectiveness of the proposed OOV recovery pipeline under the

sampled-vocabulary condition (in order to get enough simulated OOVs).

Although this simulated "high OOV rate" condition is common in lots of

low-resource languages, the "low OOV rate" condition is the most practical

scenario for high resource languages like English, which is also harder since

the OOVs are mostly name entities. Therefore it’s important to make sure

our pipeline performs reasonably well in this case. The official Librispeech

evaluation condition (200K Librispeech lexicon) is a good test-bed since the

16they contain higher WER speakers by construction
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vocabulary is large enough so that OOV rates in test sets are relatively low

(Table 3.10), while the OOVs are mostly foreign words/name entities (e.g.

RUGGEDO’S).

Besides, in practice, during test time, we sometimes have access to extra

text containing OOVs we want recognize in test audio. The oracle knowledge

of spelling and context information (if a particular OOV is frequent enough) of

OOVs could potentially help OOV recovery performance. Here we’ll explore

how much gain we can have by utilizing oracle spelling of OOV words. We’ll

add one evaluation condition of "+ Oracle spelling", meaning during the

2nd pass (grammar) decoding and RNNLM rescoring, we only add oracle

OOV candidates from each test set to lexicon, with their pronunciations given

by G2P, and unigram probabilities given by our chosen strategy (which is

PLM here). One would wonder here, given oracle spellings, then what’s the

value of 1st pass hybrid decoding? Our theory is that the first pass hybrid

decoding provides "acoustic evidence" of OOV pronunciations from PLM,

which may help improve the pronunciation quality of OOVs, and thereby

improve recovery performance. To verify this, we collect all phonetic OOV

candidates whose spelling recovered by P2G17 match oracle OOVs’ spelling,

and use them as extra acoustic-evidence-based pronunciation candidates for

oracle OOVs, besides G2P generated candidates (similar as the pronunciation

candidates used in lexicon-learning). In our following experiments, we’ll

investigate how much could these extra pronunciation candidates help with

OOV recovery performance.

17In order to ensure we cover the oracle spelling of OOVs, we use a large n (100) when
applying P2G.
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The OOV rates w.r.t. the full 200K lexicon on four test sets are summarized

in Table 3.10, which are pretty low as expected.

Table 3.10: Basic statistics of Librispeech test sets, w.r.t the official 200K vocabulary.

Test set #. Tokens (K) OOV rate (%) #. Word Types (K)
OOV Type
Rate (%)

dev-clean (5.4h) 54.4 0.3 8.3 1.4
dev-other (5.1h) 51 0.6 7.4 1.9
test-clean (5.4h) 52.6 0.4 8.1 1.6
test-other (5.3h) 52.3 0.5 7.6 2.3

The acoustic model is a 17-layer factorized TDNN (TDNN-F) [68] model

trained with LF-MMI [27] on context-dependent phoneme units, on all 960

hours of acoustic training data. The language models is the same official 4-

gram model trained on audio books [25], and a 5-layer TDNN-LSTM RNNLM

trained on the same data18. The lexicon is the official 200K lexicon.

Before getting into details on OOV recognition performance, this time we

first show the whole picture of overall WERs. In Table 3.11, we present results

of our TDNN-F acoustic model (trained with LFMMI) + RNNLM rescoring

together with several recent state-of-the art baselines. We listed the acoustic

model architecture, training criterion being used in each model. Note that

all models uses neural LM (RNNLM or Transformer LM). We categorize the

models into two classes: sequence-to-sequence (S2S) and non-S2S. The rea-

son is that regardless of the training procedures, they made a big difference

at inference time: Although attention-based sequence-to-sequence models,

18recipe can be found at:
kaldi/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh from Kaldi’s GitHub
repository
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e.g. Listen-Attend-and-Spell (LAS)[69], have achieved state-of-the-art perfor-

mance in many ASR tasks [70], they have limited potential of online decoding,

since usually an entire utterance must be seen by the encoder, before any token

can be decoded. Other concerns are the large model size [70] and integration

with a language model. From table 3.11 it can be seen that, though the AM

size is pretty small (22.6M), our baseline TDNN-F system achieves best results

on dev-clean and dev-other among all reported results. On test-clean and

test-other, we achieved the best results among non-S2S models, though still

lag behind the LAS+SpecAugment19 model.

