
Ocean-Colour Products for Climate-Change

Studies: What are their ideal characteristics?

S. Sathyendranatha,b,∗, Robert J.W. Brewina,b, Thomas Jacksona, Frédéric
Mélinc, Trevor Platta

aPlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
bNational Centre for Earth Observation, Plymouth Marine Laboratory, Prospect Place,

Plymouth, PL1 3DH, UK
cInstitute for Environment and Sustainability, Joint Research Centre, European

Commission, 21027 Ispra, Italy

Abstract

Ocean-colour radiometry is recognised as an Essential Climate Variable (ECV)

according to the Global Climate Observing System (GCOS), because of its

capability to observe various aspects of the marine ecosystem at synoptic to

global scales. Yet the value of ocean colour for climate-change studies de-

pends to a large extent not only on the decidedly important quality of the

data per se, but also on the qualities of the algorithms used to convert the

multi-spectral radiance values detected by the ocean-colour satellite into rel-

evant ecological, bio-optical and biogeochemical variables or properties of the

ocean. The algorithms selected from the pool of available algorithms have

to be fit for purpose: detection of marine ecosystem responses to climate

change. Marine ecosystems might respond in a variety of ways to changing

climate, including perturbations to regional distributions in the quantity and
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in the type of phytoplankton present, their locations and in their seasonal

dynamics. The ideal algorithms would be capable of distinguishing between

these possibilities, and would not mistake one for the other. They would

be robust to changes in climate, and would not rely on assumptions that

might be valid only under current climatic conditions. Based on such con-

siderations, we identify a series of ideal qualitative traits that algorithms for

climate-change studies would possess. Necessarily, such traits would have to

complement the quantitative requirements for precision, accuracy and sta-

bility in the data over long time scales. We examine the extent to which

available algorithms meet the criteria, according to the round-robin compar-

isons of in-water algorithms carried out in the Ocean Colour Climate Change

Initiative and where improvements are still needed.

Keywords:

1. Introduction1

Ocean-colour radiometry from space is designed to measure spectral vari-2

ations in remote-sensing reflectance in the visible domain of the electromag-3

netic spectrum, following suitable corrections to the top-of-atmosphere signal4

detected by satellites. It is recognised that variations in the absorption and5

scattering of light by phytoplankton, and by associated material such as6

detritus and yellow substance (coloured, dissolved organic matter), are the7

principal causes of changes in ocean colour, at least for open-ocean waters.8

The energy absorbed by phytoplankton may follow one of two possible path-9

ways: it may be used for photosynthesis, the process by which light energy10

is used to convert inorganic material into organic matter; or it may be dis-11
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sipated as heat (Sathyendranath & Platt, 2007). The conversion of light12

energy into chemical energy through photosynthesis (also referred to as pri-13

mary production) is the lesser of the paths, with thermal dissipation being14

the principal mode of energy dissipation.15

Phytoplankton are present everywhere in the sunlit layers of the ocean16

in varying concentrations. Although microscopic in size and invisible (indi-17

vidually) to the naked eye, their presence exerts a controlling effect on the18

colour of the sea. Their collective photosynthesis at the global scale is enor-19

mous: it is currently estimated to be of the order of 50 GT of carbon per20

year (Longhurst et al., 1995; Antoine et al., 1996; Friedrichs & others, 2009),21

commensurate with net terrestrial primary production (Lurin et al., 1994).22

Phytoplankton are, therefore, an important mediator in the global cycle of23

carbon. They function at the base of the food chain in the ocean, and all24

larger organisms in the pelagic ecosystem rely on them, directly or indirectly,25

for their food. Because much of the light absorbed by phytoplankton is lost26

as heat, they also contribute to variations in the heat budget of the ocean27

Sath1991. Variations in phytoplankton modulate the depth distribution of28

solar heating in the ocean, and localised heating close to the surface of the29

ocean favours enhanced heat exchange with the atmosphere.30

Feedback mechanisms are known to exist in the ocean: the vertical dis-31

tribution of heating has a strong influence on the stability of the upper water32

column (Sathyendranath et al., 1991), and the interplay between stability33

and mixing determines the supply of nutrients to the surface mixed layer,34

as well as the average light available to phytoplankton in the layer for pho-35

tosynthesis (Platt et al., 2003a,b). It is also recognised now that different36
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types of phytoplankton affect marine biogeochemical cycles in different ways37

(Le Quéré et al., 2005; Nair et al., 2008; Sathyendranath, 2014). For exam-38

ple, large phytoplankton cells are likely to sink faster out of the surface layer,39

and are therefore more likely to transport organic carbon to the deep, than40

smaller cells. Some phytoplankton types produce calcium carbonate plates41

that surround their body, and some others use silica to form frustules that42

give them their characteristic shapes. Some phytoplankton are implicated43

in the production of dimethyl sulphate that can escape into the atmosphere,44

where it is known to act as a nucleus for cloud condensation. Thus, phy-45

toplankton are key to life in the oceans; they are known to influence in a46

significant way two key aspects of all discussions on climate change: global47

carbon cycle and planetary heat budget; and we are still learning about other48

ways in which they influence our climate and our life.49

For these reasons, phytoplankton lie at the heart of the Earth System,50

being at the interface between light and life in the oceans; it is this very51

interface that is probed by ocean-colour radiometry, which is therefore an52

indispensable tool in the study of climate change, and which has been recog-53

nised as an Essential Climate Variable in the Implementation Plan of the54

Global Climate Observing System (GCOS, 2004).55

At the same time, it is not an easy tool to use: the radiometric signal is56

contaminated by atmospheric influence as the light travels from the sea sur-57

face to the satellite in outer space; small errors in instrument calibration or58

atmospheric correction can introduce significant errors in the inferred ocean59

signal. For example, Wang et al. (2013) have highlighted the importance60

of in-orbit radiometric calibrations for an ocean-colour instrument and their61
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impact on remote-sensing reflectance and chlorophyll estimates when it is not62

done correctly and Wang et al. (2009) have shown that an improved atmo-63

spheric correction algorithm can improve retrievals of ocean-colour products.64

All satellites have a finite life span, and creating a long time series of quality-65

controlled data, fit for climate research, requires that the data from different66

ocean-colour sensors be stitched together in a seamless manner, to provide67

satellite-based direct observations of variability in the marine ecosystem over68

long time scales. This task is complicated because, to date, no two identical69

ocean-colour satellites have been launched into space. Each of the satellite70

ocean-colour sensors has represented an innovation, each with its own sensor71

specifications, calibration issues and specific algorithms designed to get the72

best results for that particular sensor. Thus, while recognising the primary73

role of ocean-colour data in climate-change studies, we also recognise the dif-74

ficulties associated with the task of creating long, consistent, climate-quality75

ocean-colour data streams at the global scale.76

A key step in creating ocean-colour products for climate research is the77

selection of appropriate algorithms for generating the products. Many al-78

gorithms are currently available for atmospheric correction of ocean-colour79

data, and for generation of biological, optical and biogeochemical products80

from the atmospherically-corrected data. Selection of the most suitable al-81

gorithms from possible candidate algorithms is not straightforward: each of82

them has its own advantages and limitations. In this paper, we discuss how83

a suite of algorithm-selection criteria can be developed, starting from the84

premise that the performance of the selected algorithms should be as ro-85

bust as possible against potential modifications to the marine ecosystem in a86
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changing climate. Furthermore, the selected algorithms should be those that87

