9 research outputs found

    Comparing transformation languages for the implementation of certified model transformations

    Get PDF
    Precise specifications are needed for verifying and certifying the correct behavior of critical systems. However, traditional proofreading and test based verification techniques are usually not exhaustive and as systems become more complex, their coverage is less and less adequate. Use of models allows early verification, validation and automated building of "correct by construction" systems. Our work targets formal specification and verification of model transformations. In a previous paper we tackled the problem of writing formal speci- fications for model transformations independently to the implementation technique. In this paper we investigate the implementation phase of these specifications as model transforma- tions using traditional MDE techniques and the difficulties encountered while generating the verification materials

    Saying Hello World with UML-RSDS - A Solution to the 2011 Instructive Case

    Full text link
    In this paper we apply the UML-RSDS notation and tools to the "Hello World" case studies and explain the underlying development process for this model transformation approach.Comment: In Proceedings TTC 2011, arXiv:1111.440

    An algebraic semantics for QVT-relations check-only transformations

    Full text link
    Fundamenta Informaticae, 114 1, Juan de Lara, Esther Guerra, An algebraic semantics for QVT-relations check-only transformations, 73-101, Copyright 2012, with permission from IOS PressQVT is the standard for model transformation defined by the OMG in the context of the Model-Driven Architecture. It is made of several transformation languages. Among them, QVT-Relations is the one with the highest level of abstraction, as it permits developing bidirectional transformations in a declarative, relational style. Unfortunately, the standard only provides a semiformal description of its semantics, which hinders analysis and has given rise to ambiguities in existing tool implementations. In order to improve this situation, we propose a formal, algebraic semantics for QVT-Relations check-only transformations, defining a notion of satisfaction of QVT-Relations specifications by models.This work has been supported by the Spanish Ministry of Science and Innovation with projects METEORIC (TIN2008-02081) and Go Lite (TIN2011-24139), and by the R&D program of the Community of Madrid with project “e-Madrid” (S2009/TIC-1650)

    Towards a Rule-level Verification Framework for Property-Preserving Graph Transformations

    Get PDF
    International audienceWe report in this paper a method for proving that a graph transformation is property-preserving. Our approach uses a relational representation for graph grammar and a logical representation for graph properties with first-order logic formulas. The presented work consists in identifying the general conditions for a graph grammar to preserve graph properties, in particular structural properties. We aim to implement all the relevant notions of graph grammar in the Isabelle/HOL proof assistant in order to allow a (semi) automatic verification of graph transformation with a reasonable complexity. Given an input graph and a set of graph transformation rules, we can use mathematical induction strategies to verify statically if the transformation preserves a particular property of the initial graph. The main highlight of our approach is that such a verification is done without calculating the resulting graph and thus without using a transformation engine

    Formal Verification Techniques for Model Transformations: A Tridimensional Classification .

    Full text link

    Specification and Verification of Model Transformations

    Get PDF
    Model transformations are a key concept within model driven development and there is an enormous need for suitable formal analysis techniques for model transformations, in particular with respect to behavioural equivalence of source models and their corresponding target models. For this reason, we discuss the general challenges that arise for the specification and verification of model transformations and present suitable formal techniques that are based on graph transformation. In this context, triple graph grammars show many benefits for the specification process, e.g. modelers can work on an intuitive level of abstraction and there are formal results for syntactical correctness completeness and efficient execution. In order to verify model transformations with respect to behavioural equivalence we apply well-studied techniques based on the double pushout approach with borrowed context, for which the model transformations specified by triple graph transformation rules are flattened to plain (in-situ) graph transformation rules. The potential and adequateness of the presented techniques are demonstrated by an intuitive example, for which we show the correctness of the model transformation with respect to bisimilarity of source and target models
    corecore