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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Several matrices can be associated to a graph such as the adjacency matrix or the Laplacian matrix. The spectrum

of these matrices gives some informations about the structure of the graph and the question “Which graphs are

determined by their spectrum?” remains a difficult problem in algebraic graph theory. In this article we enlarge the

known families of graphs determined by their spectrum by considering some unicyclic graphs. An odd (resp. even)

sun is a graph obtained by appending a pendant vertex to each vertex of an odd (resp. even) cycle. A broken sun is a

graph obtained by deleting pendant vertices of a sun. In this paper we prove that a sun is determined by its Laplacian

spectrum, an odd sun is determined by its adjacency spectrum (counter-examples are given for even suns) and we

give some spectral characterizations of broken suns.

Keywords: Graphs, algebraic graph theory, spectral graph theory, unicyclic graphs, Laplacian matrix, adjacency

matrix, graphs determined by their spectrum, sun graphs.

1 Introduction

Several matrices can be associated to a graph such as the adjacency matrix (denoted by A) or the Laplacian

matrix L = D−A where D is the diagonal matrix of degrees. Some structural properties can be deduced

from their spectrum but in general we can’t determine a graph from its adjacency or Laplacian spectrum.

A natural question arise “Which graphs are determined by their spectrum?”(van Dam and Haemers, 2003).

Two graphs are A-cospectral (resp. L-cospectral) if they have the same A-spectrum (resp. L-spectrum).

Some papers study spectral properties of unicyclic graphs (see Cvetković and Rowlinson (1987); Belardo

et al. (2006) for instance) but few is done to find families of unicyclic graphs determined by their spectrum

(see Haemers et al. (2008); Boulet and Jouve (2008) for examples of unicyclic graphs determined by their

spectrum).

The Sun on n = 2p vertices, denoted by Sunp, is the graph obtained by appending a pendant vertex to

each vertex of a p-cycle. A broken sun is a connected unicyclic subgraph of a sun. We denote by BS(p, q)
the set of broken suns with n = p + q vertices and with a p-cycle; note that BS(p, p) = {Sunp}. For

p > 2 and 0 < q < p, a consecutive broken sun, denoted by CBSunp,q, is the graph belonging to

BS(p, q) such that the subgraph induced by the vertices of degree 2 is a path on p − q vertices. Some
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Fig. 1: The sun graph Sun7.

Fig. 2: A broken sun belonging to

BSun(9, 3)
Fig. 3: The consecutive broken sun

CBSun6,4

examples are depicted in Figures 1, 2 and 3. A broken sun (or a sun) is odd (resp. even) if p is odd (resp.

even).

This paper is organized as follow: we first recall in Section 2 some basic and useful results on spectral

graph theory. Then in Section 3 we look at the Laplacian spectrum of suns and broken suns and we

show in particular that the suns and the even consecutive broken suns are determined by their Laplacian

spectrum. Then in Section 4 we consider the adjacency spectrum and show that the odd suns and the odd

consecutive broken suns are determined by their adjacency spectrum.

To fix notations, QG(X) = Xn+a1X
n−1+a2X

n−2+...+an denotes the characteristic polynomial of

the adjacency matrix of a graph G, Sp(G) denotes the associated spectrum and λ(G) denotes the spectral

radius of the adjacency matrix of the graph G. A p-cycle is denoted by Cp and the complete graph on two

vertices is denoted by K2.

The line graph L(G) of a graph G has the edges of G as its vertices and two vertices of L(G) are

adjacent if and only if the corresponding edges in G are incident on a common vertex.

2 Known Results

Here are some known results about the Laplacian spectrum of a graph.

Theorem 2.1 (Mohar, 1991) Let G = (V,E) be a graph where V (resp. E) is the set of vertices (resp.

edges). Let µ be the spectral radius of the Laplacian of G and we denote by d(v) the degree of a vertex v.

We have:

max{d(v), v ∈ V } < µ ≤ max{d(u) + d(v), uv ∈ E}
Theorem 2.2 (van Dam and Haemers, 2003) Let G be a graph, the following can be deduced from the

spectrum of the Laplacian matrix of G:

• The number of vertices.

• The number of edges.

• The number of connected components.

• The number of spanning trees.