best meet the requirements of the user community, for example, modellers88

who use ocean-colour data to provide initial conditions for models, and to89

validate model outputs.90

The analysis presented here has focused on the end products, which are91

in-water properties. However, without appropriate atmospheric correction,92

the subsequent steps will fail, even with the best-performing of in-water al-93

gorithms. Hence, atmospheric correction algorithms merit equal attention,94

even though we recognise that they are not an end in themselves.95

The concepts presented here were developed in the early days of the96

Ocean Colour Climate Change Initiative (OC-CCI) of the European Space97

Agency. Now, almost six years later, it is important to evaluate the extent98

to which the ocean-colour products generated by OC-CCI meet the ideals set99

out, and where the priorities lie for future work. Such an evaluation follows100

the presentation of the algorithm selection criteria.101

2. Potential Responses of the Marine Ecosystem to a Changing102

Climate and Implications for Algorithm Selection103

The marine ecosystem is known to respond to variations in atmospheric104

and oceanic forcing (winds, intermittent upwelling, seasonal change in strat-105

ification, warming, El Niño Southern Oscillation) in a variety of ways and106

on a variety of time and space scales (Di Lorenzo & Ohman, 2013). Some107

of the ecosystem properties that are likely to be impacted by such changes108

in forcing at long time scales, including chlorophyll concentration (Martinez109

et al., 2009), marine primary production (Racault et al., 2016), phenology110
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(Platt et al., 2003a; Racault et al., 2016), the area and boundary of eco-111

logical provinces (Devred et al., 2009) and phytoplankton community struc-112

ture (Brewin et al., 2012), are accessible to remote sensing. These changes113

that are observed at interannual and decadal scales inform us that products114

that are designed for monitoring changes in the marine ecosystem at even115

longer scales corresponding to climate change, should be capabile of track116

these types of changes. The products mentioned above are derived from117

the spectrally-resolved water-leaving radiances estimated from the satellite118

signal after appropriate atmospheric corrections have been applied. The119

water-leaving radiances are controlled by the constituents of ocean water120

that absorb and scatter light in the visible domain (Figure 1), including phy-121

toplankton, coloured dissolved organic matter and suspended sediments. The122

optical properties of the constituents are determined by the concentration of123

the material, and the type of material present. Before identifying suitable124

algorithms for climate studies, we have first to consider how the in-water125

constituents might be affected by climate change. In this, we may be guided126

by observed variability in marine ecosystem, in response to interannual vari-127

ability in atmospheric forcing. We note that128

• The total amount of phytoplankton in the surface waters, as indexed by129

chlorophyll-a concentration, might change (e.g., Martinez et al. (2009)).130

• The phytoplankton community structure associated with the chloro-131

phyll concentration might change, with consequent modifications in132

the size structure and pigment composition of the community (e.g.,133

Brewin et al. (2012)), both of which can alter the optical characteris-134

tics of phytoplankton.135
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Figure 1: Schematic diagram illustrating the links between ocean colour, IOPs and in-

water constituents that are exploited in remote sensing of ocean colour (adapted from ?).

In ocean-colour remote sensing, the problem is to derive concentrations of in-water con-

stituents and the corresponding IOPs, given ocean-colour data at the sea surface (related

to spectrally-resolved water-leaving radiances). Note that the concentrations of in-water

constituents are related to the water-leaving radiance via their IOPs, such as absorption

and back-scattering coefficients.

• Other substances that absorb and scatter light in the visible domain136

might change, relative to chlorophyll-a. These might be, for example,137

the coloured organic dissolved material in the water or small organisms138

other than phytoplankton (e.g., bacteria) that are known to be strong139

contributors to back-scattering. Though such changes have not yet140

been reported directly, they are potential consequences of observed141
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responses in the community structure noted above. It would therefore142

be prudent to prepare as well as we can, to monitor such potential143

changes.144

• The geographical boundaries of ecological provinces in the ocean might145

change (e.g., Devred et al. (2009)).146

• Finally, the phenology of phytoplankton dynamics (e.g., timing, ampli-147

tude and duration of phytoplankton blooms) might change (e.g., Platt148

et al. (2003a), Racault et al. (2016)).149

Changes to community structure or to non-phytoplanktonic substances150

that absorb or scatter light can modify the light field underwater, with further151

consequences for the marine ecosystem and marine primary productivity. If152

our goal is to detect some, or all, of the kinds of changes listed above, then153

certain logical concequences follow, with respect to the types of algorithms154

that would be ideal for use in this context. Such logical implications for the155

choice of algorithms are listed below:156

Implication 1: Algorithms should be robust in a changing environment. For157

example, if phytoplankton community structure changes, or if associ-158

ated variables change, these alterations should not interfere with the159

performance of the algorithm for estimating chlorophyll-a. We note160

this condition as an implication, because there is an implicit assump-161

tion in many existing algorithms that many bio-optical variables in the162

ocean co-vary with each other, and notably with chlorophyll-a concen-163

tration. Such covariance is implicit in the assumption that open-ocean164
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waters can be characterised as a single-variable system, with all bio-165

optical properties covarying in one fashion or another, with chlorophyll166

(Morel & Prieur, 1977; Morel, 2009).167

Implication 2: Retrievals of properties of the ecosystem should be indepen-168

dent of each other. In other words, emphasis should be on “direct” esti-169

mates of ecosystem properties, where we use the word “direct” to imply170

the use of a distinct optical signature that can be detected in remote-171

sensing reflectance, to monitor an oceanic property. “Indirect” esti-172

mates based on correlations between elements of the ecosystem are not173

ideal in this context, since correlations between ecosystem constituents174

may not be stable in a changing climate. Note that this implication175

is intimately related to Implication 1 above: if we are not to confuse176

one type of change in the ecosystem with another type, then it is essen-177

tial that there be no interdependencies in the algorithms used for the178

retrieval of those properties.179

Implication 3: Use of empirical relationships in the algorithms should be180

minimal: they are of necessity based on observations in the past, and181

the past state of the ecosystem may not be a faithful guide to the fu-182

ture state. This implication arises in instances where the performance183

of an algorithm depends on current inter-relationships between various184

bio-optical components of the marine ecosystem. If the relationships185

change with climate, then the algorithm performance might be affected.186

Ideally, one would avoid using such algorithms for studies of climate187

change.188
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Note that, in this paper, we have used the term “empirical” to refer to189

algorithms that relate water-leaving radiance or remote-sensing reflectance190

directly with a bio-optical property, based on observations of both quanti-191

ties. On the other hand, the term “theoretical” is used to refer to those192

algorithms that relate radiance and reflectance to inherent optical proper-193

ties, via an ocean-colour model (see Figure 1). The algorithms are referred194

to as “indirect” if they rely on empirical relationships with an intermediary195

product such as chlorophyll to make the link to satellite data.196

These general considerations are examined in detail below, from various197

perspectives. We begin by analysing, from the perspective of climate-change198

studies, how algorithms have been traditionally partitioned into two types –199

Case-1 and Case-2 – depending on the optical characteristics of the waters.200

3. Case 1 and Case-2 Waters201

Algorithms of the simplest type are designed for application in Case-1202

waters, which are waters where phytoplankton and covarying substances are203

considered to be solely responsible for changes in ocean colour. Frequently,204

a different family of algorithms is invoked to deal with Case-2 waters, the205

optically-complex waters often encountered in coastal and inland water bod-206

ies where substances such as yellow substances (coloured dissolved organic207

matter) and suspended sediments vary independently of phytoplankton con-208

centration. Ideally, algorithms designed for Case-1 and Case-2 waters would209

merge seamlessly at the boundary between the two water types. Most open-210

ocean waters belong to the Case-1 category, which covers, say, more than211

90% of the global ocean. On the other hand, Case-2 waters, which are212
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mostly coastal in nature, are highly productive and therefore important to213

the livelihood of coastal communities. The user consultation undertaken by214

the OC-CCI project (Sathyendranath, 2011) revealed a clear priority for al-215

gorithms that would work across Case-1 and Case-2 waters (OC-CCI, 2011),216

or at least that would demarcate the boundary between the two. In selecting217

algorithms for climate studies, it would therefore be desirable to keep this218

eventual goal firmly in view. To understand what it would entail, let us take219

a brief look at the definitions of Case-1 and Case-2 waters. Morel & Prieur220

(1977), who introduced this optical classification, intended it to be a quali-221

tative classification of convenience. It is based on the relative contributions222

of substances in sea water that contribute significantly to variations in its223

optical properties. These constituents are phytoplankton, coloured dissolved224

organic matter (or yellow substances) and suspended sediments (Figure 2).225

Case-1 waters are those waters where the variability due to phytoplankton226

dominates the ocean-colour signal. Contributions from the other components227

may be taken either as negligible, or assumed to co-vary with the phyto-228

plankton concentration. Chlorophyll concentration may be used as an index229

of phytoplankton biomass. This classification had the advantage of simpli-230

fying most oceanic waters from an optical perspective, into a single-variable231

system, in which all optical properties could be determined on the basis of232

chlorophyll concentration alone. On the other hand, Case-2 waters admit233

the independent, and often significant, contribution to IOPs from substances234

other than phytoplankton. Therefore, Case-2 waters are multi-variable opti-235

cal systems. If we arrange the set of all possible cases of optical variability in236

a three-component system (Figure 2), then Case-1 waters emerge as a subset237
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Figure 2: Tripartite diagram (from Prieur & Sathyendranath (1981) and Sathyendranath

(2000)), showing Case-1 and Case-2 waters according to the relative contributions of phy-

toplankton, dissolved organic matter (yellow substances) and suspended sediments to vari-

ations in a selected optical property.

of Case-2 waters (Sathyendranath & Morel, 1983). The classification may be238

illustrated as follows, using equation 1 for the absorption coefficient:239

a(λ) = aw(λ) +BaB(λ) + ay(λ) + ad(λ)... (1)

where a(λ) is the total absorption coefficient [m−1] at wavelength λ [nm],240

aw(λ) is the absorption coefficient by pure water, and BaB(λ) is the absorp-241
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tion coefficient of phytoplankton, expressed as the product of chlorophyll242

concentration (B, [Chl-a L−3]) (treated here as an index of phytoplankton243

biomass), and a chlorophyll-specific absorption coefficient for phytoplank-244

ton, aB(λ) [Chl-a−1m2]. In addition, there are other contributions to ab-245

sorption, for example from yellow substances, ay(λ) and detritus ad(λ). In246

Case-1 waters, a(λ) is modelled as a function of chlorophyll concentration247

with the additional terms such as ay and ad being treated as functions of248

chlorophyll-a. In Case-2 waters, the additional terms have to be taken into249

account as variables independent of chlorophyll-a. Because the classification250

is an optical one, the relative importance of various components to the IOPs251

is wavelength-dependent. The classification does not lend itself readily to a252

quantitative approach, and any partition between the two classes would be253

arbitrary. For example, in the tripartite diagram of Figure 2, it would be254

a matter of choice where one might place the line of demarcation between255

Case-1 and Case-2 waters. The figure also shows that some substances other256

than phytoplankton are always present even in natural Case-1 waters. Any257

deviation from the Case-1 assumption would introduce errors into Case-1258

type of algorithms. But some of them may be less vulnerable to this type of259

errors than others.260

The classification of waters into Case-1 and Case-2 has served the ocean-261

colour community well, but the fundamental differences between typical262

Case-1 algorithms (empirical, single-variable) and Case-2 algorithms (model-263

based, multi-variate) do not facilitate the blending of algorithms in a seamless264

fashion at the boundary (necessarily arbitrary) between the two classes. At265

the same time, and as we shall see in the next section, there is increasing266
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evidence that the Case-1 algorithm maay not be as robust as previously be-267

lieved, even in opan-ocean waters (Bouman et al., 2000; Siegel et al., 2005;268

Morel et al., 2006). If we persevere with separate classes of algorithms in269

Case-1 and Case-2 waters for climate-change studies, we should at least try270

to define the domains of applicability of the separate algorithms. Even this271

would not be straightforward: although methods have been proposed (e.g.,272

Lee & Hu (2006)) to discriminate between Case-1 and Case-2 waters, it is273

doubtful whether they would be equally effective in waters dominated by274

yellow substances, detritus or sediments.275

From the perspective of climate-change studies, this situation is not sat-276

isfactory, and a long-term vision should embrace the goal of having Case-1277

and Case-2 algorithms that are technically and conceptually similar, such278

that they could be blended across boundaries without introducing artefacts.279

It would provide seamless, global coverage of products across all coastal and280

marine waters, and potential extension to inland water bodies (which are also281

often extreme examples of Case-2 waters). Since Case-2 algorithms could be282

applied, in principle, to the optically-simpler cases, we anticipate that al-283

gorithms successful across both Case-1 and Case-2 waters will emerge from284

the Case-2 family of algorithms rather than the other way round. Sathyen-285

dranath et al. (1989) have shown that a single algorithm that would work286

across all combinations and concentrations of contributing substances might287

not be possible, and that branching algorithms might be necessary, to deal288

with subsets of possible cases.289

The consequences for algorithm selection are:290

Implication 4: Selected Case-1 algorithms should be accompanied by some291
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estimates of the increased uncertainties in products when they are ap-292

plied to Case-2 waters.293

Implication 5: Case-1 algorithms should aim to incorporate some of the ca-294

pabilities of Case-2 algorithms to discriminate between contributions295

from different constituents to ocean colour, albeit for conditions that296

might reasonably be expected in open-ocean waters. In other words,297

Case-1 algorithms should evolve from single-variable approaches to multi-298

variable approaches, making them similar in structure to Case-2 algo-299

rithms, but optimised for open-ocean conditions. This would, in prin-300

ciple, have the added benefit of improving the accuracy of chlorophyll301

retrievals.302

Implication 6: Branching algorithms may be considered, for seamless blend-303

ing of Case-1 and Case-2 waters, as long as no single algorithm is304

available that is found to work uniformly well across both Case-1 and305

Case-2 waters.306

Let us next turn our attention to Case-1 algorithms, which are the best-307

known of all available alogirthms.308

4. The OC4 Algorithm of NASA: Example of a Successful and309

Well-tested Algorithm for Case-1 Waters310

Ocean-colour remote sensing has a history of more than three decades,311

and many successful algorithms have been established over the years. In312

the context of this paper, the relevant algorithms are those that have global313

application, have been validated extensively and have been implemented in314
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a processing chain for routine operation. Such algorithms were compared315

