24 research outputs found

    Adjustable dynamic range for paper reduction schemes in large-scale MIMO-OFDM systems

    Get PDF
    In a multi-input-multi-output (MIMO) communication system there is a necessity to limit the power that the output antenna amplifiers can deliver. Their signal is a combination of many independent channels, so the demanded amplitude can peak to many times the average value. The orthogonal frequency division multiplexing (OFDM) system causes high peak signals to occur because many subcarrier components are added by an inverse discrete Fourier transformation process at the base station. This causes out-of-band spectral regrowth. If simple clipping of the input signal is used, there will be in-band distortions in the transmitted signals and the bit error rate will increase substantially. This work presents a novel technique that reduces the peak-to-average power ratio (PAPR). It is a combination of two main stages, a variable clipping level and an Adaptive Optimizer that takes advantage of the channel state information sent from all users in the cell. Simulation results show that the proposed method achieves a better overall system performance than that of conventional peak reduction systems in terms of the symbol error rate. As a result, the linear output of the power amplifiers can be minimized with a great saving in cost

    Analysis and Compensation of Power Amplifier Distortions in Wireless Communication Systems

    Get PDF
    Wireless communication devices transmit message signals which should possess desirable power levels for quality transmission. Power amplifiers are devices in the wireless transmitters which increase the power of signals to the desired levels, but produce nonlinear distortions due to their saturation property, resulting in degradation of the quality of the transmitted signal. This thesis talks about the analysis and performance of communication systems in presence of power amplifier nonlinear distortions. First, the thesis studies the effects of power amplifier nonlinear distortions on communication signals and proposes a simplified design for identification and compensation of the distortions at the receiver end of a wireless communication system using a two-step pilot signal approach. Step one involves the estimation of the channel state information of the wireless channel and step two estimates the power amplifier parameters. Then, the estimated power amplifier parameters are used for transmitter identification with the help of a testing procedure proposed in this thesis. With the evolution of millimeter wave wireless communication systems today, study and analysis of these systems is the need of the hour. Thus, the second part of this thesis is extended to study the performance of millimeter wave wireless communication systems in presence of power amplifier nonlinear distortions and derives an analytical expression for evaluation of the symbol error probability for this system. The proposed analysis evaluates the performance of millimeter wave systems theoretically without the need of simulations, and is helpful in studying systems in the absence of actual hardware

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    The Experimental Design of Radio-over-Fibre System for 4G Long Term Evolution

    Get PDF
    The 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is the potential key to meet the exponentially increasing demand of the mobile end users. The entire LTE network architecture and signal processing is carried out at the enhanced NodeB (eNB) level, hence the increased complexity and cost. Therefore, it is not efficient to deploy eNB for the purpose of extending the network coverage. As a solution, deployment of relay node (RN), with radio-over-fibre (RoF) acting as the interface between eNB and RN is proposed. Due to the high path loss and multipath fading, wireless interface would not be the ideal channel between eNB and RN. A detailed investigation is carried out by comparing the Rayleigh multipath fading channel with the optical fibre channel, where the latter achieved a ~31 dB of signal-to-noise ratio (SNR) gain. The distributed feedback laser (DFB) is selected as the direct modulated laser (DML) source, where the modulation method introduces a positive frequency chirp (PFC). The existing mathematical expression does not precisely explain on how the rate equations contribute to PFC. Therefore, an expression for PFC is proposed and derived from the carrier and photon densities of the rate equations. Focusing on theoretical development of DML based RoF system, a varying fast Fourier transform (FFT) scheme is introduced into LTE-Advanced (LTE-A) technology as an alternative design to the carrier aggregation. A range of FFT sizes are investigated with different levels of optical launch power (OLP), the optimum OLP has been defined to be within the range of ~-6 to 0 dBm, which is known as the intermixing region. It is found that FFT size-128 provides improved average system efficiency of ~54% and ~65% in comparison to FFT size-64 and FFT size-128, respectively, within the intermixing region. While fixing FFT size to 128, the investigation is diverted to the optimisation of optical modulators. The author revealed that the performance of dual electrode-Mach Zehnder modulator (DE-MZM) is superior to both DML scheme and single electrode (SE)-MZM, where DE-MZM achieved a transmission span of 88 km and 71 km for 16-quadrature amplitude modulation (QAM) and 64-QAM, respectively. At the initial experimental link design and optimisation stage, an optimum modulation region (OMR) is proposed at the optical modulation index (OMI) of 0.38, which resulted in an average error vector magnitude (EVM) of ~1.01% for a 10 km span. The EVM of ~1.01% is further improved by introducing the optimum OLP region at –2 dBm, where the observed average EVM trimmed to ~0.96%. There is no deviation found in the intermixing region by transmitting the LTE signal through a varying transmission span of 10 to 60 km, additionally, it was also revealed that the LTE RoF nonlinear threshold falls above the OLP of 6 dBm. The proposed system was further developed to accommodate 2×2 multiple-input and multiple-output (MIMO) transmission by utilising analogue frequency division multiplexing (FDM) technique. The studies procured that the resulting output quality of signal at 2 GHz and 2.6 GHz is almost identical with a twofold gain in the peak data rate and no occurrence of intermodulation (IMD). In order to emulate the complete LTE RoF solution, an experimental design of full duplex frequency division duplex (FDD) system with dense wavelength division multiplexing (DWDM) architecture is proposed. It is found that channel spacing of 50 MHz between the downlink (DL) and uplink (UL) introduces severe IMD distortion, where an adjacent channel leakage ratio (ACLR) penalty of 14.10 dB is observed. Finally, a novel nonlinear compensation technique utilising a direct modulation based frequency dithering (DMFD) scheme is proposed. The LTE RoF system average SNR gain observed at OLP of 10 dBm for the 50 km transmission span is ~5.97 dB. External modulation based frequency dithering (EMFD) exhibits ~3 dB of average SNR gain over DMFD method

