10,321 research outputs found

    A CLEAN-based Method for Deconvolving Interstellar Pulse Broadening from Radio Pulses

    Get PDF
    Multipath propagation in the interstellar medium distorts radio pulses, an effect predominant for distant pulsars observed at low frequencies. Typically, broadened pulses are analyzed to determine the amount of propagation-induced pulse broadening, but with little interest in determining the undistorted pulse shapes. In this paper we develop and apply a method that recovers both the intrinsic pulse shape and the pulse broadening function that describes the scattering of an impulse. The method resembles the CLEAN algorithm used in synthesis imaging applications, although we search for the best pulse broadening function, and perform a true deconvolution to recover intrinsic pulse structre. As figures of merit to optimize the deconvolution, we use the positivity and symmetry of the deconvolved result along with the mean square residual and the number of points below a given threshold. Our method makes no prior assumptions about the intrinsic pulse shape and can be used for a range of scattering functions for the interstellar medium. It can therefore be applied to a wider variety of measured pulse shapes and degrees of scattering than the previous approaches. We apply the technique to both simulated data and data from Arecibo observations.Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    The Coyote Universe I: Precision Determination of the Nonlinear Matter Power Spectrum

    Full text link
    Near-future cosmological observations targeted at investigations of dark energy pose stringent requirements on the accuracy of theoretical predictions for the clustering of matter. Currently, N-body simulations comprise the only viable approach to this problem. In this paper we demonstrate that N-body simulations can indeed be sufficiently controlled to fulfill these requirements for the needs of ongoing and near-future weak lensing surveys. By performing a large suite of cosmological simulation comparison and convergence tests we show that results for the nonlinear matter power spectrum can be obtained at 1% accuracy out to k~1 h/Mpc. The key components of these high accuracy simulations are: precise initial conditions, very large simulation volumes, sufficient mass resolution, and accurate time stepping. This paper is the first in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum.Comment: 18 pages, 22 figures, minor changes to address referee repor

    Stochastic analysis of different rough surfaces

    Full text link
    This paper shows in detail the application of a new stochastic approach for the characterization of surface height profiles, which is based on the theory of Markov processes. With this analysis we achieve a characterization of the scale dependent complexity of surface roughness by means of a Fokker-Planck or Langevin equation, providing the complete stochastic information of multiscale joint probabilities. The method is applied to several surfaces with different properties, for the purpose of showing the utility of this method in more details. In particular we show the evidence of Markov properties, and we estimate the parameters of the Fokker-Planck equation by pure, parameter-free data analysis. The resulting Fokker-Planck equations are verified by numerical reconstruction of conditional probability density functions. The results are compared with those from the analysis of multi-affine and extended multi-affine scaling properties which is often used for surface topographies. The different surface structures analysed here show in details advantages and disadvantages of these methods.Comment: Minor text changes to be identical with the published versio

    Signal analysis and error analysis studies for a Geopotential Research Mission (GRM)

    Get PDF
    The signal characteristics and the geopotential parameter recovery capability of the SST Doppler sensor flown on the geopotential research mission (GRM) are discussed. Simulation studies of the velocity profiles resulting from the perturbation produced by a 1 deg/w/1 deg, 1 mgal anomaly as sensed by two GRM spacecraft orbiting altitudes of 160 km and 200 km respectively are described. It was found that the amplitude of the gravity signal drops off by a factor of 1.5 when going from an altitude of 160 km to 200 km. By extrapolation the signal amplitude is further decreased by a factor of 3 when the orbital altitude is increased to 250 km. Thus the amplitude of the measurement drops off as the altitude is increased to the point where it is insignificant at the 1 mgal level for altitudes above 200 km. Spectral analysis results show that for a GRM mission altitude of 160 km and a system precision of 1 micrometer/sec, gravity field information can be sensed up to 230 cycles per orbital revolution - beyond that frequency the gravity signal is characterized by white noise. It follows that at the GRM mission altitude of 160 km and a satellite to satellite Doppler system precision of 1 micrometer per second, 1/1 deg gravity and geoid anomalies can be determined to an accuracy of 3.4 mgals and 8.6 cm respectively
    • …
    corecore