3,695 research outputs found

    A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans

    Get PDF
    The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters

    Ocean-colour products for climate-change studies: What are their ideal characteristics?

    Get PDF
    Ocean-colour radiometry is recognised as an Essential Climate Variable (ECV) according to the Global Climate Observing System (GCOS), because of its capability to observe significant properties of the marine ecosystem at synoptic to global scales. Yet the value of ocean colour for climate-change studies depends to a large extent not only on the decidedly important quality of the data per se, but also on the qualities of the algorithms used to convert the multi-spectral radiance values detected by the ocean-colour satellite into relevant ecological, bio-optical and biogeochemical variables or properties of the ocean. The algorithms selected from the pool of available algorithms have to be fit for purpose: detection of marine ecosystem responses to climate change. Marine ecosystems might respond in a variety of ways to changing climate, including perturbations to regional distributions in the quantity and in the type of phytoplankton present, their locations and in their seasonal dynamics. The ideal algorithms would be capable of distinguishing between abundance and type, and would not mistake one for the other. They would be robust to changes in climate, and would not rely on assumptions that might be valid only under current climatic conditions. Based on such considerations, we identify a series of ideal qualitative traits that algorithms for climate-change studies would possess. Necessarily, such traits would have to complement the quantitative requirements for precision, accuracy and stability in the data over long time scales. We examine the extent to which available algorithms meet the criteria, according to the work carried out in the Ocean Colour Climate Change Initiative, and where improvements are still needed

    Optical Satellite Remote Sensing of the Coastal Zone Environment — An Overview

    Get PDF
    Optical remote-sensing data are a powerful source of information for monitoring the coastal environment. Due to the high complexity of coastal environments, where different natural and anthropogenic phenomenon interact, the selection of the most appropriate sensor(s) is related to the applications required, and the different types of resolutions available (spatial, spectral, radiometric, and temporal) need to be considered. The development of specific techniques and tools based on the processing of optical satellite images makes possible the production of information useful for coastal environment management, without any destructive impacts. This chapter will highlight different subjects related to coastal environments: shoreline change detection, ocean color, water quality, river plumes, coral reef, alga bloom, bathymetry, wetland mapping, and coastal hazards/vulnerability. The main objective of this chapter is not an exhaustive description of the image processing methods/algorithms employed in coastal environmental studies, but focus in the range of applications available. Several limitations were identified. The major challenge still is to have remote-sensing techniques adopted as a routine tool in assessment of change in the coastal zone. Continuing research is required into the techniques employed for assessing change in the coastal environment

    Ocean-colour products for climate-change studies: What are their ideal characteristics?

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOcean-colour radiometry is recognised as an Essential Climate Variable (ECV) according to the Global Climate Observing System (GCOS), because of its capability to observe significant properties of the marine ecosystem at synoptic to global scales. Yet the value of ocean colour for climate-change studies depends to a large extent not only on the decidedly important quality of the data per se, but also on the qualities of the algorithms used to convert the multi-spectral radiance values detected by the ocean-colour satellite into relevant ecological, bio-optical and biogeochemical variables or properties of the ocean. The algorithms selected from the pool of available algorithms have to be fit for purpose: detection of marine ecosystem responses to climate change. Marine ecosystems might respond in a variety of ways to changing climate, including perturbations to regional distributions in the quantity and in the type of phytoplankton present, their locations and in their seasonal dynamics. The ideal algorithms would be capable of distinguishing between abundance and type, and would not mistake one for the other. They would be robust to changes in climate, and would not rely on assumptions that might be valid only under current climatic conditions. Based on such considerations, we identify a series of ideal qualitative traits that algorithms for climate-change studies would possess. Necessarily, such traits would have to complement the quantitative requirements for precision, accuracy and stability in the data over long time scales. We examine the extent to which available algorithms meet the criteria, according to the work carried out in the Ocean Colour Climate Change Initiative, and where improvements are still needed.National Centre for Earth Observation of the Natural Environment Research Council of the U

    Living up to the hype of hyperspectral aquatic remote sensing: science, resources and outlook