Proposition 2.1 (Boulet, 2008)

i) The sum of squares of the degrees of a graph G can be deduced from its Laplacian spectrum.

ii) The sum of cubes of the degrees of a graph G can be deduced from its Laplacian spectrum and from

the number of triangles contained in G.
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Theorem 2.3 (Doob, 2004) Let G be a bipartite graph with n vertices, let µ1(G) ≥ µ2(G) ≥ ... ≥
µn(G) be the Laplacian eigenvalues of G and λ1(L(G)) ≥ λ2(L(G)) ≥ ... ≥ λn(L(G)) be the adja-

cency eigenvalues of the line graph of G. Then µi(G) = λi(L(G)) + 2 for 1 ≤ i ≤ n − 1.

Here are some known results about the adjacency spectrum of a graph.

Theorem 2.4 (Godsil and Royle, 2001) If H is an induced subgraph of G then λ(H) ≤ λ(G).

Theorem 2.5 (Favaron et al., 1993) Let G be a graph with maximum degree dM then λ(G) ≥
√

dM .

Proposition 2.2 (Belardo et al., 2006) ∀p ≥ 3, λ(Sunp) = 1 +
√

2.

A closed walk of length k is a sequence of graph vertices v0, v1, v2, · · · , vk−1, v0 such that vi and vi+1

are adjacent and vn−1 is adjacent to v0. The following proposition is a classical result:

Proposition 2.3 Let G be a graph and λi, i = 1, · · · , n be its adjacency eigenvalues. The number of

closed walks of length k ≥ 2 in G is
∑

λk
i .

Proposition 2.4 (Cvetković and Rowlinson, 1987) Let G be a graph with n vertices, m edges and c4

4-cycles. Let nk be the number of vertices of degree k. Then
∑

λi∈Sp(G) λ4
i = 8c4 +

∑

k knk +

4
∑

k>0
nk(nk−1)

2 nk.

Theorem 2.6 (Belardo et al., 2006) ∀G ∈ BS(p, q), G 6= CBSunp,q, λ(G) < λ(CBSunp,q).

Theorem 2.7 (Cvetković et al., 1978) We call an elementary figure the complete graph on two vertices

or the q-cycles, q > 0. We call a basic figure U every graph all of whose connected components are

elementary figures. Let p(U) be the number of connected components of U and c(U) the number of cycles

in U . We note Ui the set of basic figures with i vertices of G. Then the coefficient ai of QG is:

ai =
∑

U∈Ui

(−1)p(U)2c(U) , i = 1, 2, ..., n

Straightforward consequences of this theorem are:

• a1 = 0 since there are no basic figures with only one vertex,

• a2 is the number of edges since a basic figure on 2 vertices is necessarily an edge (i.e. a complete

graph on two vertices),

• a3 is the number of triangles since a basic figure on 2 vertices is necessarily a triangle.

The following theorem is also a consequence of Theorem 2.7; the key point of the proof is to notice

that a basic figure with an odd number of vertices inevitably contains an odd cycle.

Theorem 2.8 (Cvetković et al., 1978) The length of the shortest odd cycle in G and the number of such

cycles are given by the smallest odd index p such that ap 6= 0.

It ensues that a graph is bipartite if and only if its adjacency spectrum is symmetric.
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3 Characterizations of suns and broken suns by means of Lapla-

cian spectrum

Proposition 3.1 A graph L-cospectral with H ∈ BS(p, q) is connected, unicyclic and the size of the

cycle is p.

Proof: We apply Theorem 2.2 and we note that a connected graph with as many edges as vertices is

unicyclic and the number of spanning trees gives the length of the cycle. ✷

The following proposition follows from Theorem 2.1:

Proposition 3.2 Let G be a graph L-cospectral with H ∈ BS(p, q), then the maximum degree of G is

lower than or equal to 5.

Theorem 3.1 Let G be a graph L-cospectral with H ∈ BS(p, q) for p > 2 and 1 ≤ q ≤ p then

G ∈ BS(p, q).

