10 research outputs found

    ENCOMPASS: A SAGA based environment for the compositon of programs and specifications, appendix A

    Get PDF
    ENCOMPASS is an example integrated software engineering environment being constructed by the SAGA project. ENCOMPASS supports the specification, design, construction and maintenance of efficient, validated, and verified programs in a modular programming language. The life cycle paradigm, schema of software configurations, and hierarchical library structure used by ENCOMPASS is presented. In ENCOMPASS, the software life cycle is viewed as a sequence of developments, each of which reuses components from the previous ones. Each development proceeds through the phases planning, requirements definition, validation, design, implementation, and system integration. The components in a software system are modeled as entities which have relationships between them. An entity may have different versions and different views of the same project are allowed. The simple entities supported by ENCOMPASS may be combined into modules which may be collected into projects. ENCOMPASS supports multiple programmers and projects using a hierarchical library system containing a workspace for each programmer; a project library for each project, and a global library common to all projects

    A Simple and Practical Approach to Unit Testing: The JML and JUnit Way

    Get PDF
    Writing unit test code is labor-intensive, hence it is often not done as an integral part of programming. However, unit testing is a practical approach to increasing the correctness and quality of software; for example, the Extreme Programming approach relies on frequent unit testing. In this paper we present a new approach that makes writing unit tests easier. It uses a formal specification language\u27s runtime assertion checker to decide whether methods are working correctly, thus automating the writing of unit test oracles. These oracles can be easily combined with hand-written test data. Instead of writing testing code, the programmer writes formal specifications (e.g., pre- and postconditions). This makes the programmer\u27s task easier, because specifications are more concise and abstract than the equivalent test code, and hence more readable and maintainable. Furthermore, by using specifications in testing, specification errors are quickly discovered, so the specifications are more likely to provide useful documentation and inputs to other tools. We have implemented this idea using the Java Modeling Language (JML) and the JUnit testing framework, but the approach could be easily implemented with other combinations of formal specification languages and unit test tools

    Equality to equals and unequals: a revisit of the equivalence and nonequivalence criteria in object-oriented software testing

    Get PDF
    published_or_final_versio

    A Simple and Practical Approach to Unit Testing: The JML and JUnit Way

    Get PDF
    Writing unit test code is labor-intensive, hence it is often not done as an integral part of programming. However, unit testing is a practical approach to increasing the correctness and quality of software; for example, the Extreme Programming approach relies on frequent unit testing. In this paper we present a new approach that makes writing unit tests easier. It uses a formal specification language\u27s runtime assertion checker to decide whether methods are working correctly, thus automating the writing of unit test oracles. These oracles can be easily combined with hand-written test data. Instead of writing testing code, the programmer writes formal specifications (e.g., pre- and postconditions). This makes the programmer\u27s task easier, because specifications are more concise and abstract than the equivalent test code, and hence more readable and maintainable. Furthermore, by using specifications in testing, specification errors are quickly discovered, so the specifications are more likely to provide useful documentation and inputs to other tools. We have implemented this idea using the Java Modeling Language (JML) and the JUnit testing framework, but the approach could be easily implemented with other combinations of formal specification languages and unit test tools

    The JML and JUnit Way of Unit Testing and its Implementation

    Get PDF
    Writing unit test code is labor-intensive, hence it is often not done as an integral part of programming. However, unit testing is a practical approach to increasing the correctness and quality of software; for example, Extreme Programming relies on frequent unit testing. In this paper we present a new approach that makes writing unit tests easier. It uses a formal specification language\u27s runtime assertion checker to decide whether methods are working correctly; thus code to decide whether tests pass or fail is automatically produced from specifications. Our tool combines this testing code with hand-written test data to execute tests. Therefore, instead of writing testing code, the programmer writes formal specifications (e.g., pre- and postconditions). This makes the programmer\u27s task easier, because specifications are more concise and abstract than the equivalent test code, and hence more readable and maintainable. Furthermore, by using specifications in testing, specification errors are quickly discovered, so the specifications are more likely to provide useful documentation and inputs to other tools. In this paper we describe an implementation using the Java Modeling Language (JML) and the JUnit testing framework, but the approach could be easily implemented with other combinations of formal specification languages and unit testing tools