Table 3.11: Librispeech WERs with the official vocabulary and neural LMs

Model AM
Params

dev-
clean

dev-
other

test-
clean

test-
other

non-S2S
TDNN-F (LFMMI) 22.6M 2.4 6.97 2.84 7.38
TDNN-F (LFMMI) +
OOV recovery

22.6M 2.39 6.94 2.75 7.41

FSMN (LFMMI) [72] - 2.56 7.47 2.97 7.5
TDNN (CTC) [73] 333M 2.68 8.62 2.95 8.79
S2S
BLSTM (LAS) [74] - 3.54 11.52 3.82 12.76
CNN + BLSTM (LAS) [71] - - - 3.2 9.8
CNN + BLSTM (LAS) +
SpecAugment [71]

- - - 2.5 5.8

For OOV recovery, it can be seen that it degrades WER by 0.03 on "test-

other" and helps a bit on the other three sets. We then present full set of OOV

recovery analysis in Table 3.12. The "Baseline" is the same system as "TDNN-F

(LFMMI)" in Table 3.11, and RNNLM rescoring is always used in both baseline

19SpecAugment[71] stands for a recently proposed data augmentation technique based on
time-warping + frequency masking + time masking. We are currently trying that for non-S2S
models.
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and OOV recovery results20. From the results we can see that, on average,

OOV recovery helps a tiny on overall WER (by 1%), more noticeable on OOV

WER (4%), and much more on OOV CER (%). Particularly, for each metric, the

relative improvements on two easier test sets, dev-clean and test-clean (5-8%

on OOV WER and 17-20% on OOV CER) are consistently larger than the other

two test sets (0-1.5% on OOV WER and 4-6% on OOV CER). Again this agrees

with our earlier finding that OOV recovery performance is sensitive to the

audio quality. Also we notice that these "real" OOVs here are much harder to

recognize (e.g. OOV WERs are all above 90%) that than the simulated OOVs

in our earlier limited-vocab experiments, where the OOV WERs were always

in the range of 50%-80% (e.g. Table 3.43 and 3.44).

Then, if we use oracle spelling of OOVs, we can see it achieves much more

gains over all metrics, enlarging the relative improvement of overall WER

from 1% to 7%, OOV WER from 4% to 43%, and OOV CER to 11% to 40%.

Furthermore, by adding pronunciations learned from acoustic evidence of

1st pass hybrid decoding to the lexicon, we are able to achieve more gains

on all metrics, more notably on OOV WER/CERs. This implies that, even

given oracle spelling of OOVs, the proposed HLM framework could provide

useful acoustic evidence for OOV pronunciations to improve OOV recovery

performance. Note that, to be consistent, for all experiments involving oracle

OOV spellings, we’ve been relying on the same method (phonemic LM scores)

as we did before to estimate the unigram LM probabilities of OOVs, rather

than using the empirical frequency estimates (which are very low for all
20For the OOV recovery pipeline, we have a N-gram rescoring stage following the standard

baseline recipe, before RNNLM rescoring. We only present the final results after RNNLM
rescoring here for simplicity.
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OOVs).

