922 research outputs found

    A Comparison of CP-OFDM, PCC-OFDM and UFMC for 5G Uplink Communications

    Full text link
    Polynomial-cancellation-coded orthogonal frequency division multiplexing (PCC-OFDM) is a form of OFDM that has waveforms which are very well localized in both the time and frequency domains and so it is ideally suited for use in the 5G network. This paper analyzes the performance of PCC-OFDM in the uplink of a multiuser system using orthogonal frequency division multiple access (OFDMA) and compares it with conventional cyclic prefix OFDM (CP-OFDM), and universal filtered multicarrier (UFMC). PCC-OFDM is shown to be much less sensitive than either CP-OFDM or UFMC to time and frequency offsets. For a given constellation size, PCC-OFDM in additive white Gaussian noise (AWGN) requires 3dB lower signal-to-noise ratio (SNR) for a given bit-error-rate, and the SNR advantage of PCC-OFDM increases rapidly when there are timing and/or frequency offsets. For PCC-OFDM no frequency guard band is required between different OFDMA users. PCC-OFDM is completely compatible with CP-OFDM and adds negligible complexity and latency, as it uses a simple mapping of data onto pairs of subcarriers at the transmitter, and a simple weighting-and-adding of pairs of subcarriers at the receiver. The weighting and adding step, which has been omitted in some of the literature, is shown to contribute substantially to the SNR advantage of PCC-OFDM. A disadvantage of PCC-OFDM (without overlapping) is the potential reduction in spectral efficiency because subcarriers are modulated in pairs, but this reduction is more than regained because no guard band or cyclic prefix is required and because, for a given channel, larger constellations can be used

    Implementation of 8-Point Slantlet Transform Based Polynomial Cancellation Coding-OFDM System Using FPGA

    Get PDF
    The objective of this paper is to implement a baseband OFDM transceiver on FPGA hardware. The design uses 8-point SLT/ISLT (Slantlet/Inverse Slantlet) for the processing module with processing block of 8 inputs data wide. All modules are designed and implemented using VHDL programming language. Software tools used in this work includes Altera Quartus II 7.2 and ModelSim Altera 6.1g, to assist the design process and downloading process into FPGA board while Cyclone III board EP3C120F780C7 is used to realize the designed module

    ON VARIOUS TECHNIQUES IN OFDM AND GFDM: A SURVEY

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier modulation that divides the available spectrum into a finite number of carriers and applied into a digital transmission system. But it has some drawbacks such as sensitivity in inter-carrier interference, high peak to average power ratio and insufficient cyclic prefix in spectrum. These drawbacks may be reduced by a technique known as Generalized Frequency Division Multiplexing (GFDM). In the present scenario, it is a high speed multi-carrier multiplexing data transfer scheme for the cellular network. This paper deals with a comparison between OFDM and GFDM and focuses on various techniques in OFDM and GFDM

    INTER CARRIER INTERFERENCE AND SIGNAL TO INTERFERENCE RATIO OF VARIOUS PULSE SHAPING FUNCTIONS USED IN OFDM SYSTEM WITH CARRIER FREQUENCY OFFSET

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is the important modulation of choice for fourthgeneration broadband multimedia wireless systems. This paper is focused on the problem of reducing the intercarrierinterference (ICI) and signal to noise ratio in the transmission over OFDM using various pulse shaping methods. Here we have performed a detailed performance comparison of various pulse shaping functions used in OFDM System with Carrier Frequency Offset. They appear to be suitable for transmission in OFDM systems with carrier frequency offset. The results obtained by analysis show that the performance improvement over conventional pulse shapes, are significant for reducing average intercarrier-interference (ICI) power and increased ratio of average signal power to average ICI power (SIR)

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft
    • …
    corecore