    Get PDF
    Intensifying pressure on global aquatic resources and services due to population growth and climate change is inspiring new surveying technologies to provide science-based information in support of management and policy strategies. One area of rapid development is hyperspectral remote sensing: imaging across the full spectrum of visible and infrared light. Hyperspectral imagery contains more environmentally meaningful information than panchromatic or multispectral imagery and is poised to provide new applications relevant to society, including assessments of aquatic biodiversity, habitats, water quality, and natural and anthropogenic hazards. To aid in these advances, we provide resources relevant to hyperspectral remote sensing in terms of providing the latest reviews, databases, and software available for practitioners in the field. We highlight recent advances in sensor design, modes of deployment, and image analysis techniques that are becoming more widely available to environmental researchers and resource managers alike. Systems recently deployed on space- and airborne platforms are presented, as well as future missions and advances in unoccupied aerial systems (UAS) and autonomous in-water survey methods. These systems will greatly enhance the ability to collect interdisciplinary observations on-demand and in previously inaccessible environments. Looking forward, advances in sensor miniaturization are discussed alongside the incorporation of citizen science, moving toward open and FAIR (findable, accessible, interoperable, and reusable) data. Advances in machine learning and cloud computing allow for exploitation of the full electromagnetic spectrum, and better bridging across the larger scientific community that also includes biogeochemical modelers and climate scientists. These advances will place sophisticated remote sensing capabilities into the hands of individual users and provide on-demand imagery tailored to research and management requirements, as well as provide critical input to marine and climate forecasting systems. The next decade of hyperspectral aquatic remote sensing is on the cusp of revolutionizing the way we assess and monitor aquatic environments and detect changes relevant to global communities

    Remote sensing in the coastal and marine environment. Proceedings of the US North Atlantic Regional Workshop

    Get PDF
    Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes

    Coastal and Inland Aquatic Data Products for the Hyperspectral Infrared Imager (HyspIRI)

    Get PDF
    The HyspIRI Aquatic Studies Group (HASG) has developed a conceptual list of data products for the HyspIRI mission to support aquatic remote sensing of coastal and inland waters. These data products were based on mission capabilities, characteristics, and expected performance. The topic of coastal and inland water remote sensing is very broad. Thus, this report focuses on aquatic data products to keep the scope of this document manageable. The HyspIRI mission requirements already include the global production of surface reflectance and temperature. Atmospheric correction and surface temperature algorithms, which are critical to aquatic remote sensing, are covered in other mission documents. Hence, these algorithms and their products were not evaluated in this report. In addition, terrestrial products (e.g., land use land cover, dune vegetation, and beach replenishment) were not considered. It is recognized that coastal studies are inherently interdisciplinary across aquatic and terrestrial disciplines. However, products supporting the latter are expected to already be evaluated by other components of the mission. The coastal and inland water data products that were identified by the HASG, covered six major environmental and ecological areas for scientific research and applications: wetlands, shoreline processes, the water surface, the water column, bathymetry and benthic cover types. Accordingly, each candidate product was evaluated for feasibility based on the HyspIRI mission characteristics and whether it was unique and relevant to the HyspIRI science objectives

    Terrestrial and Marine Geobiophysical Spatial Analysis and Modeling of Phytoplankton and Nutrients in Haifa Bay, Israel

    Get PDF
    Haifa Bay, Israel, is considered one of the most polluted environments in the nation. The bay water is enriched with nutrients and shows elevated levels of phytoplankton biomass. This requires continuous data collection to monitor productivity. The objectives of these remote sensing geobiophysical models were to (1) create a terrestrial model component to identify sources for the elevated levels of nutrients in the bay, and (2) marine model component to validate remote sensing algorithms for the detection of Chlorophyll in an oceanic setting. Methods included Spatial Analysis, Principal Component Analysis, Unsupervised Classification, Map Algebra, Band Ratios, and Statistical Regression of reflection values against chlorophyll In Situ concentration measurements. The examination of the relationship between in situ measured chlorophyll concentrations and reflectance values included several models: linear, polynomial, exponential, and power transformations Results of the terrestrial model component validated the assumption that diffuse introduction of nutrient is mainly attributed to urban, industrial, and agricultural regions and intensive anthropogenic activity around the bay. The aquatic model component tested ocean color algorithms using ETM+ and MERIS data, which achieved results. ETM+ algorithm (TM2-TM3)/TM1 resulted in high correlation coefficient (R2=0.8255) and was found suitable for the detection of low chlorophyll concentration \u3c3mg/m3. MERIS reflectance ratio R510/R560 was found most accurate and achieved high correlation between measured and reflected values (R2=0.8428). The terrestrial and the marine components of the geobiophysical models provide an alternative, effective approach to the common monitoring techniques

    Earth resources: A continuing bibliography with indexes (issue 58)

    Get PDF
    This bibliography lists 500 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore