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Abstract

The inertia of a graph is an integer triple specifying the number of negative, zero, and positive eigenvalues
of the adjacency matrix of the graph. A unicyclic graph is a simple connected graph with an equal number of
vertices and edges. This paper characterizes the inertia of a unicyclic graph in terms of maximum matchings
and gives a linear-time algorithm for computing it. Chemists are interested in whether the molecular graph
of an unsaturated hydrocarbon is (properly) closed-shell, having exactly half of its eigenvalues greater than
zero, because this designates a stable electron configuration. The inertia determines whether a graph is
closed-shell, and hence the reported result gives a linear-time algorithm for determining this for unicyclic
graphs.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The inertia of a graph is an integer triple specifying the numbers of negative, zero, and positive
eigenvalues of the adjacency matrix of the graph. A unicyclic graph is a simple connected graph
with an equal number of vertices and edges. Here we present a method of calculating the inertia
of a unicyclic graph from its maximum matchings.
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Many articles have recently appeared about the eigenvalues of unicyclic graphs in the context
of matchings. Topics for such articles include general analysis [1,2], the spectral radius [3], energy
[4,5], largest eigenvalues [6], and nullity [7]. One paper [8] uses methods similar to those presented
here to determine the nullity of a unicyclic graph, but not the number of positive and negative
eigenvalues.

According to Hückel theory, the eigenvalues of a chemical graph (connected graph with max-
imum degree at most three) specify the allowed energies of the π molecular orbitals available
for occupation by electrons. Such a graph or corresponding molecule is said to be (properly)
closed-shell if exactly half of its eigenvalues are positive (requiring an even number of vertices),
which indicates a stable π -system [9, p. 47]. The study of the inertia of chemical graphs and its
relation to predicted stability has been present for at least 35 years [10], though the predictors of
stability differ slightly from the ones presented here. A closed-shell independent set can be used
to predict addend bonding locations. Such a set is an independent set in which the components
induced by the vertices not in the set are all closed-shell. The search for maximum closed-shell
independent sets on fullerenes [11] benefits from a fast method of determining whether or not
induced subgraphs of a fullerene are closed-shell. Many such subgraphs are unicyclic and the
closed-shell nature of a graph follows immediately from its inertia. These facts motivated the
study of the inertia of unicyclic graphs here.

2. Notation

A unicyclic graph contains n vertices and hence n edges. Let Cq be the subgraph induced by
the vertices of the unique q-cycle of a unicyclic graph. Then G − V (Cq) is the vertex-deleted
subgraph created by removing the vertices of Cq and their incident edges.

Let A be the adjacency matrix of G. Then the characteristic polynomial of G is PG(λ) =
a0λ

n + a1λ
n−1 + · · · + an, the characteristic polynomial of A. For any graph, a0 = 1. The mul-

tiplicity of λ = 0 as a root of this polynomial is given by n − i where i is the largest value such
that ai is non-zero.

Let m(G) denote the size of the maximum matching of a graph G, counting edges. Hence
m(G) = n/2 means G has a perfect matching. A matching using i edges (0 � i � n/2) is called
an i-matching. Let mi(G) denote the number of i-matchings on G. By definition, m0(G) = 1 for
any G.

The inertia of a graph G, In(G) = (p−, p0, p+), is a triple composed of the number of negative,
zero, and positive eigenvalues of A(G), respectively. The function sgn(x) is the standard signum
function.

3. Inertia

The inertia of a unicyclic graph is completely determined by the size q of its cycle, character-
istics of the maximum matchings and, in the case q is odd, the size of a maximum matching of
G − V (Cq). The details are given in the main result, Theorem 6, which we prove in this section.
The approach for the proof is to determine the sign of a sufficient number of the coefficients ai

in the characteristic polynomial PG(λ). Descartes’ sign rule may then be applied to find p+, the
number of positive eigenvalues. Along the way, we also discover p0 and hence p−. We will use
two well-known theorems, the latter of which can be found in almost any book on the theory of
equations, such as [12, p.124].
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Theorem 1 [13, Theorem 1.3, p.32]. Call an “elementary figure”

(a) the graph K2, or
(b) a cycle Cq (q � 3),

and call a “basic figure” U any graph all of whose components are elementary figures. Let Ui

denote the set of all basic figures contained in G having exactly i vertices. Define the “contribu-
tion” b(E) of an elementary figure E by

b(K2) = −1, b(Cq) = 2(−1)q+1

and a basic figure U by

b(U) =
∏
E∈U

b(E).

