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Abstract

Connected graphs in which the number of edges equals the number of vertices are called
unicyclic graphs. In this paper, all unicyclic graphs whose second largest eigenvalue does not
exceed 1 have been determined.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a simple graph with n vertices, and let A be the (0, 1)-adjacency matrix
of G. We call det(�I − A) the characteristic polynomial of G, denoted by P(G; �), or
abbreviated P(G). Since A is symmetric, its eigenvalues �1; �2; : : : ; �n are real, and we
assume that �1¿ �2;¿ · · ·¿ �n. In [2], Cvetkovic asked if it was possible to determine
all the graphs whose second largest eigenvalue �2 does not exceed 1. In subsequent
years, some results concerning this problem have been obtained (see [1,7]). In 1989,
Hong [8] determined all the trees with �2¡ 1, and In 1998, Shu [9] determined all
the trees with �2 = 1.
Connected graphs in which the number of edges equals the number of vertices are

called unicyclic graphs. In this paper, we will discuss the second largest eigenvalue of
unicyclic graphs. Our main result is: a unicyclic graph G satisBes �2 = 1 if and only
if G is either the circuit C6 or one of the following graphs G1; G2; : : : ; G14 in Fig. 1.
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Fig. 1. Gi (i = 1; : : : ; 14).

2. Lemmas

First, we quote the following lemmas Lemmas 1–4 which will be used in the proofs
of our later results.

Lemma 1 (Cvetkovic et al. [4]). Let V ′ be a subset of vertices of a graph G and
|V (G)| = n; |V ′| = k, then

�i(G)¿ �i(G − V ′)¿ �i+k(G) (16 i6 n− k):

Lemma 2 (Cvetkovic et al. [4]). Let G be a simple graph with vertex set V (G), and
u∈V (G), then

P(G) = �P(G − u) −
∑

v

P(G − u− v) − 2
∑

Z∈C(u)
P(G − V (Z));

where the 9rst summation goes through all vertices v adjacent to u, and the second
summation goes through all circuits Z belonging to C(u). C(u) denotes the sets of
all circuits containing u.

Lemma 3 (Cvetkovic et al. [4]). The spectrum of a circuit Cn consists of the numbers
2 cos(2�=n)i (i = 1; : : : ; n), and the spectrum of the path Pn consists of the numbers
2 cos[2�=(n+ 1)]i (i = 1; : : : ; n).
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Fig. 2. Gi (156 i6 22).

Now, we consider unicyclic graphs. For convenience, we write

Un = {G |G is an unicyclic graph with n vertices}

U (k) = {G |G is an unicyclic graph containing a circuit Ck}

Un(k) = {G |G ∈Un and G ∈U (k)}:

Lemma 4 (Wu and Zhang [10]). Let G ∈Un, n¿ 8. We have

(1) �2(G)¿ �2(Cn−3
3 ), with equality i< G ∼= Cn−3

3 .
(2) 0¡�2(Cn−3

3 )¡ 1 and limn→∞ �2(Cn−3
3 ) = 1.

(3) If G �= Cn−3
3 , then �2(G)¿ 1.

where Cn−3
3 is the unicyclic graph obtained from the star K1; n−1 by joining two

pendent vertices of K1; n−1.

As a direct consequence of Lemma 4, we can have the following result which
determines all the unicyclic graphs with �2¡ 1.

Theorem 1. A unicyclic graph G satis9es �2¡ 1 if and only if G is either one of the
graphs Cn−3

3 (n¿ 3); C4; C5 or one of the graphs Gi (156 i6 22) as given in Fig. 2.

Proof. Let G ∈Un. We consider the following two cases.
Case 1: n¿ 8. We have by Lemma 4 that �2(G)¡ 1 if and only if G ∼= Cn−3

3 .
Case 2: n6 7. From the tables of connected graphs with n vertices for 36 n6 7

in [3–5], we can easily see that �2(G)¡ 1 if and only if G is either one of the graphs
Cn−3
3 (36 n6 7); C4; C5 or one of the graphs Gi (156 i6 22) as given in Fig. 2.
This completes the proof of the theorem.

Now, our object is to determine all the unicyclic graphs with �2 = 1.
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Fig. 3. G′
j (j = 1; : : : ; 9).

Lemma 5. Let Gi (i=1; : : : ; 14) be the unicyclic graphs as given in Fig. 1 and G′
j (j=

1; : : : ; 9) be the unicyclic graphs as given in Fig. 3. Then

(1) �2(G′
j)¿ 1 (j = 1; : : : ; 9),

(2) �2(C6) = 1 and �2(Gi) = 1 (i = 1; : : : ; 14).

Proof. From the tables of spectra of connected graphs with n vertices for 46 n6 7
and unicyclic graphs with eight vertices in [3–6], we can easily see that

�2(G′
j)¿ 1 (j = 1; : : : ; 9); �2(C6) = 1 and �2(Gi) = 1 (i = 1; : : : ; 12):

For G14, we have by Lemma 1 that

�1(G14 − u)¿ �2(G14)¿ �2(G14 − u):
So

�2(G14) = 1:

Now, we consider G13. By Lemma 2, we have

P(G13) = �3(�− 1)(�5 + �4 − 8�3 − 10�2 + 4�+ 8):

Obviously

�1(G13)¿ 2; �3(G13)6 16 �2(G13); and �4(G13)6 0:

Write

f(x) = x5 + x4 − 8x3 − 10x2 + 4x + 8:

Then

f(1) = −4¡ 0; f(0) = 8¿ 0:
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So

0¡�3(G13)¡ 1:

Hence

�2(G13) = 1:

This completes the proof of the lemma.

