1,557 research outputs found

    Detection and Diagnosis of Motor Stator Faults using Electric Signals from Variable Speed Drives

    Get PDF
    Motor current signature analysis has been investigated widely for diagnosing faults of induction motors. However, most of these studies are based on open loop drives. This paper examines the performance of diagnosing motor stator faults under both open and closed loop operation modes. It examines the effectiveness of conventional diagnosis features in both motor current and voltage signals using spectrum analysis. Evaluation results show that the stator fault causes an increase in the sideband amplitude of motor current signature only when the motor is under the open loop control. However, the increase in sidebands can be observed in both the current and voltage signals under the sensorless control mode, showing that it is more promising in diagnosing the stator faults under the sensorless control operation

    An Investigation of the Electrical Response of A Variable Speed Motor Drive for Mechanical Fault Diagnosis

    Get PDF
    Motor current signal analysis has been an effective way for many years to monitor electrical machines. However, little research work has been reported in using this technique for monitoring variable speed drives and their downstream equipment. This paper investigates the dynamic responses of the electrical current signals measured from a variable speed drive for monitoring the faults from a downstream gearbox. An analytical study is firstly presented in the paper to show the characteristics of the current signals due to load variation, fault effects and signal phase variation. Experimental study is then conducted under different gear fault conditions to explore the changes of the signals. Both conventional spectrum analysis and an amplitude modulation (AM) bispectrum representation are used to highlight the changes for reliable fault detection. It has been found experimentally that mechanical faults lead to much higher increases in bispectral amplitudes compared to conventional spectra and hence that detection performance of the AM bispectrum is better when the drive operates non-slip compensation mode. For slip compensation, more accurate signal analysis techniques have to be developed to differentiate the small changes in the signals

    An Investigation of Electrical Motor Parameters in a Sensorless Variable Speed Drive for Machine Fault Diagnosis

    Get PDF
    Motor current signature analysis (MCSA) is regarded as an effective technique for motor and its downstream equipment fault diagnostics. However, limited work has been carried out for motors based on a sensorless variable speed drive (VSD). This study focuses on investigation of mechanical fault detection and diagnosis using electrical signatures from a VSD system. An analytic analysis was conducted to show that the fault can induce sidebands in instantaneous current, voltage and power signals in the VSD system, rather than just the sideband in a drive without closed loop control. Then different degrees of tooth breakages in an industrial two-stage helical gearbox were experimentally studied. It has found that even though the measured signal is very noisy, common spectrum analysis can discriminate the small sidebands for the fault detection and diagnosis. However, it has found that the power signals resulted from the multiplication of the current and voltage can provide a better diagnostic result

    Observer-based Fault Detection and Diagnosis for Mechanical Transmission Systems with Sensorless Variable Speed Drives

    Get PDF
    Observer based approaches are commonly embedded in sensorless variable speed drives for the purpose of speed control. It estimates system variables to produce errors or residual signals in conjunction with corresponding measurements. The residual signals then are relied to tune control parameters to maintain operational performance even if there are considerable disturbances such as noises and component faults. Obviously, this control strategy outcomes robust control performances. However, it may produce adverse consequences to the system when faults progress to high severity. To prevent the occurrences of such consequences, this research proposes the utilisation of residual signals as detection features to raise alerts for incipient faults. Based on a gear transmission system with a sensorless variable speed drive (VSD), observers for speed, flux and torque are developed for examining their residuals under two mechanical faults: tooth breakage with different degrees of severities and shortage of lubricant at different levels are investigated. It shows that power residual signals can be based on to indicate different faults, showing that the observer based approaches are effective for monitoring VSD based mechanical systems. Moreover, it also shows that these two types fault can be separated based on the dynamic components in the voltage signals

    Modulation signal bispectrum analysis of electric signals for the detection and diagnosis of compound faults in induction motors with sensorless drives

    Get PDF
    As a prime driver, induction motor is the most electric energy consuming component in industry. The exposure of the motor to stator winding asymmetry, combined with broken rotor bar fault significantly increases the temperature and reduces the efficiency and life of the motor. Accurate and timely diagnosis of these faults will help to maintain motors operating under optimal status and avoid excessive energy consumption and severe damages to systems. This paper examines the performance of diagnosing the effect of asymmetry stator winding on broken rotor bar (BRB) faults under closed loop operation modes. It examines the effectiveness of conventional diagnostic features in both motor current and voltage signals using spectrum and modulation signal bispectrum analysis (MSBA). Evaluation results show that the combined faults cause an additional increase in the sideband amplitude and this increase in sideband can be observed in both the current and voltage signals under the sensorless control mode. MSB analysis has a good noise reduction capability and produces a more accurate and reliable diagnosis in that it gives a more correct indication of the fault severity and its location for all operating conditions

    Detection and Diagnosis of Compound Faults in Induction Motors Using Electric Signals from Variable Speed Drives

    Get PDF
    As a primer driver, induction motors are the most electric energy consuming component in industry. The exposure of the motor to stator winding asymmetry, combined with broken rotor bar fault significantly increases the temperature and reduces the efficiency and life of the motor. Accurate and timely diagnosis of these faults will help to maintain motors operating under optimal statues and avoid excessive energy consumption and severe damage to systems. This paper examines the performance of diagnosing the effect of asymmetry stator winding on broken rotor bar faults under closed loop operation modes. It examines the effectiveness of conventional diagnosis features in both motor current and voltage signals using spectrum and modulation signal bispectrum analysis (MSBA). Evaluation results show that the combined faults cause an additional increase in the sideband amplitude and this increase in sideband can be observed in both the current and voltage signals under the sensorless control mode. MSB analysis has a good noise reduction capability and produces a more accurate and reliable diagnosis in that it gives more correct indication of the fault severity and location for all operating conditions

    Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation

    No full text
    International audienceCondition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes
    • …
    corecore