Then for i > 0,

ai = (−1)i
∑

U∈Ui

b(U).

Theorem 2 (Descartes’ sign rule). The number of positive roots of a polynomial f (x) = f0x
n +

f1x
n−1 + · · · + fn with all real roots is equal to the number of sign changes of fi proceeding

from f0 to fn, ignoring fi = 0.

Descartes’ sign rule may be applied to PG(λ) because A has all real eigenvalues since A is real
and symmetric. We now begin our proof of the main result by finding the sign of the coefficients
of PG(λ) with even index. Note that here and henceforth an edge “incident to the cycle” refers to
such an edge that is not on the cycle.

Lemma 3. If G is a unicyclic graph with cycle Cq, then for 0 � i � �n/2�,

sgn(a2i ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)i if q ≡ 0 (mod 4), 0 < i � m(G), and there exists an
i�matching containing an edge incident to the cycle,

(−1)i if q ≡ 0(mod 4) and i = 0,

(−1)i if q ≡ 2(mod 4) and i � m(G),

(−1)i if q is odd and i � m(G), and
0 otherwise.

Proof. Trivially a0 = 1, which is equal to the stated result (−1)i for any value of q since
m(G) � 0.

Assume q is odd. Then any basic figure on an even number of vertices consists only of copies
of K2. Such a matching of 2i vertices exists only if i � m(G). Therefore, for i > m(G), no basic
figure exists and so sgn(a2i ) = 0. Otherwise, each basic figure contributes (−1)i to the sum for
a2i , so the we have sgn(a2i ) = (−1)2i (−1)i = (−1)i .

Assume q is even and i � 1. Since any even cycle can be decomposed into a matching, we
again have sgn(a2i ) = 0 when i > m(G). Suppose 2i < q, then any basic figure on 2i vertices
only contains copies of K2 and sgn(a2i ) = (−1)i , as before. Finally, suppose q � 2i � 2m(G)

so that some basic figures on 2i vertices contain Cq and i − q/2 copies of K2 and some basic
figures contain only i copies of K2. Thus,



852 S. Daugherty / Linear Algebra and its Applications 429 (2008) 849–858

a2i =(−1)2i (mi−q/2(G − V (Cq))[2(−1)q+1(−1)i−q/2] + mi(G)[(−1)i])
=(−1)i(2mi−q/2(G − V (Cq))(−1)q/2+1 + mi(G)).

When q ≡ 2(mod 4), this simplifies to show sgn(a2i ) = (−1)i . When q ≡ 0(mod 4), this im-
plies that sgn(a2i ) = (−1)isgn(mi(G) − 2mi−q/2(G − V (Cq))). But mi(G) � 2mi−q/2(G −
V (Cq)) since 2mi−q/2(G − V (Cq)) matchings of G of size i can be found by using the two
matching in the cycle. Furthermore, mi(G) > 2mi−q/2(G − V (Cq)) only when there exists a
matching of G of size i that uses an edge between Cq and G − V (Cq). �

We now simplify Lemma 3 by determining when it is possible to haveq ≡ 0(mod 4), i � m(G),
and the existence of an i-matching containing an edge between Cq and G − V (Cq).

Lemma 4. For G a unicyclic graph with cycle Cq, let

k =
⎧⎨
⎩

m(G) − 1 if q ≡ 0 (mod 4) and no maximum matching
contains an edge incident to the cycle, and

m(G) otherwise.

Then for 0 � i � �n/2�,

sgn(a2i ) =
{
(−1)i if i � k, and
0 otherwise.

Proof. The statement follows immediately from Lemma 3 except in the case where q ≡ 0(mod 4)

and 0 < i � m(G). For theremainder of the proof, we assume these two conditions and use them
toprove that there exists an m(G) − 1 matching containing an edge incident to the cycle.

Notice that if an i-matching exists containing an edge incident to the cycle for i > 1 then such
an (i − 1)-matching also exists. Likewise, if no i-matching exists containing an edge incident to
the cycle then no(i + 1)-matching exists containing such an edge. Thus, there is some maximum
value k such that there exists a k-matching containing an edge incident to the cycle, but no such
(k + 1)-matching exists. Clearly, k � m(G). Also, k = 0 if and only if G = Cq .