Lemma 6. Among all unicyclic graphs in U (k); k¿ 5, only the graph C6 and the
graphs G1 and G2 in Fig. 1 satisfy �2 = 1.

Proof. Let G ∈Un(k) \ {C6; G1; G2}; k¿ 5. We consider the following three cases.
Case 1: k¿ 7. By Lemmas 1 and 3, we have

�2(G)¿ �2(Ck) = 2 cos
2�
k
¿ 1:

Case 2: k = 6. Since G �= C6, we know n¿ 7. By Lemmas 1 and 3,

�2(G)¿ �2(P6) = 2 cos
2�
7
¿ 1:

Case 3: k = 5. If n= 5, then

�2(G) = �2(C5) = 2 cos
2�
5
¡ 1:

If n¿ 8; G must have an induced subgraph G′ ∈U8(5). From the table of spectra
of unicyclic graphs with eight vertices in [6], we see that �2(G′)¿ 1. So �2(G)¿ 1.

For n = 6 and 7. Using the tables of spectra of connected graphs with n vertices
(n=6 or 7) in [5,3] we can easily see that only the graphs G1 and G2 in Fig. 1 satisfy
�2 = 1.

Lemma 7. Among all unicyclic graphs in U (4), only the graphs Gi (i = 3; : : : ; 8) as
given in Fig. 1 satisfy �2 = 1.

Proof. Let G ∈Un(4). If G has an induced subgraph G′
1 as given in Fig. 3.

Then we have

�2(G)¿ �2(G′
1)¿ 1:

So if �2(G) = 1, G must have the following form C4(r1; r2; r3; r4) as given in Fig. 4.
When n¿ 9, it is easy to see that G must have an induced subgraph that is isomor-

phic to one of the graphs G′
j (j = 2; 3; 4; 5) in Fig. 3. By Lemma 1, �2(G)¿ 1.

For n6 8, from the tables in [3–6], we can easily show that only Gi (i = 3; : : : ; 8)
satisfy �2 = 1.

Lemma 8. Among all graphs in U (3), only the graphs Gi (i = 9; : : : ; 14) in Fig. 1
satisfy �2 = 1.
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Fig. 4. C4 (r1; r2; r3; r4).
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Fig. 5. G′
10; G

′
11.

Proof. First, if a graph G in U (3) has an induced subgraph as one of the graphs G′
6

and G′
7 in Fig. 3, then �2(G)¿ 1. So the graphs in U (3) with �2 = 1 can only be the

graphs obtained from C3 by connecting the vertices of C3 with some isolated vertices
and (or) some paths P2. Furthermore, if a graph G in U (3) has an induced subgraph as
one of the graphs G′

8 and G′
9 in Fig. 3, we also have �2(G)¿ 1. So the graphs in U (3)

with �2 = 1 can only be the graphs as given in Fig. 5 or the graphs Gi (116 i6 14)
as given in Fig. 1. For the graphs Gi (116 i6 14), we have known that their second
largest eigenvalue is 1. So it suKces to consider G′

10; G
′
11 as given in Fig. 5.

By Lemma 2, we have

P(G′
10) = �

n−4[�4 − n�2 − 2�+ (2n− 7)];

P(G′
11) = �

n−6[�6 − n�4 − 2�3 + 3(n− 4)�2 − (n− 5)]:

It is easy to show that only n = 8 can make �2(G′
10) = �2(G

′
11) = 1. This is to say

that only the graphs G9 and G10 satisfy �2 = 1.

3. Main results

Theorem 2. A unicyclic graph G satis9es �2 = 1 if and only if G is either the circuit
C6 or one of the graphs Gi (i = 1; : : : ; 14) in Fig. 1.

Proof. The result follows immediately from Lemmas 6, 7 and 8.
From Theorem 2, we can easily obtain the following results.
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Fig. 6. G∗.

Corollary 1. A unicyclic graph G satis9es �26 1 if and only if G is either the circuit
C6, the graphs Gi (i = 1; : : : ; 14) in Fig. 1, or their induced unicyclic subgraphs.

Corollary 2. Let G ∈Un; n¿ 9; G �= Cn−3
3 . Then

�2(G)¿ �2(G14) = 1;

where equality holds i< G ∼= G14.

Corollary 3. Let G be a unicyclic graph on 2k vertices with a perfect matching and
k¿ 5. Then

�2(G)¿ �2(G∗) = 1;

where equality holds i< G ∼= G∗ and G∗ is the graph as given in Fig. 6.

Proof. Since G has a perfect matching, G �= C2k−3
3 . By the fact that n= 2k¿ 10, we

can see from Corollary 2 that

�2(G)¿ �2(G14) = 1:

However G14 must have a perfect matching, so G14
∼= G∗. Therefore the result

holds.
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