Proof: The first step of the proof is to determine the degree distribution of G. Let ni be the number of

vertices of degree i, i = 1, · · · , 5 of G. The spectrum determines
∑

di,
∑

d2
i and

∑

d3
i and for the graph

H we have
∑

di = q + 2(p − q) + 3q,
∑

d2
i = q + 4(p − q) + 9q and

∑

d3
i = q + 8(p − q) + 27q; so:















n1 + n2 + n3 + n4 + n5 = p + q

n1 + 2n2 + 3n3 + 4n4 + 5n5 = 2p + 2q

n1 + 4n2 + 9n3 + 16n4 + 25n5 = 4p + 6q

n1 + 8n2 + 27n3 + 64n4 + 125n5 = 8p + 20q

Since the Vandermonde matrix is invertible, this linear system is uniquely solvable. We have:














n1 + n2 + n3 + n4 + n5 = p + q

n2 + 2n3 + 3n4 + 4n5 = p + q

2n3 + 6n4 + 12n5 = 2q

6n4 + 24n5 = 0

Solving this system gives n4 = n5 = 0, n3 = q,n2 = p − q and n1 = q. If there are q′ < q vertices

of degree 3 belonging to the p-cycle, then n2 ≥ p − q′ > p − q, a contradiction. As a result there are q

vertices of degree 3 belonging to the p-cycle and G ∈ BS(p, q). ✷

Theorem 3.2 For p > 2, Sunp is determined by its Laplacian spectrum.

Proof: We just apply the previous Theorem and notice that BS(p, p) = {Sunp}. ✷

Lemma 3.1 For p ∈ N \ {0, 1, 2, 3, 4, 5, 7} and 1 < q < p − 1, let G be a graph in BS(p, q) and

non-isomorphic to CBSp,q, we have (we remind that δ6
p equals 1 if p = 6 and 0 otherwise):

∑

λi∈Sp(L(G))

λ7
i <

∑

λi∈Sp(L(CBSp,q))

λ7
i = 686q − 392 + 14qδ6

p.

where L(G) is the line graph of G and λi denotes the adjacency eigenvalues.
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Proof: The aim of the proof is to obtain a formula for
∑

λi∈Sp(H) λk
i where H is an arbitrary graph.

Once this formula established, we apply it for k = 7 to L(G) and to L(CBSp,q).
Let M be a graph and let k > 1 be an integer. A k-covering closed walk in M is a closed walk of

length k in M running through all the edges of M at least once. Let H be a graph, M(H) denotes the set

of all distinct subgraphs (not necessarily induced) of G isomorphic to M and |M(H)| is the number of

elements of M(H). The number of k-covering closed walks in M is denoted by wk(M) and we define

the set Mk = {M, wk(M) > 0}. As a consequence, the number of closed walks of length k in H is:

∑

λi∈Sp(H)

λk
i =

∑

M∈Mk

wk(M)|M(H)| (1)

As an odd closed walk necessarily runs through an odd cycle, it is clear that if M ∈ M7 is a subgraph

of L(G) or L(CBSp,q) then M contains one and only one triangle or M contains one and only one 7-

cycle. Only the graphs T, T1, T2, T3, T4 ∈ M7 depicted in Figure 4 and the 7-cycle C7 can arise as

subgraphs of L(G) and L(CBSp,q); the 7-cycle can arise if and only if p = 6.

T T T T T
1 2 3 4

Fig. 4: Subgraphs of L(G) and L(CBSp,q) belonging to M7

Let A, Ai denote the adjacency matrices of T , Ti. The resolution of the equations

tr(A7) = w7(T )

tr(A7
1) = w7(T ) + w7(T1)

tr(A7
2) = w7(T ) + 2w7(T1) + w7(T2)

tr(A7
3) = w7(T ) + 2w7(T1) + w7(T3)

tr(A7
4) = w7(T ) + w7(T1) + w7(T4)

yields

w7(T ) = 126

w7(T1) = 84

w7(T2) = 28

w7(T3) = 14

w7(T4) = 14

For the graph L(CBSp,q), q < p − 1, we have:
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|T (L(CBSp,q))| = q

|T1(L(CBSp,q))| = 4(q − 2) + 2 × 3
|T2(L(CBSp,q))| = 2(q − 2) + 2
|T3(L(CBSp,q))| = 4(q − 2) + 2 × 2
|T4(L(CBSp,q))| = 8(q − 4) + 2 × 7 + 2 × 5

Moreover if p = 6 we have |C7(L(CBSp,q))| = q and w7(C7) = 14. So

∑

λi∈Sp(L(CBSp,q))

λ7
i =

∑

M∈M7

w7(M)|M(L(CBSp,q))| = 686q − 392 + 14qδ6
p.

We call a chain of triangles the line graph of a centipede(i) (see Figure 5 for an example) and we define

the length of a chain of triangles as the number of triangles.

Fig. 5: A chain of triangles of length 5.

Let l1, l2, · · · lr be the maximal lengths of the chains of triangles contained in L(G); we have
∑

li = q

and:
|T (L(G))| =

∑

li = q

|T1(L(G))| =
∑

(4(li − 2) + 2 × 3) = 4q − 2r

|T2(L(G))| =
∑

(2(li − 2) + 2) = 2q − 2r

|T3(L(G))| <
∑

4li = 4q

|T4(L(G))| <
∑

8li = 8q

|C7(L(G))| = qδ6
p

So
∑

λi∈Sp(L(G))

λ7
i =

∑

M∈M7

w7(M)|M(L(G))| < 686q − 224r + 14qδ6
p

As r ≥ 2 we have
∑

λi∈Sp(L(G))

λ7
i <

∑

λi∈Sp(L(CBSp,q))

λ7
i

✷

Theorem 3.3 For p > 2 even and 0 < q < p, the consecutive broken sun CBSp,q is determined by its

Laplacian spectrum.

Proof: Let G be a graph cospectral with CBSp,q, p > 2 even and 0 < q < p. According to Theorem

3.1, G ∈ BS(p, q). If q = 1 or q = p − 1 then |BS(p, q)| = 1 and G is isomorphic to CBSp,q. We now

assume that 1 < q < p−1. If p = 4 then we easily compute that the two graphs belonging to BS(4, 2) are

(i) A centipede is a tree constructed by appending a pendant vertex to each vertex of degree 2 of a path (Boulet, 2008)
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not Laplacian-cospectral (by comparing their spectral radii for instance), thus G is isomorphic to CBSp,q.

If p ≥ 6, since p is even, G and CBS(p, q) are bipartite, Theorem 2.3 implies that L(G) and L(CBSp,q)
have the same adjacency spectrum. If G is not isomorphic to CBSp,q then the previous lemma gives
∑

λi∈Sp(L(G)) λ7
i <

∑

λi∈Sp(L(CBSp,q)) λ7
i and G cannot be cospectral with CBSp,q, contradiction. As

a result G is isomorphic to CBSp,q. ✷

4 Characterizations of odd suns and odd broken suns by means

of adjacency spectrum

Lemma 4.1 Let G be a graph A-cospectral with H ∈ BS(p, q), p odd and q ≤ p. Then:

i) the coefficient ap′ , p′ odd, p′ 6= p, of QG(X) is zero,

ii) the coefficient ap of QG(X) is non-zero,

iii) the length of the shortest odd cycle of G is p and G has one and only one p-cycle.

Proof:

i) We apply Theorem 2.7. As p′ is odd, a basic figure with p′ 6= p vertices necessarily contains an odd

cycle, it becomes clear that there are no such basic figures in H .

ii) The length of the smallest odd cycle of H is p and we apply Theorem 2.8.

iii) We apply Theorem 2.8. ✷

Lemma 4.2 i) Let G be a graph A-cospectral with H ∈ BS(p, q), p odd and q ≤ p. A connected

component of G different from an single vertex cannot be bipartite.

ii) Let G be a graph without isolated vertices and A-cospectral with H ∈ BS(p, q), p odd and q ≤ p.

Then G is connected and unicyclic.

Proof: i) Let λ be a non-zero eigenvalue of the adjacency matrix of G. By Lemma 4.1 we have QG(−λ) =
(−1)n (QG(λ) + 2apλ

p) 6= 0 and so QG(−λ) 6= 0. We deduce that if λ 6= 0 is an eigenvalue of G then

−λ is not an eigenvalue of G. A connected component of G different from an single vertex cannot be

bipartite because there would exist an eigenvalue λ such that −λ is also an eigenvalue (the spectrum of a

bipartite graph is symmetric)

ii) According to i), each connected component of G has an odd-cycle. But the length of the shortest

odd cycle of G is p and G has one and only one p-cycle (Lemma 4.1), moreover |G| = p + q ≤ 2p. It

ensues that G cannot have more than one connected component. ✷

Lemma 4.3 If G is A-cospectral with H ∈ BS(p, q), then λ(G) ≤ 1 +
√

2 and ∆(G) ≤ 5.