Suppose 0 < k < m(G). That is, no maximum matching contains an edge incident to the
cycle. Consider a maximum matching M and an edge e = (u, v) incident to the cycle such that
u ∈ V (Cq) and v /∈ V (Cq). Hence, for all such choices of M and e, e /∈ M . Furthermore, since
M is maximum and q is even, every vertex on thecycle is incident to a matched edge on the
cycle, as shown in Fig. 1. Let f be the matched cycle edge incident to u. There also must exist an
edge g ∈ M incident to v, otherwise the matching M − f + e would be a maximum matching
that contradicts k /= m(G). Note that M − f − g + e is a matching of size m(G) − 1 containing
anedge incident to the cycle and hence k = m(G) − 1.

Finally, suppose k = 0 and hence G = Cq . The argument in the proof of Lemma 3 shows that
a2i = (−1)i for 2i < q. When 2i = q, there are exactly three basic figures: two perfect matchings
andone containing only Cq . Direct application of Theorem 1 shows aq = 0. �

We will apply Theorem 2 to count the number of positive eigenvalues of A by counting the
number of sign changes from a0 to an. Lemma 4 shows that the coefficients a2i begin at a0 = 1
and alternate in sign, ending at a point where the remaining coefficients are all 0. Let k be the
maximum value such that a2k /= 0. Then it does not matter what the values of a2i+1 are for
0 � i < k, as they do not affect the number of sign changes since the sign of a2i+1 is either the
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Fig. 1. A case considered in the proof of Lemma 4. Bold edges are in the maximum matching M . Triangles represent
unknown tree-like parts of the graph. Tree-like additions are not restricted to u and may be attached to any other vertex
on the cycle.

same as a2i or a2i+2, or a2i+1 = 0. Thus, we only consider the odd coefficients a2i+1 when i � k.
We characterize those now.

Lemma 5. Let G be a unicyclic graph with cycle Cq. Let k be the maximum value such that
a2k /= 0. Then a2i+1 = 0 for all i > k.

Proof. This is trivial in the case where q is even, because there exist no basic figures on an odd
number of vertices. Assume q is odd. If there exists a basic figure on 2i + 1 vertices, then there
exists a basic figure on 2i vertices, which is found by replacing Cq (which must be included)
in the basic figure with (q − 1)/2 copies of K2 to get a matching of size i. Thus, a2i+1 = 0 for
i > k. �

Our search for the number of sign changes has now been reduced to finding the sign of a2k+1.
All the odd coefficients are 0 when q is even. The only case to consider is q odd, and recall that k

has been defined in this case to equal m(G). A basic figure on 2m(G) + 1 vertices must contain
Cq and (2m(G) + 1 − q)/2 copies of K2 from G − V (Cq). Therefore, we have

a2m(G)+1 = (−1)2m(G)+1(mm(G)−(q−1)/2(G − V (Cq)))(2(−1)q+1(−1)m(G)−(q−1)/2)

= −2(mm(G)−(q−1)/2(G − V (Cq)))((−1)m(G)−(q−1)/2).

So,

sgn(a2m(G)+1)=
⎧⎨
⎩

(−1)m(G)−(q−1)/2+1 if q is odd and mm(G)−(q−1)/2(G−V (Cq))>0,

and
0 otherwise.

Therefore, sgn(a2m(G)+1) is the opposite of sgn(a2m(G)) = (−1)m(G) when q ≡ 1(mod 4) and
mm(G)−(q−1)/2(G − V (Cq)) > 0. They have the same sign when q ≡ 3(mod 4) and



854 S. Daugherty / Linear Algebra and its Applications 429 (2008) 849–858

(a) (b) (c) (d)

(d)(d)
(d)(d)

Fig. 2. Some unicyclic graphs, each labeled with the applicable case from Theorem 6 and an illustrative maximum
matching. The inertia for each graph in clockwise order from the top left is: (4, 3, 4), (3, 1, 4), (6, 0, 5), (4, 0, 4), (3, 1, 3),
(6, 0, 6), (3, 0, 3), (4, 1, 4).

mm(G)−(q−1)/2(G − V (Cq)) > 0. The requirement mm(G)−(q−1)/2(G − V (Cq)) > 0 means there
exists a maximum matching of G that does not use any edge between Cq and G − V (Cq). This
is equivalent to 2m(G) + 1 = 2m(G − V (Cq)) + q.

