20 research outputs found

    On unicyclic graphs whose second largest eigenvalue dose not exceed 1

    Get PDF
    AbstractConnected graphs in which the number of edges equals the number of vertices are called unicyclic graphs. In this paper, all unicyclic graphs whose second largest eigenvalue does not exceed 1 have been determined

    Laplacian spectral characterization of some double starlike trees

    Full text link
    A tree is called double starlike if it has exactly two vertices of degree greater than two. Let H(p,n,q)H(p,n,q) denote the double starlike tree obtained by attaching pp pendant vertices to one pendant vertex of the path PnP_n and qq pendant vertices to the other pendant vertex of PnP_n. In this paper, we prove that H(p,n,q)H(p,n,q) is determined by its Laplacian spectrum

    Spectral characterizations of sun graphs and broken sun graphs

    Get PDF
    Graphs and AlgorithmsInternational audienceSeveral matrices can be associated to a graph such as the adjacency matrix or the Laplacian matrix. The spectrum of these matrices gives some informations about the structure of the graph and the question ''Which graphs are determined by their spectrum?'' remains a difficult problem in algebraic graph theory. In this article we enlarge the known families of graphs determined by their spectrum by considering some unicyclic graphs. An odd (resp. even) sun is a graph obtained by appending a pendant vertex to each vertex of an odd (resp. even) cycle. A broken sun is a graph obtained by deleting pendant vertices of a sun. In this paper we prove that a sun is determined by its Laplacian spectrum, an odd sun is determined by its adjacency spectrum (counter-examples are given for even suns) and we give some spectral characterizations of broken suns

    The inertia of unicyclic graphs and the implications for closed-shells

    Get PDF
    AbstractThe inertia of a graph is an integer triple specifying the number of negative, zero, and positive eigenvalues of the adjacency matrix of the graph. A unicyclic graph is a simple connected graph with an equal number of vertices and edges. This paper characterizes the inertia of a unicyclic graph in terms of maximum matchings and gives a linear-time algorithm for computing it. Chemists are interested in whether the molecular graph of an unsaturated hydrocarbon is (properly) closed-shell, having exactly half of its eigenvalues greater than zero, because this designates a stable electron configuration. The inertia determines whether a graph is closed-shell, and hence the reported result gives a linear-time algorithm for determining this for unicyclic graphs

    The inertia of weighted unicyclic graphs

    Full text link
    Let GwG_w be a weighted graph. The \textit{inertia} of GwG_w is the triple In(Gw)=(i+(Gw),i−(Gw),In(G_w)=\big(i_+(G_w),i_-(G_w), i0(Gw)) i_0(G_w)\big), where i+(Gw),i−(Gw),i0(Gw)i_+(G_w),i_-(G_w),i_0(G_w) are the number of the positive, negative and zero eigenvalues of the adjacency matrix A(Gw)A(G_w) of GwG_w including their multiplicities, respectively. i+(Gw)i_+(G_w), i−(Gw)i_-(G_w) is called the \textit{positive, negative index of inertia} of GwG_w, respectively. In this paper we present a lower bound for the positive, negative index of weighted unicyclic graphs of order nn with fixed girth and characterize all weighted unicyclic graphs attaining this lower bound. Moreover, we characterize the weighted unicyclic graphs of order nn with two positive, two negative and at least n−6n-6 zero eigenvalues, respectively.Comment: 23 pages, 8figure

    On the spectral moments of unicyclic graphs with fixed diameter

    Get PDF
    AbstractUnicyclic graphs are connected graphs in which the number of edges equals the number of vertices. Let Un,d be the class of unicyclic graphs of order n and diameter d. For unicyclic graphs, lexicographic ordering by spectral moments (S-order) is discussed in this paper. The last d+⌊d2⌋-2 graphs, in the S-order, among all unicyclic graphs in Un,d(3⩽d⩽n-5) are characterized. In addition, for the cases d=n-4 and d=n-3, the last 2n-11 and last n+⌊n2⌋-7 unicyclic graphs in the set Un,d are also given, respectively
    corecore