Proof: A direct consequence of Theorem 2.4, Theorem 2.5 and Proposition 2.2. ✷

Lemma 4.4 Let G be a graph without isolated vertices and A-cospectral with H ∈ BS(p, q) p odd and

q ≤ p. Then there are no vertices at distance d > 1 from the cycle and a vertex of G is at distance 1 from

the p-cycle if and only if it is a pendant vertex.



156 Romain Boulet

Proof: Since Cp ∪ K2 is not a subgraph of G (Theorem 2.7 and Lemma 4.1), there are no vertices at

distance d > 1 from the cycle. It involves that a pendant vertex is at distance 1 from the cycle and that a

vertex at distance 1 from the cycle is necessarily a pendant vertex (remember that G is unicyclic, Lemma

4.2) ✷

We can state the following theorem:

Theorem 4.1 Let p be odd and G be a graph without isolated vertices and A-cospectral with H ∈
BS(p, q). Then G ∈ BS(p, q).

Proof: The graph G is connected (Lemma 4.2), unicyclic with a p-cycle (Theorem 2.8 and Lemma 4.1)

and each pendant vertex of G is at distance 1 from the p-cycle (Lemma 4.4).

It remains to show that the vertices of G belonging to the p-cycle have a degree lower than or equal to

3. The maximum degree of G is lower than or equal to 5 (Lemma 4.3). Let ni be the number of vertices

of G of degree i, i = 1, · · · , 5 and let n = |G| = p + q. We have n1 + n2 + n3 + n4 + n5 = n and

n1 + 2n2 + 3n3 + 4n4 + 5n5 = 2n ( The sum of the degrees is twice the number of edges). Since the

graph G is unicyclic with an odd cycle, it does not possess a 4-cycle.

Proposition 2.4 gives:
∑

λi∈SpG
λ4

i = 2n + 4(n2 + 3n3 + 6n4 + 10n5). Since
∑

λi∈SpG
λ4

i =
∑

λi∈SpH
λ4

i = 2n + 4((p − q) + 3q) then n2 + 3n3 + 6n4 + 10n5 = p + 2q.

As a result we obtain:






n1 + n2 + n3 + n4 + n5 = n

n1 + 2n2 + 3n3 + 4n4 + 5n5 = 2n

n2 + 3n3 + 6n4 + 10n5 = p + 2q

And we deduce the following equations:

n2 = 3n4 + 8n5 + (p − q) (2)

n3 + 3n4 + 6n5 = q (3)

But the vertices of G of degree strictly greater than 1 are exactly the vertices belonging to the p-cycle

(Lemma 4.4), so n2 + n3 + n4 + n5 = p, and using equation (3) we obtain n2 = 2n4 + 5n5 + (p − q).
This relation and equation (2) give n4 = n5 = 0. ✷

With this spectral characterization of the set of odd broken suns we can reveal some special odd broken

suns determined by their adjacency spectrum.

Theorem 4.2 An odd sun is determined by its adjacency spectrum.

Proof: A direct application of Theorem 2.7 gives that the constant coefficient of QG(X) is (−1)p and G

cannot have isolated vertices. Now, Theorem 4.1 gives that G ∈ BS(p, p) and we conclude by noting that

|BS(p, p)| = 1 and BS(p, p) = {Sunp}. ✷

Remark 4.1: A simpler proof that does not use Theorem 4.1 can be done. Indeed, G is connected

(Lemma 4.2), unicyclic with a p-cycle (Theorem 2.8 and Lemma 4.1) and each pendant vertex of G is at

distance 1 from the p-cycle (Lemma 4.4). Moreover G has a perfect matching (ii) because if G does not

(ii) A perfect matching is a set of pairwise non-adjacent edges that covers all vertices of the graph.
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possess a perfect matching then the basic figures on |G| vertices necessarily have a cycle and by Theorem

2.7 the constant coefficient of QG is even which contradicts the fact that that the constant coefficient of

QG(X) is (−1)p. We conclude that G is a sun.