The number of positive eigenvalues can now be determined by counting the number of sign
changes of the ai’s. The number of zero eigenvalues is n − i where i is the largest value such that
ai /= 0. The number of negative eigenvalues, and hence the inertia of a unicyclic graph, can then
be computed by considering the size of a maximum matching of G and, if necessary, G − V (Cq).
From the above analysis we have proved the following.

Theorem 6. For G, a unicyclic graph containing the cycle Cq, In(G) = (p−, p0, p+) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) (m(G) − 1, n − 2m(G) + 2, m(G) − 1) if q ≡ 0(mod 4) and no

maximum matching contains

an edge incident to Cq,

(b) (m(G), n − 2m(G) − 1, m(G) + 1) if q ≡ 1(mod 4) and

2m(G) + 1 = 2m(G − V (Cq)) + q,

(c) (m(G) + 1, n − 2m(G) − 1, m(G)) if q ≡ 3(mod 4) and

2m(G)+1=2m(G−V (Cq))+q, and

(d) (m(G), n − 2m(G), m(G)) otherwise.

Example graphs that illustrate the cases of Theorem 6 are shown in Fig. 2. Where multiple
maximum matchings exist, a maximum matching is shown that illustrates the applicable case.
The top row shows examples with a maximum matching that does not contain an edge incident
to Cq and the bottom row shows examples with a maximum matching that does contain such an
edge.
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4. Inertia algorithm

It is possible to compute the inertia of a unicyclic graph in linear time using a simple variation of
the Karp–Sipser leaf-removal algorithm [14]. The first phase of the algorithm repeatedly removes
a leaf, its neighbor, and any incident edges from the graph. The edge incident to the leaf is
added to the matching. It was shown that this phase of the algorithm makes no “mistakes.”
That is, a maximum matching of the remaining graph, the core, produces a maximum matching
of the original graph when combined with the edges selected by the leaf-removal phase. The
next phase of the algorithm involves selecting a random edge when no leaf exists then contin-
uing again with leaf-removal. However, this is unnecessary for unicyclic graphs as discussed
below.

In the case of unicyclic graphs, after leaf-removal one is left with a core of either (1) the null
graph, (2) isolated vertices, or (3) the cycle and possibly some isolated vertices. In case (3), a
maximum matching contains �q/2� more edges than were selected by the leaf-removal. To find
the inertia when q is odd, the size of a maximum matching of the forest G − V (Cq) can also be
determined by the Karp–Sipser algorithm. In this case, it is easy to locate and remove Cq from G

in linear time using a breadth-first search.
When q ≡ 0(mod 4), the algorithm can be used to determine if no maximum matching contains

an edge incident to the cycle, since this occurs exactly when the algorithm results in case (3) above.
The reason is as follows. Let V (Cq) = {v1, v2, . . . vq}, and let Ti be the maximal-sized tree rooted
at vi using no edges of the cycle. Finally, let ti be the size of a maximum matching of Ti . Because
the leaf removal is mistake-free, the algorithm accurately finds each ti , regardless of the order in
which the leaves are removed. Assuming that the algorithm found a maximum matching of G

containing no edges incident to the cycle, it resulted in case (3). In that case, the size of a maximum
matching of G is t1 + t2 + · · · + tq + q/2. If a different maximum matching of G (one not found
by the algorithm) exists using an edge incident to the cycle, there cannot be q/2 cycle edges in
the matching and so such a matching can have at most t1 + t2 + · · · + tq + q/2 − 1 edges, and
therefore cannot also be maximum. Thus, when the algorithm results in case (3), no maximum
matching exists containing an edge incident to the cycle.

The maximum matchings shown in Fig. 2 are examples of those that may be found by the
inertia algorithm. Other matchings may be found, depending on the order in which leaves are
selected for removal and the chosen matching of the remaining cycle in the event of case (3).

5. Closed-shells

Recall that a graph G is called properly closed-shell if n is even and exactly half of its eigen-
values are positive. It is easy to determine whether or not a unicyclic graph is closed-shell if the
inertia is already known. However, if one is only concerned with whether or not a unicyclic graph
is closed-shell and does not need to know the inertia, such a conclusion can be reached using less
information than is required by Theorem 6.

Corollary 7. Let G be a unicyclic graph with cycle Cq. Then G is closed-shell if and only if it
has an even number of vertices and one of the following mutually-exclusive cases holds:

Case 1. q ≡ 0(mod 4) and G has a unique perfect matching,

Case 2. q ≡ 1(mod 4) and either
2.1. 2m(G) − 2m(G − V (Cq)) = q − 1 and m(G) = n/2 − 1, or
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Fig. 3. Some unicyclic graphs, with a maximum matching of each shown in bold. Examples that are closed-shell are
checked.

2.2. 2m(G) − 2m(G − V (Cq)) /= q − 1 and G has a perfect matching,

Case 3. q ≡ 2(mod 4) and G has a perfect matching, or
Case 4. q ≡ 3(mod 4) and G has a perfect matching.

Proof. Recall that a graph is closed-shell if and only if p+ = n/2. For each value of q(mod 4),
we determine the conditions in which this holds true by considering the four cases of Theorem 6.

Case 1. q ≡ 0(mod 4)

Either case (a) or (d) applies from Theorem 6. A graph G cannot be closed-shell if case (a)
applies since p+ = m(G) − 1 < n/2. If case (d) applies, then p+ = m(G) so G is closed-shell
if and only if it has at least one perfect matching. Case (d) applies only when some maximum
matching contains an edge incident to Cq . Note that a unicyclic graph has at most two perfect
matchings, which follows from the algorithm for calculating the inertia since only isolated vertices
and the cycle may remain after leaf-removal. Furthermore, a perfect matching is unique if and
only if it contains an edge incident to Cq (such that the cycle does not remain after leaf-removal).
Therefore G is closed-shell if and only if it has a unique perfect matching.
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Case 2. q ≡ 1(mod 4)

Either case (b) or (d) applies, so G is closed-shell if and only if it has a perfect matching (case
(d)), unless 2m(G) + 1 = 2m(G − V (Cq)) + q (case (b)), in which case the requirement is that
m(G) + 1 = n/2.

Case 3. q ≡ 2(mod 4)

Only case (d) applies, so G is closed-shell if and only if it has at least one perfect matching.

Case 4. q ≡ 3(mod 4)

Either case (c) or (d) applies and p+ = m(G) in each case so G is closed-shell if and only if
it has at least one perfect matching. �

Examples of unicyclic graphs that are or are not closed-shell are given in Fig. 3. This includes
some graphs that are not closed-shell yet contain a perfect matching and some graphs that are
closed-shell yet have no perfect matching.

Clearly, determining if a unicyclic graph is closed-shell can also be computed in linear time.
In many cases, this calculation can be performed slightly faster than it was for the general inertia.
Repeated leaf removal can be used to determine the size of a maximum matching as well as the
number of perfect matchings. When q ≡ 1(mod 4) and m(G) � n/2 − 1, the size of a maximum
matching of G − V (Cq) must be determined to apply Corollary 7. This can be computed by
running the Karp–Sipser algorithm on the forest G − V (Cq).

Two early-termination conditions can be applied to the leaf removal algorithm because only per-
fect or near-perfect matchings are allowed for closed-shell unicyclic graphs. When q �≡ 1(mod 4),
a perfect matching is required and the algorithm can terminate with the answer “not closed-shell”
when an isolated vertex appears. When q ≡ 1(mod 4), the algorithm can terminate with the
response “not closed-shell” when three isolated vertices appear, which implies m(G) < n/2 − 1.

When searching for the maximum size of a closed-shell independent set for fullerenes [11],
unicyclic graphs often arise as induced subgraphs to be tested for closed-shell properties. Imple-
mentation of this linear time algorithm helped increase the speed of the backtracking search.

The study of closed-shell conditions of other classes of graphs that appear as induced subgraphs
of fullerenes may also speed up the algorithm implementation or lead to insights about ways to
calculate the closed-shell independence number of fullerenes without backtracking. Though a
plethora of induced fullerene subgraph classes exists, focusing on simple classes such as bicyclic
graphs and cacti may be rewarding. Simpler results may be possible by restricting the analysis to
graphs that are planar, of maximum degree at most three, and/or of girth at least five.
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