Table 3.12: Librispeech OOV recovery performance (after RNNLM rescoring) with
the official 200K-vocab condition (all average relative impr. in red are measured over
baseline numbers)

dev-
clean

dev-
other

test-
clean

test-
other

Rel. ∆̄

Overall WER (%)
Baseline 2.4 6.97 2.84 7.38
OOV recovery 2.39 6.94 2.75 7.41 1%
+ Oracle spelling 2.15 6.73 2.56 7.18 7%
+ Acoustic evidence 2.12 6.7 2.49 7.14 8%
OOV WER(%)
Baseline 100 100 100 100
OOV recovery 92.63 100 94.55 98.58 4%
+ Oracle spelling 38.95 68.47 50.91 68.44 43%
+ Acoustic evidence 30 65.76 42.27 64.18 50%
OOV CER(%)
Baseline 47.26 48.32 46.01 53.11
OOV recovery 39.29 46.19 37.44 50.13 11%
+ Oracle spelling 18.74 35.93 24.08 39.12 40%
+ Acoustic evidence 15.46 35.16 19.52 37.23 45%

Here we show some examples utterances of reference and hypothesis

(OOV recovery without oracle information) from the "test-other" set, with

OOVs in red. We found that many of the OOVs are foreign words or rare name

entities. From the examples we can see that the name entities "shahrazad" and

"coningsburgh" are not perfectly recognized, but the hypothesis tokens are

already acoustically very similar to reference. So the error should be attributed

to G2P. And it can be understood that, as we only take the top-1 P2G candidate,

the chance of getting the spelling recovered perfectly is small, unless similar

examples were seen in G2P training data. Besides, the last example is showing

that we still make the "splitting" error on OOVs sometimes.
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• Ref: shahrazad perceived the dawn of day

Hyp: shehrazade perceived that the dawn of day

• Ref: but the castrato fetched a round

Hyp: but the castrato fetch the around

• Ref: the lord of coningsburgh and he and his followers had scarce de-

parted

Hyp: the lord of konigsberg and he and his followers had scarce departed

• Ref: to display posters announcing platterbaff is out before the poll opens

Hyp: to display posters announcing platter bath is out before the ball

opens

Then we show some example OOVs which were mis-recognized at the

"+Oracle spelling" condition, but were correctly recognized at the "+Acoustic

evidence" condition:

word pronunciations

STUTELEY
S T UW1 T L IY0
S T AH1 T L IY0

ISLAMISED

IH1 S L AA2 M AH0 S T
IH1 S L AA2 M AY2 Z D
IH1 S L AA2 M IH2 Z D
IH1 Z L AH0 M AY2 Z D

YAUSKY

Y AH1 AH2 S K IY0
Y AH1 S K IY0
Y AO1 S K IY0
Y OW1 S K IY0
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From the above examples, we can see that in most places the acoustic-

evidence-based pronunciations differ from G2P-generated pronunciations in

vowels. By listening to utterances containing those words, we verified the

acoustic-evidence-based pronunciations are closer to the ground-truth in all

cases. This illustrates, in some cases 1st pass hybrid decoding can indeed

produce pronunciations for OOVs better than G2P.

3.3.3.4 Experiments on English conversational speech

At last, we’ll step into a more challenging scenario: OOV recovery for con-

versational speech. Compared with read speech, because the speaking style

is more spontaneous, and the speed also varies more, both word level and

phone level recognition will be much harder. We investigate our method

on the popular Switchboard conversational English corpus, simulate OOVs

by limiting the decoding vocabulary, and repeat the same experiments: use

PLM/CharRnnlm to estimate OOV unigram probabilities (either composed

with empirical frequency or not); open-vocab RNNLM rescoring, and compare

OOV/overall WER/CERs with the baseline of decoding with the the limited

vocabulary.

The acoustic model is a 15-layer TDNN-F [68] model trained with LF-

MMI [27] on context-dependent phoneme units, trained on all 280 hours of

acoustic training data. The language models are a 3-gram model trained on

switchboard data, and a 3-layer TDNN-LSTM RNNLM trained on Switch-

board+Fisher data 21. For the lexicon, we randomly removed 78% infrequent

21AM and LM recipes can be found at:
https://github.com/kaldi-asr/kaldi/tree/master/egs/swbd/s5c
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words (with count <= 10 in acoustic training data) words from the 31K refer-

ence lexicon, so that the resulted lexicon size is about 7.4K. Then we train a

G2P model using this lexicon. The OOV statistics of two test sets (Eval2000,

RT03) w.r.t the sampled lexicon, and all experimental results on overall/OOV

WER/CERs are as the following:

Table 3.13: Basic statistics of Switchboard test sets, w.r.t the sampled vocabulary.