    SAGA: A project to automate the management of software production systems

    Get PDF
    The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. The SAGA system consists of a small number of software components that are adapted by the meta-tools into specific tools for use in the software development application. The modules are design so that the meta-tools can construct an environment which is both integrated and flexible. The SAGA project is documented in several papers which are presented

    SAGA: A project to automate the management of software production systems

    Get PDF
    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management

    State-based testing - a new method for testing object-oriented programs

    Get PDF
    State-based testing is a new method for testing object-oriented programs. The information stored in the state of an object is of two kinds: control-information and data-storage. The control-information transitions are modelled as a finite state automaton. Every operation of the class under test is considered as a mapping from starting states to a finishing states dependent upon the parameters passed. The possible parameter values are analysed for significant values which combined with the invocation of an operation can be used to represent stimuli applied to an object under test. State-based testing validates the expected transformations that can occur within a class. Classes are modelled using physical values assigned to the attributes of the class. The range of physical values is reduced by the use of a technique based on equivalence partitioning. This approach has a number of advantages over the conceptual modelling of a class, in particular the ease of manipulation of physical values and the independence of each operation from the other operations provided by an object. The technique when used in conjunction with other techniques provides an adequate level of validation for object-oriented programs. A suite of prototype tools that automate the generation of state-based test cases are outlined. These tools are used in four case studies that are presented as an evaluation of the technique. The code coverage achieved with each case study is analysed for the factors that affect the effectiveness of the state-based test suite. Additionally, errors have been seeded into 2 of the classes to determine the effectiveness of the technique for detecting errors on paths that are executed by the test suite. 92.5% of the errors seeded were detected by the state-based test-suite

    Génération automatique de tests unitaires avec Praspel, un langage de spécification pour PHP

    Get PDF
    The works presented in this memoir are about the validation of PHPprograms through a new specification language, along with its tools. These works follow three axes: specification language, automatic test data generation and automatic unit test generation. The first contribution is Praspel, a new specification language for PHP, based on the Design by Contract. Praspel specifies data with realistic domains, which are new structures allowing to validate and generate data. Based on a contract, we are able to perform Contract-based Testing, i.e.using contracts to automatically generate unit tests. The second contribution isabout test data generation. For booleans, integers and floating point numbers, auniform random generation is used. For arrays, a dedicated constraint solver has been implemented and used. For strings, a grammar description language along with an LL(⋆) compiler compiler and several algorithms for data generation are used. Finally, the object generation is supported. The third contribution defines contract coverage criteria. These latters provide test objectives. All these contributions are implemented and experimented into tools distributed to the PHP community.Les travaux présentés dans ce mémoire portent sur la validation de programmes PHP à travers un nouveau langage de spécification, accompagné de ses outils. Ces travaux s’articulent selon trois axes : langage de spécification, génération automatique de données de test et génération automatique de tests unitaires.La première contribution est Praspel, un nouveau langage de spécification pour PHP, basé sur la programmation par contrat. Praspel spécifie les données avec des domaines réalistes, qui sont des nouvelles structures permettant de valider etgénérer des données. À partir d’un contrat écrit en Praspel, nous pouvons faire du Contract-based Testing, c’est à dire exploiter les contrats pour générer automatiquement des tests unitaires. La deuxième contribution concerne la génération de données de test. Pour les booléens, les entiers et les réels, une génération aléatoire uniforme est employée. Pour les tableaux, un solveur de contraintes a été implémenté et utilisé. Pour les chaînes de caractères, un langage de description de grammaires avec un compilateur de compilateurs LL(⋆) et plusieurs algorithmes de génération de données sont employés. Enfin, la génération d’objets est traitée.La troisième contribution définit des critères de couverture sur les contrats.Ces derniers fournissent des objectifs de test. Toutes ces contributions ont été implémentées et expérimentées dans des outils distribués à la communauté PHP
    corecore