    Roadmap of optical communications

    Get PDF
    © 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications

    Nonlinear amplifier distortion in cooperative OFDM systems

    Get PDF
    OFDM (Orthogonal frequency division multiplexing) on lupaava langattoman tietoliikenteen teknologia johtuen sen hyvästä suorituskyvystä monitieympäristössä. Yhteistoiminnallisen tiedonvälityksen tekniikka on nykyisin jatkuvan tutkimuksen kohteena. Se hyödyntää muiden päätteiden antenneja virtuaalisen moniantennijärjestelmän luomiseen mahdollistaen moniantennijärjestelmille ominaisia kapasiteettihyötyjä. Tässä diplomityössä tutkitaan epälineaarista vahvistussäröä, kun näitä molempia tekniikoita käytetään yhdessä. Ensimmäiset kappaleet käsittelevät OFDM-järjestelmien ja epälineaaristen OFDM-järjestelmien särön sekä yhteistoiminnallisen tiedonvälityksen taustoja. Yhteistoiminnallisten OFDM-järjestelmien suorituskykyä mitataan simulaatioiden avulla epälineaarisen särön vaikuttaessa. Suorituskykyä mitataan bittivirhesuhteena käyttäen epäyhteistoiminnallista ja lineaarista yhteistoiminnallista järjestelmää vertailukohteena. Lisäksi särötermi myös analysoidaan. Systeemimalli sisältää epälineaarisen vahvistuksen välittimessä, jota mallinnetaan elektronisella tehovahvistimella. Lopuksi esitellään ja testataan tekniikka järjestelmän suorituskyvyn parantamiseen optimoimalla maksimisuhdeyhdistintä. Se optimoidaan mallintamalla vahvistussäröä normaalijakaumalla. Lisäksi esitellään ja testataan yhteistoiminnallisille järjestelmille sopiva tehovahvistimen epälineaarisuuden poistotekniikan muunnelma, jolla saadaan lähellä lineaarista tapausta olevia tuloksia.Orthogonal frequency division multiplexing (OFDM) is a promising technique for wireless communications because of its good performance under multipath environments. The concept of cooperative communications is currently under constant research. It uses antennas of other terminals to create virtual multiple input multiple output (MIMO) systems, providing capacity gains similar to those of MIMO systems. This thesis studies the issue of nonlinear amplifier distortion when these two techniques are used together. The first chapters give a background on OFDM systems, nonlinear distortion in OFDM systems, and Cooperative Communications. The performance of OFDM cooperative systems under nonlinear distortion are measured by simulations. The performance is measured in terms of BER using a non-cooperative system and a linear cooperative system as references. In addition, the distortion term is also analysed. The system model includes a non-linear amplifier at the relay, modelled as a solid state power amplifier (SSPA). A technique for improving the performance of the system, by optimising the maximum ratio combiner (MRC), is introduced and tested. The MRC is optimised by modelling the distortion noise as Gaussian. Also, a modification to the power amplifier nonlinearity cancellation (PANC) technique, suitable to cooperative systems, is introduced and tested, showing results close to the linear case

    MIMO techniques for higher data rate wireless communications

    Get PDF
    The demand for higher data rate, higher spectral efficiency and better quality of service in wireless communications is growing fast in the past few years. However, obtaining these requirements become challenging for wireless communication systems due to the problems of channel multi-path fading, higher power loss and power bandwidth limitations. A lot of research interest has been directed towards implementing new techniques in wireless communication systems, such as MIMO an OFDM, to overcome the above mentioned problems. Methods of achieving higher data rate and better spectral efficiency have been dealt with in the thesis. The work comprised three parts; the first part focuses on channel modelling, the second looks at fading mitigation techniques, and the third part deals with adaptive transmission schemes for different diversity techniques. In the first part, we present multiple-input multiple-output (MIMO) space-time geometrical channel model with hyperbolically distributed scatterers (GBHDS) for a macro-cell mobile environment. The model is based on one-ring scattering assumption. This MIMO model provides statistics of the time of arrival (TOA) and direction of arrival (DOA). Our analytical results are validated with measurement data and compared to different geometrical based signal bounce macro-cell (GBSSBM) channel models including Gaussian scatterer density (GSD) channel model, the geometrical based exponential (GBE) channel model. On the other hand, for the same channel model we investigate the analytical methods which capture physical wave and antenna configuration at both ends representing in a matrix form. In the second part, we investigate the proposed channel model using joint frequency and spatial diversity system. . We combine STBC with OFDM to improve the error performance in the fading channels. We consider two different fading scenarios namely frequency selective and time selective fading channels. For the first scenario we propose a new technique to suppress the frequency error offset caused by the motion of mobile (Doppler shift). On the other hand, we examine the performance of STBC-OFDM in time selective macro-cell channel environment. In the last part, we evaluate the spectral efficiency for different receiver diversity namely maximal ratio combiner (MRC), selection combiner (SC), and Hybrid (MRC/SC). We derive closed form expressions for the single user capacity, taking into account the effect of imperfect channel estimation at the receiver. The channel considered is a slowly varying spatially independent flat Rayleigh fading channel. Three adaptive transmission schemes are analysed: 1) optimal power rate and rate adaptation (opra), constant power with optimal rate adaptation (ora), and 3) channel inversion with fixed rate (cifr). Furthermore, we derive analytical results for capacity statistics including moment generating function (MGF), complementary cumulative distribution function (CDF) and probability density function (pdf)
    corecore