Test set #. Tokens (K) OOV rate (%) #. Word Types
OOV Type
Rate (%)

Eval2000 (3.8h) 42.7 3.3 3.4 25.5
RT03 (6.3h) 75.5 2.9 4.5 28.9

Table 3.14: Overall WERs on Eval2000 and RT03 of Switchboard, with different
estimation schemes of OOV unigram probabilities

Eval2000 Baseline OOV recovery
PLM PLM mul. Empr. CharRnnlm CharRnnlm mul. Empr.

n-gram 16.2 15.5 15.6 15.5 15.6
rnnlm-lats 14.0 13.3 13.4 13.3 13.4

rnnlm-nbest 14.1 13.3 13.5 13.5 13.6

RT03 Baseline OOV recovery
PLM PLM mul. Empr. CharRnnlm CharRnnlm mul. Empr.

n-gram 18.8 18.2 18.2 18.2 18.3
rnnlm-lats 16.2 15.6 15.7 15.7 15.7

rnnlm-nbest 16.3 15.7 15.8 15.7 15.8

From the results (Table 3.14-Table 3.17), we can see that, similar as Lib-

rispeech results, strategies of estimating unigram probabilities of OOV can-

didates make little difference, with PLM/CharRnnlm without incorporating

empirical frequency being slightly better than the other two options over all

metrics/test sets. It makes sense since the scenario here (irregular G2P and

low OOV rate) is the same as Librispeech.
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Table 3.15: Overall CERs on Eval2000 and RT03 of Switchboard, with different
estimation schemes of OOV unigram probabilities

Eval2000 Baseline OOV recovery
PLM PLM mul. Empr. CharRnnlm CharRnnlm mul. Empr.

n-gram 11.2 10.6 10.7 10.7 10.7
rnnlm-lats 10.1 9.5 9.6 9.6 9.6

rnnlm-nbest 10.2 9.6 9.6 9.7 9.7

RT03 Baseline OOV recovery
PLM PLM mul. Empr. CharRnnlm CharRnnlm mul. Empr.

n-gram 13.5 13.1 13.1 13.1 13.1
rnnlm-lats 12.2 11.7 11.7 11.7 11.8

rnnlm-nbest 12.2 11.8 11.8 11.8 11.8

Table 3.16: OOV WERs on Eval2000 and RT03 of Switchboard, with different estima-
tion schemes of OOV unigram probabilities

Eval2000 OOV recovery
PLM PLM mul. Empr. CharRnnlm CharRnnlm mul. Empr.

n-gram 84.76 85.87 84.42 85.02
rnnlm-lats 80.65 82.88 80.48 81.68

rnnlm-nbest 80.22 82.11 80.31 83.05

RT03 OOV recovery
PLM PLM mul. Empr. CharRnnlm CharRnnlm mul. Empr.

n-gram 90.46 92.1 89.97 91.19
rnnlm-lats 87.54 90.03 86.93 88.69

rnnlm-nbest 87.23 89.73 86.5 88.75

For OOV recognition performance (Table 3.16-Table 3.17), it can be seen

that, the absolute values of OOV WER (ranging around 80− 90%) and CER

(ranging around 40− 60%) are both much worse than the read speech case

(OOV WER ranging around 50− 75% and OOV CER ranging around 10−

30%), meaning recognizing OOVs in conversational speech is much harder

than in read speech, because of the speaking style. On OOV CERs, the rel-

ative improvement over the baseline is around 20%, much less than 50% in

the harder domain of Librispeech experiments. One good finding is that the
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Table 3.17: OOV CERs on Eval2000 and RT03 of Switchboard, with different estima-
tion schemes of OOV unigram probabilities

Eval2000 Baseline OOV recovery
PLM PLM mul. Empr. CharRnnlm CharRnnlm mul. Empr.

