6 research outputs found

    Color Constancy Adjustment using Sub-blocks of the Image

    Get PDF
    Extreme presence of the source light in digital images decreases the performance of many image processing algorithms, such as video analytics, object tracking and image segmentation. This paper presents a color constancy adjustment technique, which lessens the impact of large unvarying color areas of the image on the performance of the existing statistical based color correction algorithms. The proposed algorithm splits the input image into several non-overlapping blocks. It uses the Average Absolute Difference (AAD) value of each block’s color component as a measure to determine if the block has adequate color information to contribute to the color adjustment of the whole image. It is shown through experiments that by excluding the unvarying color areas of the image, the performances of the existing statistical-based color constancy methods are significantly improved. The experimental results of four benchmark image datasets validate that the proposed framework using Gray World, Max-RGB and Shades of Gray statistics-based methods’ images have significantly higher subjective and competitive objective color constancy than those of the existing and the state-of-the-art methods’ images

    Illuminant Estimation By Deep Learning

    Get PDF
    Computational color constancy refers to the problem of estimating the color of the scene illumination in a color image, followed by color correction of the image through a white balancing process so that the colors of the image will be viewed as if the image was captured under a neutral white light source, and hence producing a plausible natural looking image. The illuminant estimation part is still a challenging task due to the ill-posed nature of the problem, and many methods have been proposed in the literature while each follows a certain approach in an attempt to improve the performance of the Auto-white balancing system for accurately estimating the illumination color for better image correction. These methods can typically be categorized into static-based and learning-based methods. Most of the proposed methods follow the learning-based approach because of its higher estimation accuracy compared to the former which relies on simple assumptions. While many of those learning-based methods show a satisfactory performance in general, they are built upon extracting handcrafted features which require a deep knowledge of the color image processing. More recent learning-based methods have shown higher improvements in illuminant estimation through using Deep Learning (DL) systems presented by the Convolutional Neural Networks (CNNs) that automatically learned to extract useful features from the given image dataset. In this thesis, we present a highly effective Deep Learning approach which treats the illuminant estimation problem as an illuminant classification task by learning a Convolutional Neural Network to classify input images belonging to certain pre-defined illuminant classes. Then, the output of the CNN which is in the form of class probabilities is used for computing the illuminant color estimate. Since training a deep CNN requires large number of training examples to avoid the “overfitting” problem, most of the recent CNN-based illuminant estimation methods attempted to overcome the limited number of images in the benchmark illuminant estimation dataset by sampling input images to multiple smaller patches as a way of data augmentation, but this can adversely affect the CNN training performance because some of these patches may not contain any semantic information and therefore, can be considered as noisy examples for the CNN that can lead to estimation ambiguity. However, in this thesis, we propose a novel approach for dataset augmentation through synthesizing images with different illuminations using the ground-truth illuminant color of other training images, which enhanced the performance of the CNN training compared to similar previous methods. Experimental results on the standard illuminant estimation benchmark dataset show that the proposed solution outperforms most of the previous illuminant estimation methods and show a competitive performance to the state-of-the-art methods

    A STUDY OF ILLUMINANT ESTIMATION AND GROUND TRUTH COLORS FOR COLOR CONSTANCY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore