5,754 research outputs found

    Overview of Hydra: a concurrent language for synchronous digital circuit design

    Get PDF
    Hydra is a computer hardware description language that integrates several kinds of software tool (simulation, netlist generation and timing analysis) within a single circuit specification. The design language is inherently concurrent, and it offers black box abstraction and general design patterns that simplify the design of circuits with regular structure. Hydra specifications are concise, allowing the complete design of a computer system as a digital circuit within a few pages. This paper discusses the motivations behind Hydra, and illustrates the system with a significant portion of the design of a basic RISC processor

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    Implementing and reasoning about hash-consed data structures in Coq

    Get PDF
    We report on four different approaches to implementing hash-consing in Coq programs. The use cases include execution inside Coq, or execution of the extracted OCaml code. We explore the different trade-offs between faithful use of pristine extracted code, and code that is fine-tuned to make use of OCaml programming constructs not available in Coq. We discuss the possible consequences in terms of performances and guarantees. We use the running example of binary decision diagrams and then demonstrate the generality of our solutions by applying them to other examples of hash-consed data structures

    Symbolic execution proofs for higher order store programs

    Get PDF
    Higher order store programs are programs which store, manipulate and invoke code at runtime. Important examples of higher order store programs include operating system kernels which dynamically load and unload kernel modules. Yet conventional Hoare logics, which provide no means of representing changes to code at runtime, are not applicable to such programs. Recently, however, new logics using nested Hoare triples have addressed this shortcoming. In this paper we describe, from top to bottom, a sound semi-automated verification system for higher order store programs. We give a programming language with higher order store features, define an assertion language with nested triples for specifying such programs, and provide reasoning rules for proving programs correct. We then present in full our algorithms for automatically constructing correctness proofs. In contrast to earlier work, the language also includes ordinary (fixed) procedures and mutable local variables, making it easy to model programs which perform dynamic loading and other higher order store operations. We give an operational semantics for programs and a step-indexed interpretation of assertions, and use these to show soundness of our reasoning rules, which include a deep frame rule which allows more modular proofs. Our automated reasoning algorithms include a scheme for separation logic based symbolic execution of programs, and automated provers for solving various kinds of entailment problems. The latter are presented in the form of sets of derived proof rules which are constrained enough to be read as a proof search algorithm

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Crowfoot: a verifier for higher-order store programs

    Get PDF
    We present Crowfoot, an automatic verification tool for imperative programs that manipulate procedures dynamically at runtime; these programs use a heap that can store not only data but also code (commands or procedures). Such heaps are often called higher-order store, and allow for instance the creation of new recursions on the fly. One can use higher-order store to model phenomena such as runtime loading and unloading of code, runtime update of code and runtime code generation. Crowfoot's assertion language, based on separation logic, features nested Hoare triples which describe the behaviour of procedures stored on the heap. The tool addresses complex issues like deep frame rules and recursion through the store, and is the first verification tool based on recent developments in the mathematical foundations of Hoare logics with nested triples
    corecore