n-gram 56.1 46.29 47.8 46.96 48.01
rnnlm-lats 55.5 44.11 45.43 44.09 44.09

rnnlm-nbest 55.5 43.5 45.51 43.76 45.84

RT03 Baseline OOV recovery
PLM PLM mul. Empr. CharRnnlm CharRnnlm mul. Empr.

n-gram 55.4 46.58 48.01 46.28 47.23
rnnlm-lats 55.1 43.67 45.59 43.87 45.07

rnnlm-nbest 55.2 43.87 45.74 43.86 45.42

relative improvements of OOV recovery again becomes larger after RNNLM

rescoring, meaning the proposed open-vocab RNNLM rescoring helps recog-

nize OOVs even in this hard case.

For overall recognition performance (Table 3.14-Table 3.15), compared with

the baseline, it can be seen that, as expected, the gain from OOV recovery on

overall WER/CER are much less than Librispeech experiments. With either N-

gram LM or RNNLM, improvements over the baseline on overall WER/CER

are just around 10%, much less than 30% in the harder domain of Librispeech.

This is not surprising since the gain in OOV recovery, which directly affects

overall recognition performance, also becomes much less. Overall, this shows

that, harder acoustic conditions result in poorer performance of the proposed

OOV recovery pipeline, reflected in OOV/overall WER/CERs, though we

still see consistent improvements over the baseline.
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3.4 Summary

In this chapter, firstly, we revisited and introduced our implementation of

a hybrid lexical model (HLM) approach for OOV detection, which is effi-

ciently integrated into a standard ASR decoding pipeline. We experimentally

showed its advantage over a state-of-the-art hybrid LM + classification based

approach, and a single-phone OOV modeling approach, in both OOV detec-

tion and recovery performance on a LVCSR task. Secondly, we introduced our

grammar decoding framework which enables us to efficiently do second pass

decoding to improve OOV recovery performance, avoiding re-compiling the

whole decoding graph. We also compared different schemes of estimating

OOV unigram probabilities in second pass decoding. Our finding is that

phonemic/character language model scores give the best performance, and

incorporating empirical frequency into the estimation scheme helps when

the OOV rate is high. Thirdly, we introduced a novel open-vocabulary word

RNNLM re-scoring framework, enabling us to re-score lattices containing

recovered OOVs with a word RNNLM trained without these OOVs. Besides,

we also investigated the impact of languages and acoustic condition/speaking

styles to the performance of the proposed framework, with the conclusion that

the framework performs better with higher phonemicity of the language, less

noisy acoustic condition and read (rather than conversational) style speech.

Last, we’ve shown that even if we are given oracle spelling of OOVs, the

proposed framework can still achieve performance gain by utilizing acoustic-

evidence-based pronunciations obtained from 1st pass hybrid decoding.
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Above all, various ASR experiments (with OOV/overall WER/CER as met-

rics) on Spanish and read/conversational English ASR tasks have shown that

the proposed HLM + grammar decoding + open-vocabulary word RNNLM

rescoring frameworks is capable of efficiently recovering OOVs in ASR decod-

ing given a closed vocabulary, and achieves further performance gain even if

oracle OOV spellings are given.
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Chapter 4

Conclusion and Future Direction

4.1 Conclusion

In this dissertation, we explored various strategies for dealing with OOV

words in ASR. We have been focused on two lines of research, dealing with

OOV words in ASR training and in test data. We first investigated dealing

with OOV words in ASR training data, by introducing an acoustic-data driven

lexicon learning framework using a likelihood-based criterion for selecting

pronunciation candidates from multiple sources, i.e. G2P and phonetic de-

coding, in a greedy fashion. The conclusion drawn from experiments on

various ASR lexicon expansion tasks is that, with the proposed framework,

starting with a small expert lexicon, we are able to learn a lexicon for OOV

words which performs closer to a full expert lexicon in terms of WER per-

formance on test data, than lexicons built using G2P alone, using a pruning

criterion based on pronunciation probabilities or BIC. This work has also been

extended to learning pronunciations for IV words, i.e. to improving the hand-

crafted lexicon itself. Experiments on lexicon adaptation task shows that for
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adapting the pronunciations of IV words in a reference lexicon with acoustic

evidence helps improve both recognition performance on individual words

just by re-decoding with the adapted lexicon, and overall AM performance by

re-training the AM with the adapted lexicon.