and evaluated recently (Brewin et al., 2015a). They include a number of316

empirical algorithms – the NASA OC4 algorithm (O’Reilly et al., 2000), the317

NASA OC2S (O’Reilly et al., 2000), the MERIS algorithm proposed by Morel318

& Antoine (2011), the OCI algorithm of Hu et al. (2012) and some others with319

more of a theoretical basis (Garver & Siegel, 1997; Lee et al., 2002; Maritorena320

et al., 2002; Franz & Werdell, 2010; Devred et al., 2011). Brief descriptions321

of each of these algorithms is availble in Brewin et al. (2015a). An excellent322

starting point for the discussion of algorithm selection for climate studies323

would be the well-known and most widely-accepted of these algorithms: the324

OC-4 series of algorithms (Figure 3) developed and adopted by NASA for325

estimating chlorophyll-a concentration. These algorithms use band ratios of326

water-leaving radiances at three wavebands in the visible (e.g., 443, 490 and327

510 nm relative to 555 nm in the case of the NASA SeaWiFS sensor). In an328

implementation for a given pixel, any one of these ratios could be a potential329

predictor of chlorophyll concentration. But of the three ratios, only the one330

with the greatest magnitude is used in an empirical polynomial relationship.331

The choice of the band ratio with the highest magnitude has the advantage of332

avoiding, in particular cases, the use of bands with low-amplitude signals and333

potentially high retrieval errors. The algorithms are based on a large number334

of data points; they have been tested and validated extensively (Brewin et al.,335

2015a); and are widely used. They have a broad user base. The software336

packages developed by NASA for implementing the algorithms on CZCS,337

OCTS, SeaWiFS, MERIS, MODIS and other sensors are freely available to338

the user community, as is the source code. A tradition of outstanding user339
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support has been established at NASA to deal with enquiries and comments340

from the user community. For all these reasons, this suite of algorithms may341

be considered to be the current industry standard. Similar algorithms are in342

use, for example, in the MERIS Case-1 processing software.343

Figure 3: The NASA OC-4v6 algorithm, which is based on the ratios of water-leaving

radiances at 443, 490 and 510 nm, each normalised to that at 555 nm. The maximum of

the three ratios (highlighted in green, cyan and blue) is used in the empirical algorithm.

The fitted curve is a polynomial, along the lines presented by O’Reilly et al. (1998). The

number of observations N=7959 in this figure. Data from OC-CCI Version 2 match-up

database Valente et al. (2016).
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Figure 4: Remote-sensing reflectance modelled according to Gordon et al. (1988) as a

function of chlorophyll concentration, using specific phytoplankton absorption spectra for

different size classes proposed by various authors (Brewin, 2011; Devred et al., 2011; Ciotti

& Bricaud, 2006). The shaded areas show the region covered by all the models. Here,

absorption by detritus and dissolved organic matter are computed according to Bricaud

et al. (2010); Morel (2009); absorption by pure water according to Pope & Fry (1997);

particle back-scattering according to Huot et al. (2008); and back-scattering by pure water

according to Zhang & Hu (2009); Zhang et al. (2009). See also Sathyendranath (2014).

The NASA OC4v6 algorithm is shown in black. Note how the algorithm is close to

the picoplankton model for low chlorophyll values, to the nanoplankton at intermediate

concentrations, and to the microplankton model at high concentrations, following the

structure of the current marine ecosystem. The dashed lines show a couple of examples

of changes in the remote-sensing reflectance ratio, when chlorophyll concentration is held

constant, and the phytoplankton community is allowed to change from all picoplankton

to all microplankton.

But, notwithstanding the admirable qualities of the OC-4 algorithms,344

they also have some less-than-ideal properties in the context of climate-345
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change studies. Based on the discussions in Section 2, one such property is346

the empirical nature of these algorithms. The inferred relationship between347

chlorophyll and reflectance ratios depends implicitly on the change in phyto-348

plankton community structure with change in chlorophyll concentration as349

seen in Figure 4 (see also (Sathyendranath, 2014)), and on the covariance of350

other absorbing and scattering material with chlorophyll-a. These relation-351

ships may change geographically (Loisel et al., 2010; Szeto et al., 2011) and352

with time (Dierssen, 2010). Typically, in today’s ocean, there is a general ten-353

dency for the phytoplankton community to change from small-cell-dominated354

populations in oligotrophic waters to large-cell-dominated ones in eutrophic355

waters (Chisholm, 1992; Uitz et al., 2006; Brewin et al., 2010, 2015b). More-356

over, the optical properties of phytoplankton change with size. The effects357

of such changes on reflectance ratios are incorporated implicitly in global358

band-ratio algorithms, as illustrated in Figure 4 and has also been demon-359

strated by Dierssen (2010). Because of the shifts in the band ratios used in360

the OC-4 algorithm, it is often difficult to say, from the chlorophyll concen-361

tration alone, which band ratio was used in the computation (see Figure 3).362

It would not therefore be possible for a modeller to work backwards from the363

chlorophyll concentration to estimate the band-ratio that yielded the given364

concentration, unless the band-ratios themselves were available. Multi-year365

in situ data are used to generate the algorithms, and under climate change,366

we have to accept that the past may not be a reliable guide to the future.367

Furthermore, in the context of climate change, the inter-annual variability368

is important, and we may ask: Is there significant inter-annual variability in369

the performance of the algorithm? Is it likely to become significant in the370
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future, in a changing climate?371

Figure 5: Updated from (Brewin, 2011) showing data partitioned according to year of

data collection, from 1993 to 2011, based on OC-CCI Version 2 in situ match-up database

(Valente et al., 2016). The original chlorophyll data, and chlorophyll-a computed using

OC4v6 algorithm are shown in each panel, along with the one-to-one line (continuous) and

the best fit to the data (dashed line). The top left panel shows the results for all the years

combined. Note that, the fit is very close to the one-to-one line for all the years, with the

exception of 1997 and 2010. For 1997m the change in slope appears to be imposed by a

small number of outliers, and the 2010 data appear to be relatively noisy.
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To address the first question, a year-by-year analysis has been carried out372

on the OC-4 algorithm (Figure 5). The figure shows no evidence of signifi-373

cant inter-annual variation in performance of the algorithm, for those years374

for which large numbers of observations are available, which provides some375

reassurance about its suitability as an algorithm for use in climate-change376

studies, at least for the period studied. But, there is some emerging evidence377

that phytoplankton community structure is susceptible to climate variabil-378

ity, see for example, the report of Li et al. (2009) about the recent change379

in phytoplankton community in the Arctic. The evidence in Figure 5 may380

therefore be incomplete (because not all regions are equally well represented381

in the validation data). Under the circumstances, precautionary principles382

dictate that one has to vigilant, and not assume that past performance would383

guarantee future performance. To continue the validation exercise, one would384

require a large number of data points for yearly validation of the algorithm385

as done in Figure 5. Since climate impacts are not expected to be uniform386

across all locations, global coverage would be required for the validation data.387

Furthermore, the OC-4 algorithm is an empirical algorithm designed to relate388

water-leaving radiances directly to chlorophyll concentration, and one would389

have to resort to other algorithms to retrieve the inherent optical properties390

(IOPs) that are also ocean-colour products of interest in climate-change stud-391

ies, which would make it difficult to ensure consistency across algorithms. All392

these arguments point to the wisdom of developing, in parallel, other algo-393

rithms that would provide a theoretical basis for OC-4 and other empirical394

algorithms.395

The implications for algorithm selection that can be drawn from this part396
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of the analysis are the following:397

Implication 7: If empirical algorithms were selected as candidate algorithms398

for climate-change studies, then it would be essential to provide a theo-399

retical underpinning to the algorithms, so as to enhance their robustness400

to climate change or to establish the extent of their potential sensitivity401

to possible climate-change-related modifications to the marine ecosys-402

tem.403

Implication 8: If novel, model-based algorithms, lacking the long and suc-404

cessful history of OC4-type of algorithms, emerged as successful can-405

didates for generation of ocean-colour products for climate studies, it406

would be desirable to reconcile the two types of algorithms through theo-407

retical analyses. It would also be extremely valuable to continue to have408

access to OC4-type of algorithms as a baseline for comparison. Any409

divergence between the two algorithms, at a particular time or at given410

locations, would signal where additional work was needed as a priority.411

5. Detection of Phytoplankton Types412

Ocean-colour science is in a state of dynamic growth: in addition to stan-413

dard products such as chlorophyll concentration and IOPs, novel products are414

still emerging. These new applications include detection of phytoplankton415

functional types and size structure from ocean-colour data (Nair et al., 2008;416

Sathyendranath, 2014). Since both these properties of the marine ecosystem417

might be vulnerable to climate change, let us consider how the correspond-418

ing products are generated and what might be the implications for algorithm419

selection.420
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Figure 6: Examples of absorption spectra of phytoplankton samples from the field, with

the dominant type (according to pigment analysis) identified. (a) Specific absorption

spectra per unit chlorophyll concentration, highlighting the differences in the magnitude

of the spectra with type. (b) Absorption spectra normalised such that the integral of each

of the curves (from 400 – 700 nm) is one, highlighting the differences in the shape of the

spectra. From (Sathyendranath & Platt, 2007).
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Absorption characteristics of phytoplankton of different types often have421

features that are distinct from each other (see Figure 6). Frequently, size422

and function are interconnected. For example, diatoms tend to be large cells423

that participate actively in the silica cycle in the ocean, and large cells tend424

to sink faster than small cells, and contribute more to the export of carbon425

from the surface ocean. The distinct optical features of phytoplankton types426

may include differences in the magnitude of the absorption coefficient per427

unit chlorophyll concentration, or variations in the spectral characteristics,428

as shown in Figure 6. From a remote-sensing perspective, it is the changes429

in spectral shape, and not the magnitude, that provide remotely-detectable430

signals for discrimination of different types of phytoplankton. This is because431

a change in magnitude of the signal at a single wavelength could arise from432

change in chlorophyll concentration or from a change in community, or from433

a change in any other bio-optical substance. Hence the reliance on spectral434

shape, to distinguish one type of substance from another. Methods exist,435

and are being developed, to exploit these distinguishing spectral features for436

detection of certain functional types from spectrally-resolved ocean-colour437

data (Nair et al., 2008; Sathyendranath, 2014).438

Identification of phytoplankton community structure requires that the439

total phytoplankton absorption (Equation 1) be expressed as the sum of440

absorptions due to the different types of phytoplankton in the community,441

the absorption coefficient of each component being expressed as the product442

of its chlorophyll concentration and the corresponding absorption coefficient443

per unit chlorophyll concentration:444
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BaB(λ) = ΣN
i=1Bia

B
i (λ), (2)

where N is the number of phytoplankton types being considered, Bi is the445

chlorophyll concentration of the ith component, and aBi (λ) is the specific446

absorption coefficient of the same component. Although Figure 6 and Equa-447

tion 2 refer to changes in absorption characteristics, discrimination based on448

spectral characteristics of back-scattering has also been proposed (Kostadi-449

nov et al., 2009, 2010). Clearly, the methods would be limited by the number450

of wavebands available for spectral discrimination between functional types451

(hyper spectral sensors would have an advantage here). Furthermore, they452

would not be applicable in the absence of any discriminating spectral sig-453

natures. Such features, when available, are small signals (Figure 6), and454

therefore high precision in signal is essential for application of the methods.455

Sometimes, it may be possible to detect only the dominant type, without re-456

solving the minor components (for example, see methods of Sathyendranath457

et al. (2004) and (Alvain et al., 2005). A further problem is plasticity in the458

optical properties of phytoplankton types in response to growth conditions459

(Nair et al., 2008). Notwithstanding these limitations, the availability of460

hyper-spectral remote-sensing data is making it possible to introduce novel461

methods for detecting phytoplankton types from space (Bracher et al., 2009).462

Because of these difficulties with approaches designed to detect phyto-463

plankton types directly from their optical signatures, indirect methods have464

also been proposed that link community structure or size structure with465

chlorophyll concentration. Such methods (Figure 4), rely on the general466

observation that there is a relationship between community structure and467
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chlorophyll concentration (or other indices of phytoplankton abundance).468

Under climate-change however, there is always the possibility that such re-469

lationships might be perturbed. The preference, therefore, in the present470

context, is for development and use of methods that rely on the optical471

signatures of the target phytoplankton type, rather than on correlations es-472

tablished from historical data. We recognise, nevertheless, that comparison473

of empirical and theoretical methods, and their reconciliation, could also474

play a useful role in climate research: systematic differences that emerge be-475

tween different types of algorithms could be the first hint of a change in the476

ecosystem structure.477

For algorithm selection then, we should consider:478

Implication 9: Spectrally-resolved water-leaving radiances, in combination479

with bio-optical algorithms that allow retrieval of spectral variations in480

phytoplankton optical properties, are key to detection of phytoplankton481

types from ocean-colour data, especially in a climate-change context.482

Availability of information on phytoplankton types would facilitate res-483

olution of the ambiguity in interpretation of algorithms based on blue-484

green ratios.485

Implication 10: If the chlorophyll concentration estimated as sum of contri-486

butions from each phytoplankton type could not be reconciled with that487

estimated from blue-green ratios, then it would be an indication that488

further research should be undertaken.489
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6. Construction of time series and phytoplankton phenology490

The most notable feature of chlorophyll time series developed from re-491

mote sensing of ocean colour is the seasonal signal. The seasonality is of492

extreme importance to ecosystem function because the life cycles of many493

organisms, invertebrate and vertebrate, are strongly coupled to it. More494

strictly, they are tied to its phase, a property that is variable between re-495

gions and between years, because it is controlled by physical forcing, local496

or remote, which is neither uniform nor constant. For the same reasons, the497

phase of the seasonal cycle is sensitive to climate change. Seasonality in life-498

cycle processes, together with its variations both inter-annual and secular,499

is often referred to as phenology. In the ocean, phenology of phytoplankton500

is of fundamental significance to carbon fluxes relevant to mitigation of the501

greenhouse effect. That it can have profound impact at higher trophic levels502

has been demonstrated with great clarity (Platt et al., 2003a; Koeller et al.,503

2009). In other words, the trophic economy of the entire ocean ecosystem,504

and the important fluxes of carbon associated with it, are vulnerable to per-505

turbations of phytoplankton phenology, which can be observed from remote506

sensing of ocean colour. Phenology extracted from ocean-colour data con-507

stitutes a key resource to test whether models are able to produce seasonal508

dynamics realistically. In analyses of time-series data, the seasonal signal509

has to be resolved and isolated before any residual long-term signal related510

to multi-year variability or climate change can be revealed. Interruptions in511

data stream lead to uncertainties in phenology: the frequency of observations512

should be sufficient to resolve seasonality in the signal. We should therefore513

consider:514
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Implication 11: The selected algorithm(s) should perform routinely, and glob-515

ally, and should minimise gaps in data.516

7. Suitability of Products in Modelling Studies517

A major application of ocean-colour products in the climate context is518

anticipated to be in modelling studies. Many products of ocean-colour are519

inter-related to each other and various products may be used in different520

parts of a model. Computation of primary production in the ocean may521

be used to illustrate the point. Primary production P (mg C m−3 h−1) at522

a given time (t) and depth (z) in the water column may be expressed, in523

models of photosynthesis, as the product of chlorophyll concentration B, the524

parameter PB
m (mg C (mg Chl)−1 h−1) that describes photosynthetic rate at525

saturating light levels, the initial slope αB (mg C (mg Chl)−1 h−1 (W m−2)−1)526

of the photosynthesis-irradiance curve, and a function (f) of available light527

E (W m−2) as in Equation 3 below:528

P (z, t) = B(z)PB
m (z, t) f

(∫
E(z, t, λ)αB(λ)dλ/PB

m

)
. (3)

Note that the available light E and the parameter αB are both functions529

of wavelength (λ). Chlorophyll concentration B at the surface is accessible to530

remote sensing; to determine its value, we exploit (implicitly or explicitly),531

a function (h) of absorption coefficient a and the back-scattering coefficient532

bb (Equation 4):533

B(z = 0) = h
(
a(λ), bb(λ)

)
. (4)

The light available at depth (z) in the ocean is determined by the light534

available at the sea surface, and the diffuse attenuation coefficient (K), which535
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determines the rate of decrease of irradiance with depth, and is another536

function (g) of absorption and backscattering coefficients:537

E(z, λ) = E(0, λ) exp−
(∫ z

0

K(z′, λ)dz′
)

; (5)

and538

K(z, λ) = g(a(z, λ), bb(z, λ)) . (6)

The initial slope αB is related to the specific absorption coefficient of539

phytoplankton aB, and the maximum quantum yield of photosynthesis φm540

(Platt & Jassby, 1976):541

αB(λ) = aB(λ)φm(λ) . (7)

The example shows how ocean-colour products such as chlorophyll con-542

centration (B), the IOPs (such as the total absorption coefficient a, the543

specific absorption coefficient of phytoplankton aB and back-scattering co-544

efficient bb) and the diffuse attenuation coefficient K are all interconnected.545

They are also related to certain model parameters, and they appear in differ-546

ent parts of the computation of primary production. The interconnectedness547

of products has implications for algorithm selection:548

Implication 12: Different ocean-colour products for climate-change studies549

have to be consistent with each other. One way to test consistency550

would be to examine whether the products taken together can close the551

radiation budget with minimal error. This is an essential requirement,552

but not sufficient, since in a budget, error in one component may be553

compensated by an opposite error in another component.554
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Implication 13: IOPs have to be fully wavelength-resolved for use in applica-555

tions such as computation of primary production, since photosynthesis556

depends on the weighted integral of products like E(λ)α(λ) taken over557

the visible domain. This implies a preference for retrieval algorithms558

that function well at all available wavelengths, rather than at only se-559

lected wavelengths.560

8. Consistent Products from Different Sensors561

One of the requirements for generating long time series of ECVs from562

ocean-colour data is that the products be consistent across different sensors.563

All the ocean-colour sensors currently available have at least some wavebands564

not used by others, with the consequence that the water-leaving radiances565

and IOPs retrieved for the different sensors are not all calculated for the566

same wavebands. This matter has to be addressed before spectral optical567

properties from various sensors available at a particular time can be merged.568

Further, it would have to be dealt with before time series of optical prop-569

erties could be generated without shifts in wavelengths when availability of570

sensors (inevitably) changed. Any intersensor bias might lead to spurious571

trends in time series data (Mélin, 2016), and to misleading conclusions in572

climate-change studies. These considerations lead to the following choices573

for generation of merged products:574

Implication 14: For consistency across products from different sensors, the575

in-water retrievals should be based on a common reflectance model.576

When band-shifting is necessary, the same reflectance model should also577

be used for interpolation between wavebands.578
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Implication 15: Inter-sensor bias has to be corrected, before data from mul-579

tiple sensors are merged.580

9. Uncertainties in ocean-colour products581

All the above considerations notwithstanding, the algorithms of choice582

should satisfy the user requirements with regard to uncertainties, and so583

the uncertainties associated with each product should be specified. The584

choice of metrics for reporting uncertainties should be commonly-used in the585

community to facilitate comparisons. It has been typical in the ocean-colour586

field to provide global estimates of uncertainties, but for many applications,587

such as the use of the products in data assimilation, it is useful to have588

uncertainties specified on a per-pixel basis. The requirement to provide pixel-589

by-pixel error estimates is a challenge that could be addressed using optical590

classification of pixels in conjunction with class memberships in every pixel591

(Moore et al., 2009). Once uncertainties are established for each class, those592

associated with any pixel can be evaluated on the basis of the membership593

of the different classes within the pixel at that time.594

Uncertainties may be based on rigorous error propagation studies, in595

which case uncertainties at each step of the algorithm (if known) can be used596

to establish the total error propagated to the final product. Another option597

is to base uncertainties on comparison with in situ observations, treated as598

the truth. In the user consultation undertaken in the OC-CCI project, mod-599

ellers expressed a clear preference for uncertainties established on the basis600

of validation (comparison with corresponding in situ data).601

Implications for algorithm selection are:602
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Implication 16: Selected algorithms should yield each of the products with603

minimal uncertainties.604

Implication 17: The metrics selected for uncertainty characterisation should605

meet user requirements.606

Implication 18: The metrics should be implemented on a per-pixel basis.607

Implication 19: Since many algorithms use multiple wavebands, it is not only608

the uncertainties at individual wavebands that are important, but also609

the shape of the retrieved optical properties, whether they be the remote-610

sensing reflectance after atmospheric correction, or the inherent and611

apparent optical properties derived from them.612

10. Looking ahead: Longevity of products613

The science of ocean colour has by no means reached its apogee. There614

is a trend towards developing methodologies for measuring ocean colour at615

high temporal frequency (for example, through the use of geostationary satel-616

lites) and at high resolution in the wavelength domain (hyper-spectral remote617

sensing). The goals of hyper-spectral remote sensing are of course to improve618

the accuracy and precision of existing products and to facilitate the develop-619

ment of novel products. Simple band-ratio type of empirical algorithms are620

not designed to exploit hyperspectral capabilities. So, as we move towards621

hyperspectral algorithms, our choice would be to opt for multi-variate statis-622

tical methods or towards theoretical models. If one chooses purely statistical623

methods, it would be difficult to provide backward compatibility with simpler624

band-ratio algorithms in use today, unless some theoretical underpinning is625
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provided to the algorithms. Without backward compatibility, the time series626

that is being built carefully would be interrupted. To ensure the longevity of627

ocean-colour products for climate change, it would be worthwhile to develop628

algorithms that would not become obsolete immediately the technology im-629

proved. One way to ensure longevity is to provide a theoretical basis for630

algorithms in use. However, any selected algorithm, theoretical or empirical,631

would have to meet the requirements for accuracy and precision.632

Implication 20: Algorithms with a sound theoretical basis should be selected,633

as they are likely to be robust in the face of technological developments,634

and therefore to have a longer life with the proviso that the accuracy of635

the products also warrant the selection.636

11. Implementation in Ocean Colour Climate Change Initiative637

We now turn our attention to the outcomes, when these ideal criteria were638

confronted with a real-life implementation, in the case of the OC-CCI. The639

current status of the OC-CCI implementation is summarised in Tables 1-6.640

But some points are worth further emphasis. The criteria presented above641

emerged from a variety of considerations, but some requirements emerged642

multiple times, such as the need for consistency, for uncertainty estimates643

and for algorithms with a theoretical basis.644

The requirements as listed here are not hierarchical, and in an ideal world,645

one would meet them all. But in reality, we found that we had to assign a646

hierachy to be able to make a selection. For example, in the selection of647

atmospheric correction algorithms, the top priority was assigned to high ac-648

curacy retrievals, then to minimising gaps in products, and finally to consis-649
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tency in processing algorithms. This choice was imposed by the differences650

in the ocean-colour sensors (SeaWiFS, MODIS-Aqua and MERIS) used in651

the merged product. In the sensor-by-sensor intercomparisons carried out for652

the atmospheric correction processors, the same algorithms did not perform653

equally well for all sensors, when retrieved products were compared with654

match-up in situ data (Müller et al., 2015). This forced the decision that655

accurate products were the highest priority, and the atmospheric correction656

algorithm that performed best for each sensor was selected for use with data657

from that sensor. If two algorithms performed equally well for a particular658

sensor in tests related to quality of retrieval, then the algorithm that min-659

imised gaps was given priority. Against expectation, a novel atmospheric660

correction algorithm (Steinmetz et al., 2011) matched the conventional al-661

gorithms in statistical comparisons, (Müller et al., 2015), but provided en-662

hanced coverage. This atmospheric correction was implemented as a conse-663

quence, for MERIS in versions 1 and 2, and for MODIS-Aqua and MERIS664

in OC-CCI version 3. Implementing a novel algorithm always involves some665

risk, and only with time and with many applications of the products in vari-666

ous circumstances, will we be able to know whether the choice was the right667

one. That being said, at the time of writing this paper, POLYMER continues668

to perform well.669

Similarly, in spite of a clear preference for algorithms with a strong theo-670

retical basis, when it came to chlorophyll algorithms, more than one empirical671

algorithm performed better than all the theoretical-model-based algorithms672

in the round-robin comparisons (Brewin et al., 2015a), and so once again,673

algorithm performance was assigned higher priority over the requirement for674
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a theoretical model. This hierarchical decision led to the choice of OC-4675

algorithm in OC-CCI version 1 and in version 2, and to a combination of676

Ocean Colour Index or OCI (Hu et al., 2012) in version 3 in the open ocean.677

However, the selected algorithm for inherent optical properties (Lee et al.,678

2002) satisfied selection criteria for both accuracy and theoretical basis. The679

selection procedures implemented in OC-CCI clearly demonstrated that em-680

pirical chlorophyll algorithms are still the algorithms of choice. They also681

have a heritage value: since they have been use for more than two decades,682

the developers and users of the algorithms are very familiar with their ad-683

vantages as well as their disadvantages. Therefore, if, in the near future, a684

theory-based algorithm outperforms all empirical algorithms, it would still685

be judicious to continue processing the new algorithms side by side with the686

OC-4 and OCI types of empirical algorithms. Comparisons between perfor-687

mance of algorithms would certainly help evaluate new algorithms. However,688

given the implicit assumptions in the band-ratio type of algorithms on how689

chlorophyll concentrations covary with phytoplankton community structure690

and with other bio-optical components in the water such as coloured dis-691

solved organic matter, and the need for algorithms to remain robust under692

climate-related variability in these relationships as demonstrated by Dierssen693

(2010) and also illustrated in Figure 4, the need for multi-variate theretical694

approaches to chlorophyll retrieval remains important.695

Band-shifting (Mélin & Sclep, 2015) and bias correction (Mélin et al.,696

2017) of the products turned out to be important steps, since they allowed697

production of remote-sensing reflectances at the same wavebands for the698

entire merged time series. Once the bands were matched, it became possible699
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to correct the data for intersensor bias, and thus improve the time series. It700

also followed that a common set of in-water algorithms could be implemented701

for all the data, without having to change wavebands (and hence algorithms)702

as new sensors came in and out of the time series.703

In the initial years of OC-CCI the emphasis of the work was on Case-1704

waters. Only in the third reprocessing (version 3), was a branching algorithm705

implemented on the basis of optical water classes, in a bid to improve perfor-706

mance in Case-2 waters. Undoubtedly, this is only the beginning, and much707

more work still remains to be done to improve algorithm performance in the708

complex optical environments encapsulated by the term Case-2 waters.709
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Table 1: Climate study requirements (general) and the OC-CCI status

Requirement (general) OC-CCI Status

1. Algorithms should be robust

in a changing climate.

The empirical chlorophyll-a algorithms selected for generation of

Chl-a products, see Brewin et al. (2015a) for details of in-water

algorithm comparisons contain implicit assumptions about ecoys-

tem structure in today’s climate. Robustness would be jeopar-

dised if the underlying structure were altered by climate change.

But lack of inter-annual variations in algorithm performance (see

Fig. 4) is reassuring, for now. Algorithms for inherent and appar-

ent optical properties are based on theoretical models, and hence

should be more robust. But some model parameters have empiri-

cal bases, with the same caveats.

2. Retrievals of properties of

the ecosystem should be inde-

pendent of each other.

This criterion is met by OC-CCI products, which are all “directly”

retrieved from satellite-derived remote-sensing reflectance, rather

than through empirical correlations with each other.

3. Use of empirical relationships

in the algorithms should be min-

imal.

Chlorophyll-a algorithms used are empirical, but not the algo-

rithms designed for retrieval of inherent and apparent properties.
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Table 2: Climate study requirements (Case-2) and the OC-CCI status

Requirement (Case-1 and Case-2) OC-CCI Status

4. Selected Case-1 algorithms should

be accompanied by some estimates of

the increased uncertainties in products

when they are applied to Case-2 waters.

