87 research outputs found

    Learning about Quantum Gravity with a Couple of Nodes

    Full text link
    Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory

    Mathematical Methods for 4d N=2 QFTs

    Get PDF
    In this work we study different aspects of 4d N = 2 superconformal field theories. Not only we accurately define what we mean by a 4d N = 2 superconformal field theory, but we also invent and apply new mathematical methods to classify these theories and to study their physical content. Therefore, although the origin of the subject is physical, our methods and approach are rigorous mathematical theorems: the physical picture is useful to guide the intuition, but the full mathematical rigor is needed to get deep and precise results. No familiarity with the physical concept of Supersymmetry (SUSY) is need to understand the content of this thesis: everything will be explained in due time. The reader shall keep in mind that the driving force of this whole work are the consequences of SUSY at a mathematical level. Indeed, as it will be detailed in part II, a mathematician can understand a 4d N = 2 superconformal field theory as a complexified algebraic integrable system. The geometric properties are very constrained: we deal with special K\ua8ahler geometries with a few other additional structures (see part II for details). Thanks to the rigidity of these structures, we can compute explicitly many interesing quantities: in the end, we are able to give a coarse classification of the space of "action" variables of the integrable system, as well as a fine classification -- only in the case of rank k = 1 -- of the spaces of "angle" variables. We were able to classify conical special K\ua8ahler geometries via a number of deep facts of algebraic number theory, diophantine geometry and class field theory: the perfect overlap between mathematical theorems and physical intuition was astonishing. And we believe we have only scratched the surface of a much deeper theory: we can probably hope to get much more information than what we already discovered; of course, a deeper study of the subject -- as well as its generalizations -- is required. A 4d N = 2 superconformal field theory can thus be defined by its geometric structure: its scaling dimensions, its singular fibers, the monodromy around them and so on. But giving a proper and detailed definition is only the beginning: one may be interested in exploring its physical content. In particular, we are interested in supersymmetric quantities such as BPS states, framed BPS states and UV line operators. These quantities, thanks to SUSY, can be computed independently of many parameters of the theory: this peculiarity makes it possible to use the language of category theory to analyze the aforementioned aspects. As it will be proven in part V, to each 4d N = 2 superconformal field theory we can associate a web of categories, all connected by functors, that describe the BPS states, the framed BPS states (IR) and the UV line operators. Hence, following the old ideas of \u2018t Hooft, it is possible to describe the phase space of gauge theories via categories, since the vacuum expectation values of such line operators are the order parameters of the confinement/deconfinement phase transitions. Mathematically, the (quantum) cluster algebra of Fomin and Zelevinski is the structure needed. Moreover, the analysis of BPS objects led us to a deep understanding of generalized S-dualities. Not only were we able to precisely define -- abstractly and generally -- what the S-duality group of a 4d N = 2 superconformal field theory should be, but we were also able to write a computer algorithm to obtain these groups in many examples (with very high accuracy)

    On the foundations of thermodynamics

    Full text link
    On the basis of new, concise foundations, this paper establishes the four laws of thermodynamics, the Maxwell relations, and the stability requirements for response functions, in a form applicable to global (homogeneous), local (hydrodynamic) and microlocal (kinetic) equilibrium. The present, self-contained treatment needs very little formal machinery and stays very close to the formulas as they are applied by the practicing physicist, chemist, or engineer. From a few basic assumptions, the full structure of phenomenological thermodynamics and of classical and quantum statistical mechanics is recovered. Care has been taken to keep the foundations free of subjective aspects (which traditionally creep in through information or probability). One might describe the paper as a uniform treatment of the nondynamical part of classical and quantum statistical mechanics ``without statistics'' (i.e., suitable for the definite descriptions of single objects) and ``without mechanics'' (i.e., independent of microscopic assumptions). When enriched by the traditional examples and applications, this paper may serve as the basis for a course on thermal physics.Comment: 78 page

    Foundations of Quantum Theory: From Classical Concepts to Operator Algebras

    Get PDF
    Quantum physics; Mathematical physics; Matrix theory; Algebr

    Intelligent Systems

    Get PDF
    This book is dedicated to intelligent systems of broad-spectrum application, such as personal and social biosafety or use of intelligent sensory micro-nanosystems such as "e-nose", "e-tongue" and "e-eye". In addition to that, effective acquiring information, knowledge management and improved knowledge transfer in any media, as well as modeling its information content using meta-and hyper heuristics and semantic reasoning all benefit from the systems covered in this book. Intelligent systems can also be applied in education and generating the intelligent distributed eLearning architecture, as well as in a large number of technical fields, such as industrial design, manufacturing and utilization, e.g., in precision agriculture, cartography, electric power distribution systems, intelligent building management systems, drilling operations etc. Furthermore, decision making using fuzzy logic models, computational recognition of comprehension uncertainty and the joint synthesis of goals and means of intelligent behavior biosystems, as well as diagnostic and human support in the healthcare environment have also been made easier

    Target spaces of non-geometric string backgrounds

    Get PDF
    corecore