Remark 4.2: There exist even suns not determined by their adjacency spectrum. Two examples are

depicted in Figure 6 and Figure 7.

Fig. 6: The graph Sun4 and a (non-connected) graph

cospectral with Sun4.

Fig. 7: The graph Sun16 and a (non-connected) graph

cospectral with Sun16.

Theorem 4.3 The graphs CBSunp,q, p odd, are determined by their adjacency spectrum.

Proof: Let G be a graph A-cospectral with CBSunp,q and let n = p + q be the number of vertices of G.

The first step of the proof is to show that G does not have isolated vertices.

If q is odd then 0 is not an eigenvalue of CBSunp,q because CBSunp,q has one and only one basic

figure with p+ q vertices and Theorem 2.7 implies that the constant coefficient of CBSunp,q is non-zero.

It ensues that G cannot have an isolated vertex.

If q is even then CBSunp,q has no basic figure with p + q vertices and has two basic figures with

p + q − 1 vertices and p+q−1
2 connected components, applying Theorem 2.7 we obtain that 0 is an

eigenvalue of CBSunp,q with multiplicity 1. It ensues that G has at most one isolated vertex.

Let us assume that G has an isolated vertex.

As a connected component of G different from a single vertex cannot be bipartite (Lemma 4.2) it has an

odd cycle. The length of the shortest odd cycle is p and |G| < 2p so there is one and only one connected

component different from an isolated vertex. As a result G is the disjoint union of an isolated vertex and

a graph G′ containing a p-cycle. Let us denote by QG(X) = Xn + a1X
n−1 + a2X

n−2 + ... + an the

characteristic polynomial of the adjacency matrix of G. Since ap+2 = 0 (Lemma 4.1), the number of

Cp+2 of G is equal to the number of Cp ∪ K2 (Theorem 2.7).

• If G does not possess a (p + 2)-cycle then Cp ∪K2 is not a subgraph of G′ which implies that each

vertex not belonging to the p-cycle is at distance 1 of the p-cycle. Moreover G has one and only one

p-cycle and G′ does not have p′-cycles, p′ < p, p′ odd, so a vertex at distance 1 from the p-cycle is

a pendant vertex. As a result G′ has one and only one cycle. Contradiction.

• Let us assume that G possesses a (p + 2)-cycle. Given that G′ has n − 1 vertices, n edges and

a p-cycle, G′ has at most one (p + 2)-cycle, so there is exactly one Cp ∪ K2 in G. With these

constraints, the graph H depicted in Figure 8 is an induced subgraph of G′. It ensues that G′ is

obtained by appending pendant vertices to the vertices of H belonging to the p-cycle. The number

q of vertices of G′ not belonging to the p-cycle is q = n3 + 2n4 + 3n5.
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p−cycle

Fig. 8: Graph H .

By Proposition 2.2 and Theorem 2.5, the maximum degree of G is lower than or equal to 5. Let ni

be the number of vertices of degree i, (i = 0, · · · , 5), we have the following equations (the second

one just says that the sum of the degrees is twice the number of edges):

n = 1 + n1 + n2 + n3 + n4 + n5

2n = n1 + 2n2 + 3n3 + 4n4 + 5n5

which give

n = −1 + n2 + 2n3 + 3n4 + 4n5

Proposition 2.4 gives on one hand

∑

λi∈Sp(G)

λ4
i = 8 + 2n + 4(n2 + 3n3 + 6n4 + 10n5) = 6n + 4(3 + n3 + 3n4 + 6n5)

and on the other and

∑

λi∈Sp(CBSunp,q)

λ4
i = 2n + 4 ((p − q) + 3q) = 6n + 4q

which implies q = 3 + n3 + 3n4 + 6n5, a contradiction with q = n3 + 2n4 + 3n5.

As a conclusion G does not have isolated vertices.

Now we can apply Theorem 4.1 and we have that G ∈ BS(p, q). Since λ(G) = λ(CBSunp,q) we

have that G is isomorphic to CBSunp,q (Theorem 2.6). ✷
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