Secondly, we investigated dealing with OOV words in ASR test data,

i.e. OOV detection and recovery. We first re-visited hybrid lexical model

(HLM) approach for OOV detection, and experimentally has shown out im-

plementation of HLM approach outperforms a state-of-the-art hybrid LM +

classification based approach, and a single-phone OOV modeling approach, in

both OOV detection and recovery performance on Switchboard LVCSR task.

Next we introduced the grammar-decoding framework for efficient second

pass decoding to improve OOV recovery performance. By comparing different

schemes of estimating OOV unigram probabilities in second pass decoding,

we concluded that phonemic/character language model scores give the best

performance. Then we introduced a novel open-vocabulary word RNNLM

re-scoring framework, to address the problem of re-scoring lattices containing

recovered OOVs, with a word RNNLM that was ignorant of OOVs when it

was trained. The conclusion drawn from various ASR experiments on Span-

ish and read/conversational English ASR tasks is that, the proposed HLM +

grammar decoding + open-vocabulary word RNNLM rescoring framework

both improve OOV recovery and overall decoding performance over baselines

significantly, and the amount of improvements depend on phonemicity of

the language, audio quality and speaking styles. Above all, we have shown

the potential of an open-vocabulary word-level ASR system which efficiently
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recovers OOV words while also improves the overall decoding performance,

and effectively utilizes oracle spellings (if given) of OOVs to achieve better

performance. Additional computational overhead is considerably minimized

by avoiding re-compiling decoding graph or re-training RNNLM after vocab-

ulary expansion in test time, making it a practical framework for word-based

ASR pipeline with state-of-the-art performance.

4.2 Future directions

Recently there’s a trend of adopting graphemic lexicons for ASR, eliminating

the need of a human-made lexicon. It has been shown that for lots of non-

logographic languages, the graphemic approach is quite successful, rivaling

or even outperforming phonemic approaches in many cases with enough

training data. We think the underlying reason is that, though the representa-

tion power of graphemes is much weaker than phonemes for most languages,

context-dependency can make up for it by a large margin. And the lexicon

learning method proposed in this dissertation would still be quite applicable:

instead of aiming at learning a pronunciation "eh f d iy ey" for word FDA,

we aim at learning something like "E F D I E Y". In other words, we just

switch the "basis" of representation for pronunciation learning from phonemes

to graphemes, where the pronunciation candidates are just naive graphemic

pronunciations and graphemic-decoding candidates. We suspect this has the

same potential as the current phonemic approach for lexicon learning, in terms

of improving acoustic modeling performance, while still totally eliminating
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the need of an expert lexicon and a G2P model. Similarly, for OOV recov-

ery, more interesting work can be done if we switch to graphemic systems.

For example, we’ll be using a character LM rather than a phonemic LM to

model OOV pronunciations. While the hybrid decoding framework will be

the same, we don’t need the "P2G" step of Section 3.2.5 in OOV recovery, and

therefore a potential source of errors could be avoided. Furthermore, along

the open-vocabulary RNNLM rescoring direction, another future avenue is to

better understand how an RNNLM models word contexts, and what kind of

features (now we only use letter N-gram features) can be used to better model

OOV’s contexts. For example, if we have sentences like "I visited New York"

in RNNLM training text, and we have a sentence "I visited New Orleans" (sup-

pose "Orleans" is an OOV) in test data. How could we design informative and

context-aware features, so that the RNNLM will guarantee to rank hypothesis

like "I visited New Orleans" above hypothesis like "I visited new or leans"?

This should be an interesting and challenging problem.
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