An optical classification is used in OC-CCI (Moore et al.,

2009; Jackson et al., 2017), which allows identification of

multiple classes, effectively partitioning Case-1 and Case-

2 into subsets according to their optical properties. Per-

pixel uncertainties are calculated according to membership

of each optical class in a pixel, and validation results for

each class provides uncertainties for all pixels, both Case-1

and Case-2.

5. Case-1 algorithms should aim to in-

corporate some of the capabilities of

Case-2 algorithms to discriminate be-

tween contributions from different con-

stituents to ocean colour, albeit for con-

ditions that might reasonably be ex-

pected in open-ocean waters.

This goal is not yet achieved for chlorophyll algorithm,

which accounts only for the effect of chlorophyll-a concen-

tration on ocean colour. But the optical properties in the

product suite are calculated using a multi-variable approach

(Lee et al., 2002), even in Case-1 waters.

6. Branching algorithms may be con-

sidered, for seamless blending of Case-1

and Case-2 waters.

Branching and blending algorithms according to optical wa-

ter class have been implemented in version 3 (Jackson et al.,

2017).

7. If empirical algorithms are selected

for climate-change studies, then a the-

oretical underpinning to the algorithms

should be provided.

A number of theoretical studies have elucidated the under-

lying assumptions in the empirical algorithms used (e.g.,

Dierssen (2010) and Chapter 4 in Sathyendranath (2014)).

This type of work should continue, to reach our stated goal.

8. If a novel algorithm is selected, the

new and the heritage algorithms should

be reconciled through theoretical anal-

yses. Need continued access to heritage

algorithm for comparison.

A novel atmospheric correction algorithm (POLYMER,

Steinmetz et al. (2011)) is used in OC-CCI for some

of the sensors. Continued access to the conventional

NASA SeaDAS atmospheric correction products is avail-

able through NASA. Detailed comparative analyses of the

two types of algorithms have been beyond the scope of OC-

CCI, but are essential to improve understanding.

39



Table 3: Climate study requirements (PFT and Phenology) and the OC-CCI status

Requirement (PFT and Phe-

nology)

OC-CCI Status

9. Spectrally-resolved water-

leaving radiances and spectrally-

resolved phytoplankton optical

properties are essential.

Products include remote-sensing reflectance at

all SeaWiFS wavebands (Sathyendranath et al.,

2016a,b), see also https://www.oceancolour.org/.

Future improvements should include extension to all

MERIS and Sentinel-3 bands.

10. Check consistency in chloro-

phyll concentration from PFT al-

gorithms against that estimated

from blue-green ratios.

PFT products are not included in OC-CCI product

suite. Hence consistency check was not done. But

this should be a goal for the future.

11. The selected algorithm(s)

should perform routinely, glob-

ally, and minimise gaps.

POLYMER atmospheric correction algorithm re-

duces gaps in products (Müller et al., 2015). In-water

algorithm round-robin included checks for number of

retrievals (Brewin et al., 2015a).
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Table 4: Climate study requirements (modelling and consistency) and the OC-CCI status

Requirement (modelling,

consistency)

OC-CCI Status

12. Different ocean-colour prod-

ucts have to be consistent with

each other (see item 10 in Table

3.

All IOPs are derived from a single bio-optical model

(Lee et al., 2002), to ensure consistency. But con-

sistency between optical properties and chlorophyll

concentration has not been established.

13. IOPs have to be fully

wavelength-resolved.

Selected algorithm provides IOPS at all SeaWiFS

wavelengths (Lee et al., 2002).

14. To ensure consistency,

a common reflectance model

should be used for in-water re-

trievals and for interpolation be-

tween wavebands.

The same model was used for IOP retrieval (Lee

et al., 2002) and band shifting (Mélin & Sclep, 2015).

15. Inter-sensor bias has to be

corrected, before data from mul-

tiple sensors can be merged.

Bias correction has been applied at the level of

remote-sensing reflectance (Mélin et al., 2017).
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Table 5: Climate study requirements (Uncertainties) and the OC-CCI status

Requirement (uncertainties) OC-CCI Status

16. Uncertainties associated

with each of the products should

be minimal.

This was a selection criterion.

17. The metrics selected for un-

certainty characterisation should

meet user requirements.

Root-mean square error and bias were selected as the

uncertainties to report on a per-pixel basis (Jackson

et al., 2017), because of their wide-spread usage in

the field. Also consistent with the requirements of

the users, who requested uncertainty estimates based

on comparison of satellite products with in situ ob-

servations (Sathyendranath, 2011).

18. The metrics should be imple-

mented on a per-pixel basis.

Implemented using an optical classification

(Sathyendranath et al., 2016a,b; Jackson et al.,

2017).

19. The shape of the retrieved

optical properties should match

the reality.

A χ2 test was implemented as part of the selection

criteria to test fidelity to observations (Müller et al.,

2015).

Table 6: Climate study requirements (longevity) and the OC-CCI status

Requirement (longevity) OC-CCI Status

20. Algorithms with a sound the-

oretical basis should be selected

to ensure longevity.

This is true of the optical properties in the product

suite.
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12. Conclusion710

Many aspects of the analysis above favour algorithms based on a theoreti-711

cal approach, over purely empirical ones. However, the historical importance712

of successful empirical algorithms cannot be overlooked. Ideally, the two ap-713

proaches would be reconciled, ensuring both minimal errors and improved714

interpretation. As the range of ocean-colour products expands, there is a715

need to move towards multispectral approaches in preference to simple band716

ratios.717

Empirical relationships that tie one optical property to another are to718

be avoided, both in the development of forward models that establish the719

relationships between IOPs and ocean colour, and in the methods used to720

retrieve the in-water properties from ocean colour. The OC-CCI has a focus721

on retrieval of water-leaving radiances, chlorophyll concentration and IOPs.722

However, we have to be alert to the future needs for additional products723

from ocean colour, including detection of phytoplankton types. The preferred724

methods for achieving this identification, in the context of climate change,725

would exploit differences in the spectral characteristics of phytoplankton.726

The selected algorithm should be able to perform satisfactorily in a vari-727

ety of oceanic and atmospheric conditions, thereby minimising gaps in data728

originating from choice of algorithms. A suite of qualitative and quantitative729

selection criteria is proposed here based on the analysis presented.730

To our knowledge, this is the first time that a systematic analysis has731

been undertaken regarding the choices that have to be made when we set out732

to produce a long time series of ocean-colour products for climate research.733

No doubt, over the years, these ideas will be refined and improved, as our734
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experience grows. Hence it is important that the rationale presented here be735

recognised as a first step in a long journey, and not the end.736

The algorithm selections, in practice, relies heavily on in situ data for737

their assessments. The importance of maintaining and building on the in738

situ datasets (as well as improving the collection methods) for monitoring739

the performance of the satellite sensors, and for monitoring the performance740

of the products produced by the algorithms has to be underscored in this741

context. Only with good sea truth data can we have confidence in the climate742

products generated using the algorithms.743

Without doubt, many of the issues discussed here with respect to consis-744

tency will become easier to deal with, once operational ocean-colour missions,745

notably the Sentinel-3 series, have been available for several decades. The746

beginning of the Sentinel-3 era is here, with the launch of the first of the747

Sentinel-3 missions in 2016. It will prove to be a landmark in the develop-748

ment of long time series of ocean-colour products for climate research.749
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